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ABSTRACT This study proposes an automated brittle fracture rate (BFR) estimator using deep learning.
As the demand for line-pipes increases in various industries, the need for BFR estimation through drop-
weight tear test (DWTT) increases to evaluate steel’s property. Conventional BFR or ductile fracture rate
(DFR) estimation methods require an expensive 3D scanner. Alternatively, a rule-based approach is used
with a single charge-coupled device (CCD) camera. However, it is sensitive to the hyper-parameter. To solve
these problems, we propose an approach based on deep learning that has recently been successful in the
fields of computer vision and image processing. The method proposed in this study is the first to use deep
learning approach for BFR estimation. The proposed method consists of a VGG-based U-Net (VU-Net)
which is inspired by U-Net and fully convolutional network (FCN). VU-Net includes a deep encoder and
a decoder. The encoder is adopted from VGG19 and transferred with a pre-trained model with ImageNet.
In addition, the structure of the decoder is the same as that of the encoder, and the decoder uses the feature
maps of the encoder through concatenation operation to compensate for the reduced spatial information.
To analyze the proposed VU-Net, we experimented with different depths of networks and various transfer
learning approaches. In terms of accuracy used in real industrial application, we compared the proposed
VU-Net with U-Net and FCN to evaluate the performance. The experiments showed that VU-Net was the
accuracy of approximately 94.9 %, and was better than the other two, which had the accuracies of about
91.8 % and 93.7 %, respectively.

INDEX TERMS Computer vision, DWTT, industrial application, semantic segmentation, steel industry,
transfer learning.

I. INTRODUCTION
Line-pipe has been widely used for long distance transporta-
tion of natural resources, such as crude oil and natural gas in
extremely cold areas (e.g. Siberia and Alaska) [1], [2]. Hence,
steels with excellent low-temperature toughness are required
to manufacture these line-pipes. It is important to evaluate
and manage the quality of these line-pipe steels, as well as
steel productions from hot-rolling process.To evaluate the
properties of steel, the drop-weight tear test (DWTT) has
been widely used [3]–[6]. First developed at the Battelle
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Memorial Institute, USA, the DWTT is used to determine
the fracture characteristics of pipelines and pressure vessels,
and is an integral part of the material qualification programs
for oil and gas, and other industrial applications. The ratio of
the ductile and brittle fractures observed after the DWTT is
strongly correlated with the resistance of the pipeline steels
against brittle fracture propagation in the actual line-pipes.
The test specimen is split up due to impact load by a hammer.
The brittle fracture rate (BFR) or the ductile fracture rate
(DFR) is determined by an operator to evaluate the spec-
imen. Owing to the manual evaluation, which depends on
the operator’s condition and state of fatigue, reliability and
reproducibility are not only degraded, but also the accuracy
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is not guaranteed. Furthermore, it is a time-consuming pro-
cess. Therefore, the development of an automated evaluation
system is essential to efficiently quantify the BFR and DFR
from the DWTT.

Recently, many studies introduced various algorithms to
evaluate and measure BFR and DFR of the DWTT specimens
[7]–[9]. In [7], statistical methods and fractal concepts were
used to evaluate the fracture surface of DWTT specimens.
Multivariate characteristics of normal vectors in conjunc-
tion with the K-means clustering method were used in [8].
The inputs for the aforementioned algorithms were obtained
by a 3D scanner. In [9], three input images were obtained
from a single charge-coupled device (CCD) camera with
different angles of illumination and then combined into a
single image. The combined image was binarized into brit-
tle and ductile fracture regions. However, the conventional
algorithms require expensive devices or use hyper-parameter
which could affect the performance of these algorithms.

Deep learning has lately shown great performance in a vari-
ety of fields such as industrial application [10]–[12], medical
diagnosis [13], [14], agriculture [15] as well as imaging [16].
Semantic segmentation is one of the important tasks in field
of the computer vision [17]–[19]. Unlike the classification
and object detection tasks, the semantic segmentation task,
which is also called as pixel-wise classification, is suitable
for identifying and estimating the BFR.

