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Abstract

In the era of big science, countries allocate big research and development budgets to large

scientific facilities that boost collaboration and research capability. A nuclear fusion device

called the “tokamak” is a source of great interest for many countries because it ideally gener-

ates sustainable energy expected to solve the energy crisis in the future. Here, to explore

the scientific effects of tokamaks, we map a country’s research capability in nuclear fusion

research with normalized revealed comparative advantage on five topical clusters—mate-

rial, plasma, device, diagnostics, and simulation—detected through a dynamic topic model.

Our approach captures not only the growth of China, India, and the Republic of Korea but

also the decline of Canada, Japan, Sweden, and the Netherlands. Time points of their rise

and fall are related to tokamak operation, highlighting the importance of large facilities in big

science. The gravity model points out that two countries collaborate less in device, diagnos-

tics, and plasma research if they have comparative advantages in different topics. This rela-

tion is a unique feature of nuclear fusion compared to other science fields. Our results can

be used and extended when building national policies for big science.

Introduction

Big science is characterized by its big budgets, manpower, and machines. It includes a number

of multidisciplinary fields such as nuclear fusion, particle accelerators, and space science [1].

Most of them originated for military reasons in World War II and were mainly led by super-

powers. In recent decades, as these fields become more demanding, countries actively collabo-

rate to utilize the resources of others and build shared infrastructure [2–4]. In this sense,

compared to little science, big science requires more international collaboration and resource

accessibility [5].
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A large facility is considered the core resource of big science. From construction to opera-

tion, it requires participation of various stakeholders under the leadership of national govern-

ment, resulting in economic spillovers to society [6–8]. A large facility also stimulates scientific

advancements by supporting research activities that are hard to conduct in a laboratory. It

attracts researchers of diverse disciplines and enhances scientific collaborations. Despite its sci-

entific importance, little attention has been paid to examining how large facilities raise national

research capacities because of difficulties in unraveling the multidisciplinarity of big science

[9–11]. Moreover, national research capacity is difficult to quantify as it is built on the complex

interactions between private and public domains [12, 13]. Depending on science and technol-

ogy policies, countries have different goals, such as training experts, publishing papers, or

granting patents, that constitute the national research capacity [14, 15].

Among many aspects of the national research capacity, this study focuses on academic

publishing to estimate the capacity quantitatively [16–22], which we term “research capabil-

ity,” by implementing topic modeling and revealed comparative advantage on the biblio-

graphic information of research papers. The dynamic topic model [23, 24] first detects

subject fields from paper abstracts and distributes publication counts over the detected fields

in real values. Normalized revealed comparative advantage (NRCA) [25] is applied to frac-

tional publication counts for projecting a country’s research capability as well as its changes

by facility construction. Based on NRCA, we measure how similar two countries’ research

capabilities are and include the distance in a gravity model to show its impact on interna-

tional collaboration.

For a case study, we investigate nuclear fusion, in which the construction of large facilities

and international collaborations are crucial. Nuclear fusion is a field that countries have inter-

est in as it produces clean, affordable, and sustainable energy [26, 27]. The history of nuclear

fusion consists of the footprints of major successes in tokamaks [28]. After the nuclear fusion

reaction of hydrogen was identified as the source of solar energy in the 1920s [29], scientists

began to study controlled thermonuclear fusion for sustainable energy production in the

1950s [30]. The tokamak is a device that magnetically confines high-temperature plasmas

essential for steady thermonuclear reactions [31], and now it is the most dominant and actively

studied device for nuclear fusion research [32]. Tokamaks are composed of strong magnets for

confining plasmas, several wall-components in a vacuum vessel for protection, heating devices,

and diagnostic devices, which require knowledge across diverse fields: plasma physics, numeri-

cal simulations, diagnostics, material science, and engineering [31]. The performance of toka-

maks positively scales with size, thus tokamaks have become greater, better, and more

expensive [33–36]. The large budgets for tokamaks have increased international collaborations

since the 1990s, as seen in the cases of JET (Joint European Torus) [37] and ITER (Interna-

tional Thermonuclear Experimental Reactor) construction [34].

