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ABSTRACT This paper proposes a new network model for the building evacuation problem consider-
ing congestion levels and provides a mixed integer linear programming (MILP) model and an efficient
heuristic algorithm solving the problem. Constructing an optimization model with several congestion levels,
we introduce a new network called the multi-class time-expanded (MCTE) network having several exclusive
arcs connecting the same tail and head nodes. The MCTE networks make both the MILP model and the
heuristic algorithm reflect a realistic situation in congested networks. Considering MCTE networks makes
the problem difficult to solve, which motivates us to develop an efficient heuristic algorithm. We test our
heuristic algorithm using several real-world networks such as a multiplex cinema, a subway station, and
a large-size complex shopping mall in addition to an artificial network for clear comparison between the
proposed algorithm and the MILP approaches. The results indicate that the proposed algorithm runs fast and
produces a near-optimal solution compared with those from MILP models with a commercial solver.

INDEX TERMS Building evacuation, congested networks, movement evacuation model, multi-class time-
expanded networks.

I. INTRODUCTION
Recent tragedies such as the Manchester Arena terrorist
attack, the Grenfell Tower fire in London and the Bataclan
concert hall attack in Paris are motivating the development
of time-critical evacuation plans. The fact that in less than
10 minutes fire engulfed the 24-story Grenfell Tower under-
scores the need for an efficient evacuation algorithm that can
run fast enough to account for the rapidly changing status of
places to evacuate in emergencies. The Internet of Things
(IoT) technology enables us to collect and share essential
building information such as the number of evacuees in each
space and availability of each space in real-time and plays as
an essential infrastructure for implementing real-time evacu-
ation plans from data.

Inspired by such technological advancement, we set our
goal to develop an algorithm adequate for emergent evacu-
ating situations. In developing such an algorithm, we notice
that we should seriously consider congestion that can happen
while people are evacuating. It is not hard to imagine that

The associate editor coordinating the review of this manuscript and
approving it for publication was Rajesh Kumar.

extreme congestion is likely to occur when evacuees take
the same evacuation path. In addition to congestion itself,
we also pay attention to the level of congestion that affects
travel times even if the arc capacity is not fully occupied.
For example, if a small number of evacuees use an arc, they
can move fast through the arc. If many evacuees use the
channel at the same time, however, their speed can be slower.
To bring congestion levels into our problem, we propose
a new network model, which we call a multi-class time-
expanded (MCTE) network. An MCTE network, which will
be explained in Section III-A, consists of multiple arcs corre-
sponding to different congestion levels (multi-class property)
and copies of nodes over time considering multiple evacua-
tion periods (time-expanded property). Each arc has different
travel time and capacity that correspond to the congestion
level between two nodes. Fig. 1 is a simple schematic example
having three different classes of arcs between nodes i and j.

A. CONTRIBUTIONS AND ORGANIZATION OF THE PAPER
This paper makes the following contributions to the evacu-
ation planning literature. First, we propose a new network
model (the MCTE network) and build a mixed integer linear
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FIGURE 1. Nodes and arcs in an MCTE network.

programming (MILP) model incorporating congestion levels.
In the optimization model, constraints related to congestion
levels are nonlinear, and we convert them into linear ones
so that we can take advantage of the computing power of
commercially available MILP solvers.

Second, for scalability, we develop a heuristic algorithm
providing near-optimal solutions for both small and large-
size problems.We note that the proposed algorithm can apply
to both planning and operational problems. The problem in
a MILP form is usually designed for planning. One, how-
ever, can solve operational problems by iteratively solving
the problem, for example, using moving windows. For such
cases, coming up with quick solutions should be critical.
Since fire and smoke spread out every second in a fire sit-
uation, an evacuation algorithm should solve problems and
deliver solutions to instruction devices in a few seconds.

We emphasize that the preliminary version of the proposed
algorithm has been running in real-world networks. The sub-
way station and the shopping mall in Section VI-C and VI-D
are using it with the IoT-based instruction devices.

From extensive numerical studies, we show that the heuris-
tic algorithm is significantly faster than the MILP models
with solvers. Third, we apply our heuristic algorithm not only
in an artificial network but also in real-world building net-
works including cinema, subway station, and shopping mall
networks for better implementation in realistic situations.

The remainder of this paper is organized as follows.
Section II reviews the evacuation planning literature.
Section III gives the problem details and introduces the
MCTE network model. Section IV constructs the MILP
model for the MCTE network. Section V explains our heuris-
tic algorithm. Section VI describes the dataset, the simu-
lated and real building networks, and discusses the numerical
results. Section VII concludes and suggests future research.

II. LITERATURE REVIEW
The fundamental framework introduced by [1], known as
building 101, considered the capacity of nodes and arcs,
the travel times of arcs, and the supplies of nodes. The model
determined an evacuation route for evacuees that minimized
evacuation time, based on the time-expanded network model
suggested by [2] for congested situations.

Choi et al. [3] suggested a network flow formulation
with flow-dependent arc capacity constraints by defining the
capacity of each arc as a function of the number of evacuees in
its tail node. Hamacher and Tufekci [4] showed how to avoid
unnecessary movement like cyclic movements in a building.
As explained in [3] and [4], a time-expanded network allowed
pseudo-polynomial algorithms. Hoppe and Tardos [5] pro-
posed a polynomial time algorithm for dynamic network flow
problems in the time-expanded networkwithmultiple sources
and sinks.