To address the problems about conventional BFR or DFR
estimation, we propose a novel automated evaluation system
in this study. The proposed system is based on deep learning
and images obtained from a CCD camera. The proposed
network is inspired by U-Net [20] and fully convolutional
network (FCN) [21]. We call the proposed network as ‘VGG-
based U-Net (VU-Net)’. By exploiting the architecture of
U-Net, the proposed VU-Net has sufficient depth, and con-
catenates the feature maps of the encoder and the decoder
to compensate for the loss of spatial information. Like in
FCN, the transfer learning from VGG19, which was trained
with a huge data (ImageNet), helps the network converge to
an optimal point. When building networks for insufficient
industrial data, bias-variance trade-off should be considered.
In general, the deeper the network, the better its performance
gets. However, the probability of over-fitting increases as
the depth of the network increases. Therefore, we experi-
mented on depth of network, as well as the transfer learning
approaches, that help the network converge faster.

The main contributions of this study are summarized as
follows.
• An automated evaluation system for BFR was pro-
posed. It not only reduces the manpower and time costs
involved but also performs a consistent evaluation.

• Unlike the conventional methods which used a 3D scan-
ner, images for the surface of the broken specimens
were obtained from a CCD camera. The equipment costs
could be reduced.

• To the best of our knowledge, this study is the first to
exploit a deep learning algorithm for BFR estimation.

FIGURE 1. Example of (a) an image after the DWTT and (b) its
ground-truth data.

FIGURE 2. Image acquisition region for BFR or DFR estimation.

• To optimize VU-Net, we performed various experiments
in terms of depth and transfer learning.

• The study was performed by images obtained from
operators in situ to evaluate the surfaces of the broken
specimens.

The remainder of this paper is organized as follows.
In section II, the data and the BFR are explained.
In section III, the proposed VU-Net for automated BFR
estimation is presented. To analyze and evaluate VU-Net,
various experiments were carried out in section IV. Finally,
conclusions and future work are presented in section V.

II. DATA AND BRITTLE FRACTURE RATE (BFR)
Images of the broken specimen after the DWTT were
obtained from a real industrial application. Both brittle and
ductile fractures are revealed in Fig. 1a. The BFR or DFR
is determined from the image excluded the thickness of the
specimen in the notch area and the thickness of the specimen
at the impact point of the hammer. In Fig. 2, the area denoted
by a is the measurement or estimation region, and areas repre-
sented by b denote the excluded region. c and d are the notch
area and the impact point of the hammer, respectively. T is
the thickness of the specimen. Namely, the region denoted by
a in Fig. 2 was acquired as the input for the network. To train
a network, data pairs are required such as those in Fig. 1.
Namely, a ground-truth data (GTD) corresponding to each
image is needed such as Fig. 1b, where the pixel values of
the white and black regions were 1 and 0, respectively. The
GTD ghw of input xhw for h = 1, · · · ,H and w = 1, · · · ,W
is defined as follows.

ghw =

{
v2 if xhw ∈ Rb

v1 otherwise,
(1)

where W and H represent the width and height of the GTD
(or the image), respectively. v1 and v2 are one-hot vectors
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FIGURE 3. Refinement of GTD for validation.

that assign 1 to only either the first or the second element.Rb
represents the region of the brittle fracture in the image.

Our goal is to estimate the BFR B, which is defined as
follows.

B =
∑

h
∑

w 1mhw=2(mhw)
H ·W

, (2)

where 1K(x) denotes an indicator function, which is 1 if
x ∈ K and 0 otherwise. mhw is argmaxc ghw, where c is the
channel of ghw. In other words, B is the ratio of the brittle
fracture region to the total region of the target image.