Our approach successfully captures various aspects of nuclear fusion from a bibliographic

database over 40 years, 1976–2016. The dynamic topic model disentangles multidisciplinarity

and classifies 41 topics grouped into five topical clusters: material, plasma, device, diagnostics,

and simulation. Furthermore, the revealed comparative advantage identifies leading countries

that participate in international projects or have their own tokamak. The rise and fall of these

countries match well with tokamak operation. With the gravity model of scientific collabora-

tion, we additionally address whether complementarity leads to collaboration in nuclear fusion

research. The regression results show that countries collaborate less if they have research capa-

bility in different topics. It is a unique characteristic of nuclear fusion compared to other sci-

ences in which complementarity enhances collaborations [38–42]. This paper provides

quantitative evidence for establishing strategic policies that initiate and evaluate big science

projects.
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Data and methods

Bibliographic data

We analyzed 25,085 nuclear fusion research papers published during 1976-2016. They were

collected from the Scopus database (document type: article) and contain the term “tokamak”

in the title, abstract, or keyword fields. Papers without affiliation information were manually

filled by checking their original documents. When an author had multiple affiliations, we con-

sidered the first one as her/his nationality. We used the fractional counting method to obtain

the number of papers for each country. For example, if a paper was written by three American

and two Korean researchers, 0.6 and 0.4 were assigned to both countries’ paper counts.

The fractional counting method gives more weight to leading countries, so that would

embrace their inherent academic leadership. Nevertheless, the fractional counting method gives

less biased results than the full counting method that assigns an equal weight to all countries in

a paper. The full counting method could overrepresent some countries (e.g. the United States)

which participate in many international projects. Systemic comparisons of the two methods

recommend the fractional counting method in co-authorship analysis [43, 44], especially for sci-

entific fields conducting large-scale international experiments. For this reason, we chose the frac-

tional counting method to estimate research capability as well as the degree of collaborations.

Among 75 countries in our dataset, we focused on the top 14 countries that published more

than 250 papers in our time scope. The distribution of paper counts was highly skewed. These

14 countries published more than 90% of the research articles. The top 14 countries were the

United States, Japan, China, Germany, the United Kingdom, Russia, France, Italy, the Repub-

lic of Korea, Switzerland, India, Sweden, Canada, and the Netherlands. The basic statistics of

these countries are listed in Table 1. A paper written by more than two authors in different

countries is classified as a collaborative paper.

Topic modeling and clustering

The dynamic topic model (DTM) conceptualizes the knowledge in nuclear fusion research

[23, 24]. The DTM specifies topics in a set of documents based on latent Dirichlet allocation

Table 1. Summary statistics of 14 leading countries in nuclear fusion research. All values are real numbers as we

count the number of papers by the fractional counting method. Ratio is the proportion of collaborative papers to total

papers.

Country Collaborative Papers Total Papers Ratio

United States 978.4 7646.4 0.13

Japan 411.7 3025.7 0.14

China 335.7 2777.7 0.12

Germany 738.1 2147.1 0.34

United Kingdom 522.5 1775.5 0.29

Russia 299.5 1392.5 0.22

France 403.6 1135.6 0.36

Italy 325.1 964.1 0.34

Republic of Korea 115.8 424.8 0.27

Switzerland 153.5 409.5 0.37

India 49.8 400.8 0.12

Sweden 135.0 326.0 0.41

Canada 73.6 292.6 0.25

Netherlands 102.4 276.4 0.37

https://doi.org/10.1371/journal.pone.0211963.t001
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(LDA) [45], and it also describes the temporal evolution of detected topics by updating conse-

quent input hyperparameters αt and βt by each year. αt affects the topic distribution of a docu-

ment, and βt indicates the word distribution in a topic. The DTM infers both parameters to

reproduce the empirical word distribution under the assumption that a document is made by

both processes in year t, choosing a topic for a document by αt and sampling words in that

topic by βt. αt and βt are used as references to estimate αt+1 and βt+1.