Unfortunately, the size of the time-expanded networks
imposes a computational burden on the studies cited above.
Thus, several heuristic algorithms have been developed,
i.e., the Single-Route Capacity Constrained Planner (SRCCP)
and theMulti-Route Capacity Constrained Planner (MRCCP)
algorithms proposed by [6]. Lu et al. [7] later developed
the enhanced algorithm known as the Capacity Constrained
Route Planner (CCRP) whose running timewasO(p·n·log n).
Mishra et al. [8] proposed a Source Single Sink Evacuation
Route Planner, whose final evacuation time is always better
and whose computation time is shorter than CCRP.

The CCRP algorithm uses a generalized Dijkstra’s short-
est path algorithm that needs constant capacities of nodes
and arcs to find evacuation paths. While assuming constant
capacities makes an algorithm faster, it does not consider
congestion levels that may significantly affect evacuation
time through arcs. Kim et al. [9] proposed the Intelligent Load
Reduction (ILR) and the Incremental Data Structure (IDS)
algorithms. The ILR algorithm reduces the load by diverting
routes to destinations when a larger number of evacuees is in
a bottleneck, and the IDS algorithm reduces the calculation
time by using the improved data structures without changing
the outputs of the CCRP algorithm. Cepolina [10] used the
concept of the dynamic capacities of arcs introduced in [3].

Lin et al. [11] proposed the multi-state time-varying quick-
est flow (MSTVQF) algorithm for the time-varying multi-
source-multi-sink quickest network flow problem. MSTVQF
includes important characteristics of realistic situations such
as multi-source-multi-sink and time-expanded properties.
Lin et at. [11] also suggested the concept of phased evacu-
ation, which assigns an evacuation order to all nodes depend-
ing on higher and normal order priority. Koo [12] and
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Noh et al. [13] used the phased evacuation concept to solve
the evacuation problem with a heterogeneous population
of normal and disabled evacuees. The strategy can miti-
gate or reduce congestion caused by disabled evacuees.

In this paper, we define the capacities and travel times
of arcs according to the number of evacuees on the arcs.
It is natural to think that the more evacuees are on an
arc, the slower the evacuees travel because of conges-
tion. Fruin [14], [15] investigated the relationship between
the number of people in a unit area and the walk speed.
Fruin [14] provided graphs illustrating the relationship
between population density and walking speed in various
situations. We use their results to create multi-class arcs
explaining the relationship between the number of evacuees
and the travel time between two nodes.

III. PROBLEM DESCRIPTION
Our aim is to minimize the final evacuation time. We define
the final evacuation time, also known as the network clear-
ance time, as the time when all evacuees have successfully
moved to safety zones or beyond the building. The problem
may have several objectives such as minimizing final evacu-
ation time, minimizing the average evacuation time, or maxi-
mizing the number of people whomove to exits within a given
time limit. Jarvis and Ratliff [16] showed that it is possible
to achieve multiple objectives simultaneously, and the objec-
tives aremathematically equivalent. In the following sections,
we propose the MCTE network and describe input data for
generating an MCTE network from building information.

A. NETWORK
We consider a time-expanded network, as described in [4].
Each node has its capacity and the number of initial evacuees,
i.e., node supplies. The capacity of a node indicates the
maximum number of evacuees who can stay at the node in
each time window. We call nodes having at least one evacuee
at time 0 as source nodes. All nodes except exit nodes can
be source nodes if there are evacuees at the beginning. Each
arc requires information about its capacity, head/tail nodes,
and travel time. The arcs are the passageways connecting
head and tail nodes. The capacity of each arc is the maximum
number of evacuees held by each arc at the same time. The
capacity relates to the width of the passageway such as an
aisle, stairwell, hallway, etc. Travel time is the amount of time
needed by an evacuee to move from an arc’s tail node to head
node. The length and the width of the passageway affect its
travel time. We obtain capacities and travel times from the
floor plans of a building.

We would now consider congestion levels: the relationship
between travel time and the number of evacuees assigned to
an arc. Time-expanded networks themselves, however, are
not ready for this purpose, so we extend the time-expanded
network so that each pair of two different spaces has multiple
arcs (classes) representing congestion levels. Fig. 2 shows a
time-expanded network without a multi-class property and
our proposed MCTE network.

FIGURE 2. Time-expanded network with/without multi-class property.

We consider two nodes in Fig. 2. The tail node at each
time t in the time-expanded network has only one transit arc
to the head node, whereas the MCTE network has multiple
arcs with different capacities and travel times. In the MCTE
network, we call the arc having the smallest capacity and
travel time a base arc or a class 1 arc. The capacities and
travel times of the other arcs are defined relative to the
base arc. If the base arc has capacity µ and travel time λ,
we construct the class k arc having capacity k ·µ and the travel
timewk ·λ, wherewk is obtained from the appropriate function
considering the characteristics of the building, evacuees, etc.

According to [14], the relationship between pedestrians’
mean speed (S) and mean density (M ) is S = (267M −
722)/M . Since we want to find the relationship between arc
travel time (T ) and arc capacity (C), we change the equation
in [14] into T = (l · V )/(267V − 722C), where l is the arc
length and V is the arc volume.
To build an MILP model for the MCTE network, we dis-

cretize the function in [14] and obtain weights of arc classes
(wk ). Note that we can use any other functions depending
on the context of the problem. Fig. 3 shows a relationship
between arc travel time and the number of evacuees on arc
whose length is 20 meters and width is 3 meters. For the
case in Fig. 3, if we assume the capacity of the base arc
is 10, we can obtain the discretized approximation of wk =
{w1,w2,w3} to be 1, 2, and 4.
Fig. 2 shows simple schematic time-expanded and MCTE

networks In Fig. 2(a), the tail node at time t connects to the
head node at time t + 1. In Fig. 2(b), every node has three
transit arcs. The tail node at time 0 has three different arcs to
the head nodes at times 1, 2, and 4. Each arc from the tail
node at time t has a different travel time, which is a non-
decreasing (nonlinear) function of its capacity. One thing we
have to be careful in MCTE networks is that an undesirable
situation that we call the FIFO (First-In-First-Out) violation
may occur. A FIFO violation happens when some evacuees
who leave the tail node later overtake other evacuees who
leave the tail node earlier. Fig. 4 illustrates a case, and we
will address it in Sections IV and V.
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FIGURE 3. Relationship between arc travel time and the number of
evacuees.