To develop the automated BFR estimator, 1611 image and
GTD pairs were obtained from a real industry site. The data
set was approximately labeled for brittle fracture regions
such as those enveloped by the red lines in Fig. 3. The
networks could learn ‘good representation’ robustly because

most regions of the noisy GTDs are correct [22]–[24]. Nev-
ertheless, among them, 79 GTDs were made more elaborate
than the rest of the GTDs to validate the networks. The brittle
fracture regions of refined GTDs were labeled such as those
enclosed by the green lines in Fig. 3. Re-labeling exquisitely
the GTDs consume additional time, but the refined data plays
an important role in determining the best model. Therefore,
only a few images were allocated as the validation set and
re-labeled elaborately. Finally, an additional 158 images were
acquired for the test. The test set was used to analyze and
evaluate networks.

III. AUTOMATED BRITTLE FRACTURE RATE ESTIMATOR
The automated BFR estimator is proposed by using deep
learning approach in this study. One of the important tasks in
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the field of computer vision is semantic segmentation which
is also called as pixel-wise classification. It is suitable for the
BFR estimation because the BFR is calculated by pixel in
an image. In general, a deep learning network for semantic
segmentation consists of an encoder and a decoder [21],
[20], [25]. The encoder extracts high-dimensional features
from the surface image of a broken specimen. In terms of the
architecture and the role, the encoder is similar to the fea-
ture extractor of conventional convolutional neural networks
(CNNs) such as VGGNet [26] and ResNet [27]. The famous
CNNs extract good representation by training with ImageNet
which has a large data set [28]. Therefore, many studies used
the pre-trained models as initial values of the networks to
accelerate their convergence in semantic segmentation tasks
[17], [21], [25], [29]. The decoder generates the segmented
output from the features of the encoder. When the features
are extracted in the encoder, the spatial information is shrunk.
To compensate for this problem, fusion operation is applied
in the decoder. The fusion operation concatenates or adds
the feature map of the encoder to the feature map of the
decoder. Here, the concatenation is a channel connection,
and the addition is an element-wise sum. Therefore, for the
former, two feature maps should be the spatially same. For
the latter, two feature maps should be the same size including
channel.

The proposed VU-Net was shown in Fig. 4, where Ca,b,
R, Max, d and Da,s,b represent the convolution layer, ReLU
(Rectified Linear Unit) operation, max pooling layer, dropout
operation and deconvolution layer, respectively. The sub-
scripts a, b and s are the kernel size (a × a), the number
of kernels and the stride, respectively. As fusion operation,
cc represents the concatenation of the feature maps of the
encoder, connected by dashed arrows, to the input of cc. For
example, feeding an input to Ca,b · R · d box means that
the input is applied in turn to a convolution layer with b
a×a kernels, a ReLU operation and a dropout operation. The
proposed encoder was based onVGG19model to achieve suf-
ficient depth and transfer learning, and the proposed decoder
was a twin of the encoder except for the last convolution
layer block. The convolution layer block was defined as
2-4 convolution layers between the max pooling layers. In the
encoder, the last outputs of the convolution layer blocks were
used for fusion operation.

IV. EXPERIMENT
The flowchart of experiments was shown in Fig. 5. According
to the flowchart, we conducted various experiments for the
depth of the proposed network and transfer learning. All
experiments were performed with Intel core i7-6700K CPU,
32 GB RAM and Nvidia Titan X Pascal GPU. Cross-entropy
was used as the loss function L as follows.

L = −
1

H ·W

∑
h

∑
w

ghw log ĝhw, (3)

where ĝhw represents the output of the network. In this study,
networks were trained by stochastic gradient descent method

FIGURE 4. Architecture of VU-Net.

with Adam optimizer. The initial learning rate was set to
0.0001, which decayed 5 % per epoch, where one epoch
means when an entire train set is passed through the neural
network only once. Inputs of networks are 8-bit gray level
and vary in width and height as shown in Table 1 because
of different sizes of the specimens. To focus patterns of
brittle and ductile fracture regions, all inputs of the networks
were normalized from 0 to 1 by unity-based normalization
also known as min-max normalization. This normalization is
helped to improve the performance of networks [30], [31] and
defined as follows.

x̃hw =
xhw − min(X)

max(X)− min(X)
, (4)

X = {xhw|h = 1, · · · ,H , w = 1, · · · ,W } , (5)

where x̃hw represents normalized input xhw. min(X) and
max(X) are minimum and maximum values of input X,
respectively. These experimental details were summarized
in Table 2.