In our DTM implementation, insignificant words were filtered out if their term frequency–

inverse document frequency (tf-idf) values were less than 0.01. Then, we used the words that

appeared more than 10 times in the whole document. As a result, our dictionary contained

7,851 unique words, and the documents contained 1,619,233 words in total. The number of

topics K needed to be determined before running the DTM. Following the recent approach

[46], we specified the number of topics K = 41 (see S1 Appendix and S1 Fig). Open source

codes were written by the authors of the DTM paper and available at https://github.com/blei-

lab/dtm. We manually labelled 41 topics from their word frequencies (see S1 Table).

The DTM provides an article’s topic distribution based on the learned parameters. As we

set the number of topics to 41, the topic distribution of an article was given as a vector of length

41. Topic distribution was allocated to countries in proportion to their contributions on each

article. For instance, if an article was written by American authors only, the topic distribution

of the article was fully given to the United States. For another article written by three American

and two Korean researchers, 60% of the topic distribution would be added to the United States.

In this way, a country’s research capability over 41 topics was estimated for each year from

1976–2016.

Fractional publication and collaboration counts by topics

The fractional counting method was used for calculating a country’s publication and collabo-

ration counts (Fig 1). For year t when nt papers are published, we have two matrices, the frac-

tional publication counts by countries (At: nt papers × 75 countries) and the topic distributions

of papers (Bt: nt papers × 41 topics). AT
t Bt represents the fractional publication counts of 75

countries by 41 topics at year t. Based on the five topical clusters that we found (Fig 2), the frac-

tional counts were summed into five columns to obtain the discriminant power for further

analysis. We will explain these topical clusters in the result section. We hereafter call this sum-

marized matrix as national research capability over 5 topical clusters at year t, Rt (75 coun-

tries × 5 topical clusters). Collaborations were also counted in fractions. We multiplied the

country profile of a paper and its transpose to obtain the collaboration matrix. The matrix was

distributed over five matrices in proportion to topical cluster weights.

Normalized revealed comparative advantage (NRCA)

Normalized revealed comparative advantage (NRCA) [25], one of revealed comparative

advantage indices, represents how much an entity’s value exceeds expectations. When compar-

ing longitudinal RCA values, NRCA outperforms the Balassa index (BRCA) [47], the most

popular RCA index that defines comparative advantage as a ratio of observations to expecta-

tions. Let Ri
j;t be country i’s research capability on topical cluster j at year t. NRCAi

j;t, the NRCA

of country i on topical cluster j at year t, is calculated as

NRCAi
j;t ¼ DRi

j;t=Rt ¼ ðRi
j;t � Ri

tRj;t=RtÞ=Rt ¼ Ri
j;t=Rt � Ri

tRj;t=R2
t ; ð1Þ

where Ri
t is the sum of country i’s research capability across five topical clusters at year

t (Ri
t ¼

P
jR

i
j;t), Rj,t is the sum of all countries’ research capabilities on topical cluster j at year

Measuring national capability over big science’s multidisciplinarity: A case study of nuclear fusion research

PLOS ONE | https://doi.org/10.1371/journal.pone.0211963 February 8, 2019 4 / 14

https://github.com/blei-lab/dtm
https://github.com/blei-lab/dtm
https://doi.org/10.1371/journal.pone.0211963


t (Rj;t ¼
P

iR
i
j;t), and Rt is the sum of all countries’ research capabilities on five topical clusters

at year t, denoted by Rt ¼
P

i;jR
i
j;t. A positive NRCAi

j;t value means that country i has a compar-

ative advantage on topical cluster j at year t.
Countries have comparative advantages on different topics as it is almost impossible to be

competitive in all topics. We measured how similar two countries’ research capabilities are as

follows. First, the NRCA of each country was transformed into the binary vector NRCA by