FIGURE 4. FIFO violation in MCTE networks.

TABLE 1. Node and arc information.

B. INPUT DATA AND OUTPUT DATA
Before explaining mathematical models, we briefly explain
the data we use to construct them.We generate theMCTE net-
work from the floor plan of a building, as shown in Fig. 5(a).
The floor plan contains data on the dimensions of rooms,
corridors, stairs, etc.

We use the dimensions and some additional infor-
mation about the building in Table 1 to generate the
skeletal networks in Fig. 5(b). The output includes final
evacuation time, number of total evacuees, and evacuation
paths.

FIGURE 5. The example of the generated network.

IV. MILP MODELS
This section describes the MILP models we build for find-
ing evacuation paths in time-expanded networks and MCTE
networks. We formulate an optimization problem which has
a quadratic constraint for addressing the FIFO violation and
then apply a linearization technique to change the problem
to an MILP problem. Since the MILP problem for MCTE
networks can be solved only for small-size networks, we add
simpler MILP models that consist of only one class of arcs
and use their solutions as upper bounds.

A. MILP MODEL FOR THE MCTE NETWORK
Lin et al. [11] suggested the MSTVQF algorithm for the
multi-source multi-sink time-varying quickest network flow
and phased evacuation planning problems. Koo [12] and
Noh et al. [13] modified the formulation in [11] to find
the optimal evacuation plan with their particular objectives.
We build our formulation based on [11] and [13] and add
the multi-class property for MCTE networks. We use the
following notations:

N set of all nodes in the network
S set of all source nodes in the network
A set of all arcs in the network
T maximum evacuation time
δ−(i) set of all precursor nodes of node i
δ+(i) set of all successor nodes of node i
ci capacity of node i
r(i) number of evacuees in node i at time 0
µij base arc capacity of the arc from node i to

node j
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λij base travel time of the arc from node i to
node j

wk weight of class k arcs for travel time
d index of super-sink node

Decision variables
xijk (t) number of evacuees who move

from node i to
node j using the class k arc at
time t

yi(t) number of evacuees who stay at
the node i in
time interval [t , t+1)

zijk (t) binary variable that indicates
whether class k arc
between node i and node j is
used or not at time t

Jarvis and Ratliff [16] showed that the three objectives
of the building evacuation problem (minimizing the network
clearance time (T ), maximizing the number of evacuees for
the first p periods for each p ≤ T , andminimizing the average
time to evacuate the building) are equivalent. Although we
choose the first one (the network clearance time), we min-
imize the sum of evacuees’ evacuation times (equivalent to
minimizing the average evacuation time) for the MCTE net-
work, to avoid solving a min-max problem that minimizes
themaximum evacuation times of evacuees.We formulate the
MILP model as follows:

minimize
x

∑
i∈δ−(d)

K∑
k=1

T∑
t=0

t · xidk (t)

subject to ∑
j∈δ+(i)

K∑
k=1

T∑
t=0

xijk (t)=r(i)+
∑
j∈δ−(i)

K∑
k=1

T∑
t=0

xjik (t),

∀i ∈ S (1)∑
j∈δ−(d)

K∑
k=1

t+wk×λjd≤T∑
t=0

xjdk (t)=
∑
i∈S

r(i) (2)

∑
j∈δ−(i)

K∑
k=1

xjik (t−wk× λji)−
∑
j∈δ+(i)

K∑
k=1

xijk (t)

+ yi(t − 1) = yi(t), ∀i ∈ N\{d}, ∀t > 0

(3)

(k − 1)×µij×zijk (t) ≤ xijk (t) ≤ k×µij×zijk (t),

∀i, j, k, t (4)

zijk (t)×
k−1∑
m=1

t+(wk−wm)λij−1∑
n=t

zijm(n) = 0,

∀i, j, k, t (5)
K∑
k=1

zijk (t) ≤ 1, ∀i, j, t (6)

0 ≤ yi(t) ≤ ci, ∀i, t (7)

zijk (t) ∈ {0, 1}, ∀i, j, k, t (8)

Constraint (1) ensures that the number of evacuees who
have left a node until time T equals the sum of the initial num-
ber of evacuees in the node and the number of evacuees who
have entered the node until time T . Constraint (2) ensures
that all evacuees arrive at the super sink node within the final
evacuation time T . Constraints (1) and (2) are called as the
source and sink balancing constraints, respectively. Unlike
the formulation in [13], where source nodes cannot appear
in the middle of the paths starting from other source nodes,
all source nodes can show up in the paths from other source
nodes. Constraint (1) constructs the paths including source
nodes. Constraint (3), the flow conservation constraint, forces
the difference between inflow and outflow at time t in a node,
except the super sink node, to match the difference between
the number of evacuees staying in a node at time t and time
t − 1. Constraint (4) ensures that the number of evacuees on
the arc from node i to node j with class k at time t cannot
exceed k times the unit capacity of the arcs. That is, xijk (t)
does not exceed its arc capacity. Constraint (5) avoids the
FIFO violation shown in Fig. 4. Constraint (6) guarantees that
evacuees use only one class of arc at a time. Constraint (7)
ensures that the number of evacuees in each source node
cannot exceed the node capacity. Constraint (8) defines zijk (t)
as a binary variable.