145098 VOLUME 7, 2019



G. Koo et al.: Automated BFR Estimator for Steel Property Evaluation Using Deep Learning After DWTT

FIGURE 5. Flowchart for experimental details.

TABLE 1. Size information and statistics data of the broken specimen
images.

We used two indices to evaluate the performance of the
networks.
• F1-score F1

F1 = 2 ·
Pre · Sen
Pre+ Sen

× 100, (6)

where Pre and Sen are the precision and the sensitivity,
respectively. The precision is the fraction of the true
brittle fracture pixels in the predicted brittle fracture pix-
els. The sensitivity is the fraction of correctly predicted

brittle fracture pixels in the total true brittle fracture
pixels. F1-score is a harmonic average of the precision
and the sensitivity.

• Accuracy A

A =
1
N

N∑
n

1pn≤t (pn)× 100, (7)

pn =
∣∣∣Bn − B̂n

∣∣∣ , (8)

B̂n =
∑

h
∑

w 1m̂n
hw=2

(m̂n
hw)

H ·W
, (9)

m̂n
hw = argmaxc ĝ

n
hw for c = 1, 2, (10)

where the superscript n means the nth target image. N
represents the size of the test set. ĝnhw is the output vector
of (h,w) coordinate for the nth target image. In other
words, accuracy means the fraction of the number of
correct estimations over N . An estimation is correct if
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TABLE 2. Summary of common details of the experiments.

the absolute error of the estimated BFR is less than t .
In this study, t was set to 0.05 because there is a 5 %
margin of BFR estimation in the real industry.

F1-score evaluates the pixel-wise estimation of the net-
works, and the accuracy A evaluates the BFR estimation of
the networks. The dropout rate was empirically determined
for each network. In each network frame, the model, which
had the best F1-score for validation set, was selected and
tested.

A. DEPTH OF VU-NET
To analyze the performance of VU-Net with regard to its
depth, experiments for four different depths were performed
(see Table 3). VU-Net-19 is shown in Fig. 4, where 19 is the
number of convolution layers of the encoder. For VU-Net-16,
VU-Net-12, and VU-Net-10, the last 3, 7 and 9 convolution
layers, respectively, of the encoder were eliminated together
with the max pooling layers. In addition, the corresponding
convolution layers and deconvolution layers of the decoder
were also removed. Because VGG19 has 16 convolution
layers, the first 16 convolution layers of the encoder were
initialized with VGG19, and the others were initialized with
a truncated normal distribution. The initialization of the net-
works and the transfer learning will be explained, in detail,
in the next subsection.

The result is shown in Table 3. VU-Net-16 showed the
best F1-score and accuracy. In other words, the result said
that VU-Net-16 has the optimal depth for BFR estimation.
Therefore, we used the architecture of VU-Net-16 in the next
experiments.

B. TRANSFER LEARNING OF VU-NET
Next, we experimented with four options to analyze the trans-
fer learning of VU-Net. The four options for transfer learning
are as follows.

1) No transfer: VU-Net was initialized with values gener-
ated by a truncated normal distribution. The generated
value followed a normal distribution with mean (µ =
0) and standard deviation (σ = 0.02), but this valuewas

TABLE 3. Performance comparison of VU-Net based on depth.

TABLE 4. Performance comparison of the transfer learning.

dropped and re-picked if its magnitude wasmore or less
2σ than µ.

2) Transfer encoder & Fix: ‘Fix’ relates to fixing the
weights of the transferred part. The first 12 convolution
layers of the encoder were transferred by pre-trained
VGG19 and fixed. The reason was to apply the dropout
operation in the last convolution layer block of the
encoder. The rest were initialized with values generated
by the truncated normal distribution and trained.