Fig 1. Schematics of the fractional counting method for publication and collaboration counts. Two matrices, the fractional publication counts by countries At and

the topic distributions of papers Bt, were extracted from the document set of year t. (1) AT
t Bt represents the fractional publication counts by topics at year t. For further

analysis, based on the hierarchical tree of clusters in Fig 2, the fractional publications by 41 topics are grouped into five topical clusters: material, plasma, device,

diagnostics, and simulation. Rt is the aggregated matrix and is transposed in the figure to match with the hierarchical tree of 41 clusters. (2) The country profile of a

paper is transformed into a collaboration matrix W1, which was distributed over the five topical clusters by weights. For each year, by aggregating the collaboration

matrices of all published papers, we had five fractional collaboration matrices.

https://doi.org/10.1371/journal.pone.0211963.g001
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changing positive NRCA values to 1 and negative values to 0 to identify the topics with signifi-

cant comparative advantages. Second, the Jaccard distance between two countries’ binary

NRCA vectors was calculated for determining their topical dissimilarity (Eq 2). We call this

distance between country m and n on topical cluster j at year t the capability distance cmn,j,t. A

Fig 2. Hierarchical tree of 41 topics detected from the dynamic topic model. Topics were agglomerated by the ward.D method [50]. The distance between topics

was measured by the Jensen-Shannon distance [51], a square root of the Jensen-Shannon divergence. Five topical clusters—material, plasma, device, diagnostics, and

simulation—are revealed. The branches are colored by the corresponding topical clusters.

https://doi.org/10.1371/journal.pone.0211963.g002
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high cmn,j,t represents that two countries are in complementary relation where their differences

in research capability generate synergy by collaborations.

cmn;j;t ¼ 1 �
jNRCAm

j;t \ NRCAn
j;tj

jNRCAm
j;t [ NRCAn

j;tj
ð2Þ

Gravity model of scientific collaboration

Scientific collaboration between country m and n in topical cluster j at year t, wmn,j,t, is related

to the number of publications of the two (Pm,j,t and Pn,j,t) and their geographical distance

(dmn). The gravity model explains their relationships in many scientific fields [48, 49]. Pm,j,t

and Pn,j,t positively and dmn negatively affects wmn,j,t. We added the capability distance to the

gravity model for checking whether complementarity increases collaboration. Our basic

model is written as

lnðwmn;j;tÞ � alnðPm;j;tÞ þ blnðPn;j;tÞ þ glnðdmnÞ þ lcmn;j;t; ð3Þ

where dmn is the Haversine distance (km) between capitals. For two countries m and n, we

counted wmn,j,t, Pm,j,t, and Pn,j,t in real values, and calculated cmn,j,t from the binary transformed

NRCA vectors. A positive λ indicates that complementarity stimulates collaboration.

Results

Knowledge structure of nuclear fusion research

The DTM detected 41 topics in the dataset. Each topic had its word distribution indicating the

extent of word assignments to the topic. We assumed that two topics were close if their word

distributions were similar. The topic distance between topic k1 and k2 was obtained by the Jen-

sen-Shannon distance [51], a square root of the Jensen-Shannon divergence. For simplicity,

we used the word distribution at the last year, b2016;k1
and b2016;k2

. A knowledge structure of

nuclear fusion research was drawn by agglomerating 41 topics with the ward.D method [50].

The hierarchical tree consists of five distinguishable topical clusters: material, plasma, device,

diagnostics, and simulation (Fig 2).