aijk (t) ≤
k−1∑
m=1

t+(wk−wm)λij−1∑
n=t

zijm(n), ∀i, j, k, t (9)

aijk (t) ≥


k−1∑
m=1

t+(wk−wm)λij−1∑
n=t

zijm(n)− 1

(k − 1)wk − (w1 + w2 + ...+ wk−1)
+ 1


+ zijk (t)− 1, ∀i, j, k, t

aijk (t) ≤ zijk (t), ∀i, j, k, t (10)

aijk (t) ∈ {0, 1}, ∀i, j, k, t (11)

Noting that Constraint (5) is quadratic, we linearize it
by introducing new binary decision variables aijk (t) for
all i, j, k, t as in [17], [18], and [19]. The result is that
Constraint (5) is transformed into Constraints (9) – (11).
Constraints (9) – (11), however, significantly worsen com-
putational performance, which motivates us to develop an
efficient heuristic algorithm described in Section V.

B. MILP MODEL WITH SINGLE-CLASS ARCS
The MILP model for the MCTE network is solvable only for
small-size network cases, so it would be good to have upper
bounds for the evacuation time before moving to the heuristic
algorithm. The solution of the MILP model for the MCTE
network tends to use a higher class of arcs when there are
many evacuees and a lower class of arcs when there are fewer
evacuees in the network. We consider networks with only
single-class arcs and use them as bounds for the performance
of our heuristic algorithm. For example, if theMCTE network
has three classes of arcs, we build three MILP models for
each class, by removing Constraints (5), (6), (8), and binary
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FIGURE 6. Two nodes example of using multiple classes.

variables zijk (t). Since the single-class MILPs are solvable
for relatively large-size networks, we use them as references
for the performance of our heuristic algorithm. Section VI
discusses our numerical examples and results. We formulate
the MILP model with single-class networks as follows:

minimize
x

∑
i∈δ−(d)

T∑
t=0

t × xid (t)

subject to ∑
j∈δ+(i)

T∑
t=0

xij(t)=r(i)+
∑
j∈δ−(i)

T∑
t=0

xji(t), ∀i∈S

∑
j∈δ−(d)

t+λjd≤T∑
t=0

xjd (t)=
∑
i∈S

r(i)

∑
j∈δ−(i)

xji(t−λji)−
∑
j∈δ+(i)

xij(t)+yi(t − 1)=yi(t),

∀i ∈ N\({d}), t

0 ≤ yi(t) ≤ ci, ∀i, t

0 ≤ xij(t) ≤ µij, ∀i, j, t

V. HEURISTIC ALGORITHM
A rapidly unfolding emergency situation requires prompt
decision making. In this section, we describe our heuristic
algorithm for finding evacuation paths. The basic idea of our
heuristic algorithm is to create paths by choosing an effective
class of arcs from source nodes to sink nodes. An effective
class arc from node i to j is an arc through which evacuees
can move from node i to node j faster than move through any
other classes of arcs. The effective class between two nodes
depends on the number of evacuees in the tail node and the
travel time/capacity of each class arc. For better understand-
ing, we start with an example, as illustrated in Fig. 6.
For two nodes i and j with three classes of arcs in Fig. 6,

we can define set Ski whose elements are the values of the
number of evacuees in node iwhen the class k arc is effective.
When the number of evacuees is less than 2λijµij, the class 1
arc is effective. S2i and S3i can be obtained for class 2 and
class 3 arcs as follows:

The set for class 1 arc (S1i ) is

S1i =
{
si|
⌊
si
µij

⌋
+ λij ≤

⌊
si

2µij

⌋
+ 2λij

}
∩

{
si|
⌊
si
µij

⌋
+ λ ≤

⌊
si

3µij

⌋
+ 4λij

}
= {si|si ≤ 2λijµij}.

FIGURE 7. Using different class arc in the same evacuation path.

The set for class 2 arc (S2i ) is

S2i =
{
si|
⌊

si
2µij

⌋
+ 2λij ≤

⌊
si
µij

⌋
+ λij

}
∩

{
si|
⌊

si
2µij

⌋
+ 2λij ≤

⌊
si

3µij

⌋
+ 4λij

}
= {si|2λijµij ≤ si ≤ 12λijµij}.

The set for class 3 arc (S3i ) is

S3i =
{
si|
⌊

si
3µij

⌋
+ 4λij ≤

⌊
si
µij

⌋
+ λij

}
∩

{
si|
⌊

si
3µij

⌋
+ 4λij ≤

⌊
si

2µij

⌋
+ 2λij

}
= {si|si ≥ 12λijµij}.

We can derive Ski for general cases with N classes as follows:

Ski =

{
si|

N⋂
l=1

(⌊
si

k · µij

⌋
+ wk · λij ≤

⌊
si

l · µij

⌋
+wl · λij

)}
We choose effective class k when the tail node i has the

number of evacuees that belongs to set Ski . We note that as
the number of evacuees increases, using higher class arcs
becomes effective.

One can construct a path by iterating the process of select-
ing the effective arc until we find exit nodes (see Fig. 7).
Suppose that the number of remaining evacuees in node i (si)
is α. The effective class of arcs from node i to node j is class 1,
but the effective class from node j to node l is class 2.