3) Transfer encoder & FT: ‘FT’ stands for fine tuning. The
first 16 convolution layers of the encoder were trans-
ferred from VGG19, and the rest were initialized with
values generated by the truncated normal distribution.
Next, all layers of VU-Net were trained together.

4) Transfer all & FT: The encoder was transferred equiv-
alently as in 3). The decoder was also initialized by
VGG19, and then, both parts were trained together.
If the channels of the input and the output were differ-
ent, a 1×1 convolution layer was added. This approach
is possible because the structures of the encoder and the
decoder are twins.

The results are shown in Table 4. Firstly, the results show
that the transfer learning was effective. The reason is why
the pre-trained model was already trained with big data to
extract good features. Secondly, fine tuning was necessary
for the optimization. Finally, the weights of the classifier
should be transferred into only the encoder as the feature
extractor.

C. PERFORMANCE COMPARISON FOR BFR ESTIMATION
In this experiment, VU-Net was compared with conventional
semantic segmentation methods such as FCN and U-Net. The
performance of VU-Net is shown in Table 5. To show the
performance of the encoder, VU-Net was also compared with
FCN and VU-Net based on ResNet [27]. ResNet consists
of 5 convolution layer blocks. Based on the output’s size of
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FIGURE 6. Comparison between the results of FCN and VU-Net.

the convolution layer block, we added deconvolution layers
and fusion operation in the decoder. In the case of VU-
Net based on ResNet, the last fusion operation was omitted
because the first convolution layer block is ambiguous [27].
In terms of F1-score and accuracy, VU-Net performed bet-
ter than the conventional networks, and VGG19 was more
appropriate than ResNet as an encoder. F1-score did not
differ much, but accuracy was much different. The reason
is why, for entire images, the brittle fracture regions were
similarly segmented, but for an individual image, VU-Net
segmented better brittle fracture region than the other net-
works. Therefore, VU-Net was more suitable for estimating

the BFR than the others. Four examples of BFR estimation are
shown in Fig. 6 to compare the performance of VU-Net and
FCN based on VGG19. The green and red regions represent
true and estimated brittle regions, respectively. The yellow
region is an overlap of the true and the estimated brittle
regions. In the first three examples, VU-Net performed better
for BFR estimation than FCN. On the other hand, the fourth
example was the opposite. However, in the fourth example
of Fig. 6, it may be noticed that the estimation faults (red
regions) of the two networks were somewhat similar, but
there was more green region in FCN results than in VU-Net
results.
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TABLE 5. Performance comparison of FCN, U-Net, and VU-Net.

V. CONCLUSION
As the use of steel, such as line-pipes, increases, the impor-
tance of analyzing DWTT’s results increases for quality
management. Conventional methods have the disadvantage
of requiring expensive equipment or being very vulnerable
to change of user parameters. Therefore, we proposed an
automated BFR estimator based on deep learning. The pro-
posed network, which called as VU-Net, was inspired by the
architectures of U-Net and FCN. The encoder of VU-Net
reflected VGG19, which is powerful and easy classifier. The
decoder of VU-Net was a mirror of the encoder, and was
applied fusion operation. VU-Net was variously analyzed to
configure the proper architecture for the BFR estimation. VU-
Net-16, which had 16 convolution layers in the encoder, was
best performance among the VU-Nets of different depths.
In addition, we experimented with various transfer learning
approaches to extract good representation. The best approach
was the one where the encoder was initialized with a pre-
trained model and the entire network (both the encoder and
decoder) was fine-tuned. The accuracy of this approach was
about 8.9 % higher than without transfer learning. Finally,
we compared VU-Net with FCN and U-Net. In terms of F1-
score and accuracy, VU-Net yielded better performance than
the others. Based on the proposed VU-Net, an automated
system for BFR estimation not only reduces money, human
and time costs but also makes a consistent decision for steel’s
quality.

Furthermore, when applying deep learning to real indus-
trial sites, it has been difficult to obtain quantitatively and
qualitatively sufficient data with labels. These problems limit
the performance. In the future, it is necessary to study algo-
rithms and systems to compensate for these problems.
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