Each cluster is clearly characterized by its topics. We observe the details of each branch

from the top of the tree. The “material” cluster is described by tokamak edge plasmas and com-

ponents as plasmas interact with wall materials at the edge. The “plasma” cluster contains gen-

eral plasma-related topics (i.e., plasma flow, magnetohydrodynamics, and discharge), major

instabilities in tokamak configurations (i.e., Alfvén eigenmode, neoclassical tearing mode, and

edge-localized mode), and heating methods (i.e., lower hybrid current drive and electron

cyclotron resonance heating). The “device” cluster includes mechanical components in toka-

maks (i.e., coil, power supply, vessel, magnet, and blanket) and several tokamaks (i.e., Tore

Supra, KSTAR, and EAST). The “diagnostics” cluster is composed of plasma diagnostics meth-

ods such as soft X-ray, neutron detector, and spectroscopy. Finally, the “simulation” cluster

focuses on analytic calculations and computations.

National research capability and its overall trends

Normalized revealed comparative advantage (NRCA) on the fractional publication counts

extracted national research capability over 40 years (Fig 3). In all countries, NRCA changes are

in good agreement with tokamak construction and operation, representing the scientific

effects of large facilities across multiple domains. The United States and Japan have led nuclear
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fusion research, while Japan’s influence has been decreasing since the 2000s. It may be due to

the upgrade of their major tokamak JT-60 which was disassembled in 2009-2012 and is being

upgraded to JT-60SA for first plasma in 2020. China rapidly develops research capability over-

all except in material-related topics. Even though we consider the rise of China in all science

and technology fields, their pace in nuclear fusion research is surprisingly fast. China’s toka-

maks, HT-7 and HL-2A, raise research capability in device, diagnostics, and simulation. At the

point of EAST (Experimental Advanced Superconducting Tokamak) operation in 2006, they

also began to equip plasma capability as well. The other countries operating their own toka-

maks, Germany, the United Kingdom, Russia, France, Italy, and Switzerland, actively engage

in nuclear fusion research. However, the countries without their own tokamak operation, Swe-

den and the Netherlands, are losing their research capabilities. Canada’s fall seems plausible

as they left tokamak projects in the early 2000s [52]. There are two interesting countries, the

Republic of Korea and India, that obtain research capability in all fields. Their rises coincide

with the ITER project and construction of tokamaks, KSTAR (first plasma in 2008) and SST-1

(first plasma in 2013).

Negative relation between complementarity and collaboration

Complementarity positively affects collaboration in many science fields [38–42]. Researchers

and countries find collaborators that exchange knowledge as well as resources they do not

have. We assume complementarity boosts collaboration even in big science because countries

have limited budgets and manpower. To observe whether our assumption holds, we imple-

mented the gravity model of collaboration with the capability distance, a Jaccard distance of

the binary NRCA vectors in five topical clusters (Eq 3). The OLS regression results with fixed

time effects are given in Table 2. The coefficients of publication counts of two countries are the

same because they are symmetric in the collaboration matrix.

In all topical clusters, as expected, the number of publications had a positive coefficient,

and the geographical distance had a negative coefficient. This means that collaborations occur

frequently when two countries have high research capability and locate closely. In contrast to

our assumption, the capability distance negatively affects collaboration, indicating that coun-

tries collaborate less if they have research capabilities in different topics. This tendency is

found in three clusters, plasma, device, and diagnostics, with respect to fusion reaction in

tokamak facilities. Collaborations on material and simulation are not related to the capability

distance. The regression results suggest that complementarity would affect collaborations dif-

ferently by topics in big science. International collaborations in core knowledge fields happen

when two countries mutually benefit based on similar research capability.

Discussion and conclusion

Large facilities and international collaboration, two core components of big science, were

investigated with bibliographic data, the dynamic topic model, and revealed comparative

advantage. In this study, we chose nuclear fusion for a case study. Word similarity between

topics unfolded the knowledge structure of nuclear fusion comprising five multidisciplinary

topical clusters: material, plasma, device, diagnostics, and simulation. Different countries have

different comparative advantages over these clusters. The time points that the comparative

advantage trend changes match well with tokamak operation. Catching-up countries that have

built their own tokamaks have developed their research capability while countries that do not

operate a tokamak miss their productivity.