Selecting an effective arc in every step can help construct
better paths, but requires more computational effort. We want
our algorithm to run faster, not compromising the solution
quality a lot. We find a clue for improving the speed of
the algorithm from the solutions of the MILP model for the
MCTE network. When a source node has many evacuees
(congested), the solution tends to choose higher class arcs
to push more evacuees to exit nodes using large capacity.
On the other hands, when there are few evacuees, the solution
selects lower class arcs utilizing the short travel times. So,
the solution tends to choose a single class (either the high-
est or the lowest) throughout a path when the source nodes are
congested or almost empty. From this observation, we design
our algorithm to choose only one class for each path and
assign evacuees to it.

Consider a three-node example in Fig. 8. Suppose two
base arcs have same travel times, capacities and a weight
set for classes (wk = {1, 2, 4}, k = 1, 2, 3). Our algorithm
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FIGURE 8. Three nodes example of choosing class of arcs.

FIGURE 9. Three nodes example of choosing class 3 arcs.

FIGURE 10. Three nodes example of choosing class 2 arcs.

chooses the effective class from Ski as explained above. Fig. 9
and Fig. 10 show two cases where the effective classes are
3 and 2 respectively.When the number of remaining evacuees
in node i is in S3i , our heuristic algorithm finds evacuation
paths using only class 3 arcs. As the number of remaining
evacuees in node i decreases, it will enter S2i , and finally will
be in S1i . Our heuristic algorithm will use class 2 arcs and
eventually use class 1 arcs until the evacuation is completed.

A. STRUCTURE OF HEURISTIC ALGORITHM
Algorithm 1 shows the overall structure of our heuristic algo-
rithm. The algorithm consists of two parts: generating net-
works (Algorithm 2 in Section V-B) and finding evacuation
paths (Algorithm 3 in SectionV-C).While themain algorithm
is finding evacuation paths (Algorithm 3), we incorporate
how we build an MCTE network (Algorithm 2) as a part of
the algorithm.

Let Tmax be the initial number of time windows. We do
not know when the last evacuee will exit the building
before executing the algorithm. So, we set the Tmax to be

Algorithm 1 Structure of Heuristic Algorithm
Input:
Max Time(Tmax): Initial number of time windows
Increment Time(Tinc): Number of additional time
windows
Extension counts(E): Number of network extensions
Extension limit(L): Maximum number of network
extensions
Building Network Information: Information about
spaces, evacuees, floors, stairs, hallways, etc
Output:
Evacuation plans

Run Algorithm2(Building Network Information)
Run Algorithm3(Generated MCTE network)

Extension counts(E)← 0
while There are remaining evacuees in network do

if E ≤ L then
Extend MCTE network by Tinc
E ← E + 1,Tmax ← Tmax + Tinc
Run Algorithm3(Extended MCTE network)

else
Stop finding Evacuation paths

sufficiently large and if the evacuation is not done at
time Tmax , we increase the number of time windows by Tinc at
a time. Building network information is usedwhen generating
networks (Algorithm 2).

Using the input data, Algorithm 2 determines the details
of networks such as capacities of nodes and arcs, travel
times of arcs, the number of evacuees in source nodes, etc.
Algorithm 2 initially creates Tmax time windows, copies all
nodes on the time windows, and connects all arcs among all
nodes. The details of Algorithm 2 are in Section V-B.

After generating the MCTE network, Algorithm 3 finds
evacuation paths. If there are still remaining evacuees at
time Tmax , the algorithm will extend the MCTE network
by Tinc. Then, the algorithm finds more evacuation paths
in the extended time windows. We, however, should care-
fully take care of special cases which may make the algo-
rithm fail; when some nodes are physically isolated by fire,
smoke, etc., the time extension cannot resolve the problem
and the algorithm never stops. To prevent such situations,
we set a limit on the number of times of network exten-
sions (L). If some evacuees still remain in the network after
L extensions, the algorithm will stop finding evacuation
paths. We explain the details of Algorithm 3 in Section V-C.

B. GENERATING MCTE NETWORKS
We use building information generating MCTE networks
with node capacities, node supply (the initial number of
evacuees in a node), tail/head nodes (multi-class arcs), arc
capacities, and arc travel times.
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Algorithm 2 Generating MCTE Networks
Input:
Building Network Information(Building plans including
footage of spaces, number of evacuees, widths, and
lengths of hallways and stairs
S= {si|i = 1, 2, . . . , S}, E= {ei|i = 1, 2, . . . ,E}: Sets of
source and exit nodes
N= {ni|i = 1, 2, . . . ,N }, A= {ai|i = 1, 2, . . . ,A}: Set
of all nodes and arcs
W= {wk |k = 1, 2, . . . ,K }: Weights of class i arcs’
travel time
Tmax ,Tinc: Initial max time and Increment time
Output:
Multi-class Time-expanded network(MCTE network)

for each time window t ≤ Tmax do
Make copies of all nodes in each time window t
for each node ni ∈ N do

if t = 0 and there are evacuees in ni then
ni is source node

else if t ≥ 1 and ni has infinite capacity then
ni is exit node

else
ni is normal node

for each arc ai ∈ A do
for each class k do

tail ← ai’s tail
head ← ai’s head + ai’s travel time×wk
while head is in time window t ≤ Tmax do

Connect arc between tail and head
arc capacity is (ai’s arc capacity)×k
tail ← same node in next time window
head ← same node in next time window

At the beginning of Algorithm 2, we make copies of all
nodes for each time window. Each node has information on
its capacity, supply, and type (source/exit/normal). The type
of a node is determined based on the following criteria: if at
least one evacuee is in the node at time 0, it is a source node.
If it has infinite capacity, it is an exit node. Otherwise, it is a
normal node. After setting all nodes in the MCTE network,
we connect them by using the arc information (tail nodes,
head nodes, capacities, travel times and classes of arc).

TheMCTE network has transit arcs that connect two differ-
ent nodes, and hold-over arcs that represent evacuees’ waiting
in the same node for avoiding congestion. Note that hold-
over arcs’ capacities and their tail or head node capacities
are the same. In anMCTE network, individual evacuees use a
transit arc or a hold-over arc to move to the next time window.
Evacuees using the hold-over arc just stay in the same node.

C. FINDING EVACUATION PATHS
Algorithm 3 shows how we construct evacuation paths
and allocate evacuees to them. Due to the time-expanded

Algorithm 3 Finding Evacuation Paths
Input:
MCTE network generated by Algorithm 2
S= {si|i = 1, 2, . . . , S}: Set of source nodes
δ+k (n)= {di|i = 1, 2, . . . ,N }: Set of head nodes of node
n connected by class k arcs
I= {Ik |k = 1, 2, . . . ,K }: Minimum number of evacuees
for using class k arcs
Output:
Evacuation Paths

for each class k do
for each source node si ∈ S do

Deactivate all nodes in MCTE Network
while Number of evacuees in si > Ik do

Activate all nodes in δ+k (si)
N ∗ = {n∗i |i = 1, 2, 3...}: set of activated nodes
while there are no exit nodes in N ∗ do

for each node n∗i ∈ N ∗ do
Activate all nodes in δ+k (n

∗
i )

if there are exit nodes in δ+k (n
∗
i ) then

break

Select an evacuation path between si and exit
node in δ+k (n

∗
i )

Update arcs’ and nodes’ capacities in the
evacuation path
Reduce number of remaining evacuees in si

if there are remaining evacuees in MCTE network then
Extend MCTE network; Tmax ← Tmax + Tinc
find evacuation paths in extended MCTE network

property, all nodes are duplicated in each time window and
are connected by arcs according to travel times. In addi-
tion, due to the multi-class property, the number of arcs is
several times higher than the number of physical connec-
tions. To reduce computation time, we propose a sequen-
tial node activating/deactivating technique by restricting our
search space. We arbitrarily choose the first activated node
from the source nodes at time 0; we also tried to choose
the source node having the largest initial supply, but the
performance is almost the same. We then sequentially acti-
vate nodes which are directly connected to activated nodes
until activating one of the exit nodes. When one of the exit
nodes is activated, we can construct an evacuation path by
backtracking from the activated exit nodes to the source
node through activated nodes. To prevent too many activated
nodes for search efficiency, we adopt a greedy approach
choosing effective class arcs (i.e., higher class arcs) so that
more evacuees can move at a time. Recall that as the num-
ber of evacuees (si) in node i increases, it belongs to a
higher effective class set, Ski . That is, we choose higher class
arcs when the number of evacuees in the source node is
large.

VOLUME 7, 2019 169487



C. H. Oh et al.: Efficient Building Evacuation Algorithm in Congested Networks

FIGURE 11. Steps of finding evacuation paths.

FIGURE 12. Two kinds of collision in arcs.

We use two techniques, node activating/deactivating and
effective classes, to construct evacuation paths. We find evac-
uation paths using the effective class arcs for each source node
depending on the number of remaining evacuees. As shown
in Fig. 11(a), we construct the evacuation paths using effec-
tive class arcs. As the evacuation progresses, the number
of remaining evacuees decreases, and the effective class
becomes a lower class as shown in Fig. 11(b). Once evacua-
tion from a source node is done, we iterate the same procedure
for other source nodes until all evacuees exit.

We should avoid situations including simultaneous two-
way traffic by evacuees moving in opposite directions in an
arc and FIFO violations as done in the MILP model for the
MCTE network. Fig. 12 illustrates both situations. Two-way
traffic occurs when some evacuees move from node i to node j
at the same time while other evacuees move from node j to
node i. A FIFO violation occurs when evacuees who use the
lower class arc (shorter travel timewith smaller capacity) pass
those moving through the higher class arc (longer travel time
with larger capacity). To solve the two-way traffic problem,
when node i sends evacuees to node j at time t , we set the
capacity of the arc from node j to node i to zero. To avoid the

FIFO violation, we choose the class k arc connecting node i
at time t0 and node j at time t1, and set the capacity of the arcs
that connect node i later than time t0 and node j earlier than
time t1 to zero.

VI. NUMERICAL RESULTS
In this section, we show several numerical results comparing
the proposed heuristic algorithm with the MILP models: the
MCTE network and two one-class networks. To the best of
our knowledge, we are the first one introducing the concept
of theMCTE network for different congestion levels and their
effects; it is hard to find appropriate existing algorithms for
benchmarking other than the MILP models.

We use the final evacuation time as a primary performance
measure for the quality of generated paths and the solution
time as a secondary performance measure for quick decision
making. We write code using the C++ interface of GUROBI
7.52 for solving the MILP models and run it on a Microsoft
Windows Server 2012 R2 with Inter(R) Xeon(R) CPU
E3-1230 V2 @ 3.30GHz, 16.0GB RAM and Single thread.
In large-size networks, however, the MILP model for the
MCTE network is not solvable, so we compare the solution of
our heuristic algorithm to the solutions of the MILP models
with single-class arcs; see Section IV-B for an explanation.

We consider four networks for numerical experiments. The
first network is a small-size artificial network we make up to
compare the performance of our algorithm with the optimal
solution from the MILP model for the MCTE network. Three
others are a real multiplex cinema network, a subway station
network, and a complex shopping mall network.