Revealed comparative advantage can be used as a new indicator of big science project evalu-

ation. Through time series analysis [53], we can examine the connections between facility
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Fig 3. Ranks of normalized revealed comparative advantages for the top 14 countries. Rank series of the countries are smoothed with LOESS

(locally estimated scatterplot smoothing) and colored by the topical clusters.

https://doi.org/10.1371/journal.pone.0211963.g003
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construction and revealed comparative advantages in different topical clusters. The time series

analysis addresses whether knowledge spillover occurs in various scales from facilities to coun-

tries [54–56]. In addition, with external information such as the amount of funding, the num-

ber of employees, and instrument specifications, we can investigate the impact of facility

construction and international collaboration in detail. The publishing policy of large facilities

also needs to be considered when interpreting the comparative advantage. Large facilities that

restrict the publication of academic papers for the purpose of secrecy [57] have low research

capability in our study, relative to others that promote academic publishing. These qualitative

factors of facilities require further evaluations to estimate their scientific impacts accurately as

the measure for policy making, investment, and education [58].

The international collaboration in nuclear fusion was estimated by the gravity model with

the capability distance that represents how similar two countries’ research capabilities are. The

regression results show high capability distance distracts the international collaborations in

fusion reaction related clusters: plasma, device, and diagnostics. This tendency contrasts with

that of other science fields favoring collaborators that have complementary comparative

advantages [38–42]. Real collaborations in nuclear fusion governed by this pattern are worth

studying. Countries may have distinct motivations to collaborate with other countries and to

participate in international projects. Political and societal factors would also be involved in the

policy making process. Understanding the history of nuclear fusion research gives us insights

into what science policy a country has to take depending on the development stage.

Our approach can be applied to other fields of big science. Particle physics and Antarctic

science are the potential targets. They depend on large facilities, particle accelerators, and

research stations in Antarctica. In particle physics, we expect that the dynamic topic model dif-

ferentiates various types of particle accelerators [59]. A country’s strategic decisions for particle

accelerators can be traced with comparative advantages on topical clusters. In Antarctic sci-

ence, research stations may increase research capabilities on geography-dependent topics [60,

61] because its location expands the range of research activities. An increasing comparative

advantage on spatial topics will support this idea. Antarctic science, especially, has interesting

aspects that affect the gravity model of collaboration. Collaboration in Antarctica would occur

frequently between close research stations, not between close capitals, so the geographical

Table 2. Gravity model OLS regression results.

Variables Material Plasma Device Diagnostics Simulation

ln(Pm,j) 0.497���

(0.033)

0.508���

(0.032)

0.411���

(0.030)

0.438���

(0.033)

0.488���

(0.033)

ln(Pn,j) 0.497���

(0.033)

0.508���

(0.032)

0.411���

(0.030)

0.438���

(0.033)

0.488���

(0.033)

ln(dmn) -0.495���

(0.044)

-0.451���

(0.040)

-0.464���

(0.042)

-0.546���

(0.049)

-0.485���

(0.043)

cmn,j -0.133

(0.222)

-0.911���

(0.284)

-0.949���

(0.232)

-0.690���

(0.175)

-0.027

(0.194)

Observations 3518 3518 3518 3518 3518

R2 0.113 0.123 0.101 0.094 0.107

Standard error is in parenthesis.

Fixed time effects are included.

� p-value < 0.1,

�� p-value < 0.05,

��� p-value < 0.01

https://doi.org/10.1371/journal.pone.0211963.t002
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distance of the model should be defined in a different way. The Antarctic Treaty System,

which enforces the peaceful usage of Antarctica and freedom of scientific investigation [62],

can encourage countries to collaborate with others having complementary comparative advan-

tages. It is necessary to determine in particle physics and Antarctic science whether collabora-

tion in big science decreases by complementarity as in the case of nuclear fusion. More studies

are needed to understand the nature of big science.
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