A. SMALL-SIZE ARTIFICIAL NETWORK
We generated a network which consists of 18 nodes and
54 arcs. There are four exit nodes and one super sink node.
We consider two settings for the multi-class property: Set-
ting 1 has two classes (K = 2, wk = {1, 2}) and Setting 2
has three classes (K = 3, wk = {1, 2, 4}). For Setting 1,
when we set the lower class arc’s capacity to be 3 and the
base travel time to be 5, the higher class arc’s capacity is 6
(base capacity × k = 3 × 2) and the travel time is 10
(base travel time× wk = 5× 2).
Fig. 13 shows the process of the proposed heuristic algo-

rithm to find evacuation paths. Fig. 13(a) is one of the input
data of Algorithm 2. We generate the MCTE network for the
small-size artificial network in Fig. 13(b) based on the input
network in Fig. 13(a). In Algorithm 3, we check the number
of evacuees in each source node and choose the effective
class of arcs to find evacuation paths. Fig. 13(c) and 13(d)
show examples of evacuation paths using class 3 arcs and
class 1 arcs respectively. The arc between node 6 and node 2
in Fig. 13(c) has 3 times more capacity and 4 times longer
travel time than the arc in Fig. 13(d).

This experiment uses the MILP models for the MCTE
network and the single-class MILP models as performance
references. There are two single-classMILPmodels; one uses
class 1 arcs and the other uses class 2 arcs. The network
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FIGURE 13. The process of heuristic algorithm.

using class 1 arcs represents the strategy that evacuates a
small number of evacuees from one node to another with
shorter travel time. The network using class 2 arcs represents
the strategy that evacuates a large number from one node to
another with longer travel time. Fig. 14(a) shows the final
evacuation time using only class 1 arcs, class 2 arcs, theMILP
for the MCTE network, and the heuristic algorithm. The
graphs labeled Class 1 (class 1 arc) and Class 2 (class 2 arc)
show the solutions of the MILP models for single-class arcs.
The graph labeled MCTE shows the solution of the MILP
model for the MCTE network. The solid line labeled Heuris-
tic comes from the heuristic algorithm. Fig. 14 shows that the
final evacuation time of the MILP model using class 1 arcs
is the fastest when the number of evacuees in the network
is smaller than 200. The results of the MILP model for the
MCTE network and the heuristic algorithm are the same as
the MILP model using class 1 arcs. When the number of
evacuees exceeds 600, only the MILP model for the MCTE
network guarantees optimality. Even though our heuristic
algorithm cannot guarantee optimality, it is better than the
two MILP models for single-class arcs. The MILP model
for the MCTE network can always use optimal arcs for all
time windows. And, evacuation paths from the MILP model

FIGURE 14. The artificial network with 2 classes.

for the MCTE network can consist of a non-homogeneous
class of arcs. However, our heuristic algorithm chooses arcs
considering the number of remaining evacuees in each source
node and chooses only one kind of class arcs in each path.

Fig. 14(b) shows the computation time of the two simple
MILP models. The computation time of the MILP model
for the MCTE network depends on the number of evacuees
ranges from 8.6 to 23 seconds. The artificial network is
indeed very small, so our heuristic algorithm takes less than
0.1 seconds. Table 2 summarizes the average computation
times.

In Setting 2, we use the three single-class MILP models
corresponding to class 1, 2, and 3 arcs. We vary the number
of evacuees in the network from 20 to 4000. Since the num-
ber of classes is now three, the computation cost is higher
than Setting 1. When the number of evacuees is larger than
1000, the solver cannot solve the MILP model for the MCTE
network.

Fig. 15 shows that the proposed heuristic algorithm obtains
a near-optimal solution close to that of the MILP model for
the MCTE network when the number of evacuees in the
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TABLE 2. Computation times (sec) for the artificial network with
2 classes.

FIGURE 15. The artificial network with 3 classes and ≤ 1,000 evacuees.

network ranges between 20 and 1000. When the number of
evacuees is larger than 1000, we only compare the solution of
proposed algorithm to the solutions of the three single-class
MILP models.

Fig. 16 shows that it is preferable to use higher class
arcs when there are more evacuees. Our heuristic algorithm
always shows better final evacuation times and faster com-
putation times than the single-class MILP models regardless
of the number of evacuees. Fig. 15(b) shows that the MILP
model for theMCTE network needs at least 4.846 seconds for

FIGURE 16. The artificial network with 3 classes and ≥ 1,000 evacuees.

TABLE 3. Computation times (sec) for the artificial network with
3 classes more than 1,000 evacuees.

the small-population network, whereas the computation times
of the single-class MILP models and our heuristic algorithm
need less than 0.5 seconds.

Table 3 lists the computation times shown in Fig. 16.
In summary, we observe that our heuristic algorithm obtains
near-optimal solutions for small-population networks in less
time. Our heuristic algorithm always outperforms the three
single-class MILP models for large-population networks.
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FIGURE 17. A floor plan of a multiplex cinema.

B. MULTIPLEX CINEMA NETWORK
The second network is a real multiplex cinema network in
Seoul, Korea. Fig. 17 shows the floor plan. The red boxes
in Fig. 17 represent the places where we set the nodes.
The network consists of 99 nodes and 255 arcs. Among
the 99 nodes, there are 11 potential source nodes, three exit
nodes, and one super sink node. For the multi-class property,
we use 3 classes (K = 3 and wk = {1, 2, 4}) and vary
the number of evacuees between 22 and 6600. Since the
MILP model for the MCTE network is unsolvable for all
cases, we use the three single-class MILP models for the
performance comparison.

Fig. 18 shows that the single-class MILP model with
class 1 arcs is the most efficient when there are fewer than
660 evacuees, the model with class 2 arcs is the most efficient
when there are 880 to 4840 evacuees, and the model with
class 3 arcs is the most efficient when there are more than
4840 evacuees. Our heuristic algorithm, which can use all
classes of arcs, obtains a better solution than the single-class
MILP models. Fig. 18(b) shows that the single-class MILP
models need 8 seconds compared to our heuristic algorithm
that only needs 10 seconds at most. Table 4 lists the compu-
tation times for the multiplex cinema network.

C. SUBWAY STATION NETWORK
The third network is a real subway station. We choose
a subway station network in Busan, Korea equipped with
an IoT-based evacuation system using the previous ver-
sion of our evacuation algorithm not having the multi-class
property.

FIGURE 18. The multiplex cinema network with 3 classes.

TABLE 4. Computation times (sec) for multiplex cinema.

The network consists of 51 normal nodes, 6 exit nodes, and
162 arcs. Most of the arcs have a large capacity and long
travel time, so the highest class does not seem necessary.
When we run our proposed heuristic algorithmwith 3 classes,
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FIGURE 19. The subway station network with 3 classes.

class 3 arcs are not selected. Therefore, we only compare two
single-class MILP models and our heuristic algorithm. For
the multi-class property, we set K = 2, wk = {1, 2}, and
increase the number of evacuees from 200 to 20000.

When the network has a small number of evacuees,
the MILP model for the MCTE network is solvable, but it
needs a very long time to solve, and the results are the same
as those of the single-class MILP model with class 1 arcs and
the heuristic algorithm. Therefore, in Fig. 19, we only plot
the results of two single-class MILP models and our heuris-
tic algorithm. Fig. 19(a) shows the final evacuation times.
Similar to the multiplex cinema network case, our heuristic
algorithm outperforms the two single-class MILP models.
The real subway station network has a small number of wide
corridors and stairs, so the number of paths for evacuees is
smaller than other real-world cases. Fig. 19(b) and Table 5
show the computation times of single-class MILP and our
heuristic algorithm.

D. COMPLEX SHOPPING MALL NETWORK
The last network is a real shopping mall in Busan, Korea, pro-
viding entertainment, dining, etc. When malls add attractions

TABLE 5. Computation times (sec) for a subway station network.

TABLE 6. Computation times (sec) for complex shopping mall network.

other than shopping, the sites add complexity, so visitors may
be unable to locate emergency exits. We choose an eleven-
story mall consists of 229 nodes and 709 arcs. The network
has 11 exit nodes on the first floor and a basement. We use
3 classes for the multi-class property with K = 3 and wk =
{1, 2, 4}. Since the size is larger than the three other cases,
the computation times are significantly longer. We increase
the number of evacuees in the network from 200 to 10000.

Fig. 20(a) shows the final evacuation times for the three
single-class MILP models and our heuristic algorithm. When
the number of evacuees is fewer than 1200, the single-class
MILP model with class 1 arcs is the most efficient, and when
the number of evacuees is larger than 8000, the single-class
MILP model with class 3 arcs is the most efficient. When the
number of evacuees is larger than 8000, our heuristic algo-
rithm uses all classes of arcs and finds a better or competitive
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FIGURE 20. The complex shopping mall network with 3 classes.

solution than the single-class MILP models. Fig. 20(b) and
Table 6 show the computation times.

VII. CONCLUSION
This paper proposed a new network considering congestion
called a multi-class time-expanded (MCTE) network and an
efficient heuristic algorithm to solve an evacuation problem
under the MCTE network. In the MCTE network, we address
congestion in two ways. Multi-class arcs are defined for dif-
ferent travel times and capacities between two nodes depend-
ing on the number of evacuees. Time-expanded networks are
used for tracking the evacuation process. For that, we first
built an MILP model for the MCTE network but found that
directly solving the MILP model with commercial solvers is
computationally too expensive. We, therefore, developed a
heuristic algorithm that reduced search space by restricting
classes when constructing a path from source nodes to exit
nodes. For the performance comparison, we use additional
MILP model not considering the multi-class property.

According to numerical experiments, our heuristic algo-
rithm can obtain near-optimal solutions with much shorter

computation time than the MILP models for the MCTE
network. An artificial network and the networks of a real
multiplex cinema, subway station, and complex shopping
mall were used to compare the proposed algorithm’s per-
formance against the MILP model for the MCTE networks
and the single-class MILP models. The proposed heuristic
algorithm provided better or competitive solutions compared
to the single-class MILP models and solved the problem
much faster compared to the MILP model for the MCTE net-
works. Furthermore, we could always get feasible solutions in
numerical experiments. However, an infeasible solution can
be generated in emergencies. When the infeasible solution is
generated by the proposed algorithm, we provide information
about isolated nodes, locations of evacuees and network con-
figurations to evacuation managers and fire stations.

We suggest several future research directions. Having used
a kind of depth-first search approach, considering both depth-
first and breadth-first approaches may help construct more
efficient paths. We have used the discretized congestion
function in generating the MCTE network. One can directly
incorporate a continuous congestion function into the mathe-
matical model for more precise congestion control. Another
essential research direction is to include human behavior
in the mathematical model. In our time-expanded model,
we assumed that all evacuees follow the solution of the algo-
rithm, which seems unrealistic in the sense that some evac-
uees might not follow the instruction and sometimes sending
evacuees at a designated rate might be impossible. This limi-
tation is indeed what movement-based approaches, including
our model, have in common. Simulation-based approaches,
however, can handle human behavior by imposing individual
characteristic to each agent in the system, although they
can only do what-if analyses. We are investigating how to
consider human behavior in our model so that we can solve
more realistic problems.
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