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Abstract
We investigate the hole-doped antiferromagnetic state in a two-orbital model of cuprates. The
model also includes d3z2−r2 orbital. Unlike the one-orbital model, we find the antiferromagnetic
state stable against the hole doping for the cuprates with orbital splitting between dx2−y2 and d3z2−r2

orbitals being ∼1 eV. This results from the fact that the Hund’s coupling enforces the filling of
dx2−y2 orbital ≈1 indicated by a significant reduction of dx2−y2 spectral density at the Fermi level.
This, in turn, leads to the suppression of intraband fluctuations detrimental to the
antiferromagnetic phase. In this scenario, hole doping involves removal of mainly d3z2−r2 electrons
that are comparatively more localized. One important caveat of our meanfield theoretic result and
conclusion is that they are reliable only for a very low hole doping region.

After more than thirty years of discovery of cuprates exhibiting high-Tc superconductivity [1], several
aspects of their behavior could not be understood within the one-orbital Hubbard model. This is despite

the considerable success of the latter in being able to capture the low-energy physics [2]. Various

spectroscopic methods indicate that the doped holes may be located on the oxygen sites through the so
called charge-transfer mechanism. The mechanism basically involves the positioning of oxygen (O) p band

above the lower Hubbard band. Therefore, a more realistic description requires the three-orbital model

which also incorporates O–p orbitals in the CuO2 sheet. Further, it was argued that the physics of the d–p
model could effectively be understood within one-orbital model. That is, the doped hole was shown to be

localized within the square formed by O atoms and Cu+ at the center. In other words, d–p hybridization

leads to the formation of so called Zhang-Rice singlet [3, 4]. Physics of cuprates has also been studied within
the three-orbital models where it’s limitation in explaining the high-energy optical absorption spectrum

was noted [5].

One of the prominent limitations of the one-orbital model was it’s inability to describe the hole-doped
antiferromagnet (AFM) [6]. Such a state obtained within the standard meanfield theories is not stable

against the transverse-spin fluctuations or spin twisting. Other possibilities such as the stabilization of a

spiral state with an ordering wavevector different from the magnetic ordering wavevector (π,π) was also
ruled out [7, 8, 9, 10, 11, 12, 13]. Experimentally, a significant asymmetry exists in the doping vs

temperature phase diagram of cuprates. But the AFM state does get stabilized in a sizable hole-doped region

(0 � xh � 0.04) even though the region is relatively smaller than that in the electron-doped region [14].
In this paper, we uncover several features associated with the two-orbital model based on 3dx2−y2 and

3d3z2−r2 orbitals with orbital splitting ∼1 eV such as in La2−xSrxCuO4. These features may be of significant

importance in understanding the Mott and pseudogap physics of cuprates and similar systems. Our main
findings are: (i) the hole-doped AFM state is robust against the spin twisting in the presence of a finite
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Figure 1. Schematic of magnetic exchange gap 2Δ in the hole-doped antiferromagnetic state of a two-orbital model. Two
scenarios with Hund’s coupling (a) J = 0 and (b) J � Jc. Beyond a critical Jc, d3z2−r2 shifts upward to the Fermi level while the
contribution from dx2−y2 is suppressed as the latter shifts downwards.

number of holes, a characteristics otherwise absent in the one orbital. We confirmed that by checking the
stability of the AFM state by subjecting it to the transverse-spin fluctuations.

(ii) Electrons are removed from d3z2−r2 orbital on doping holes, i.e, this orbital act as a charge reservoir.
The behavior is similar to the charge-transfer mechanism involving O p orbital. The low-lying d3z2−r2 -band
is shifted up above the lower dx2−y2 band (figure 1). Two important consequences are: (a) electronic states
appear near (π, 0) instead of around (π/2,π/2) [15, 16] and (b) the chemical potential is almost pinned
because of the large spectral weight associated with narrow d3z2−r2 band [14].

(iii) Both are direct consequences of the Hund’s coupling or more specifically Hund’s first rule which
supports a maximum spin-configuration. Accordingly, the electrons should be removed from d3z2−r2 orbital
on doping and the charge density of dx2−y2 orbital remains fixed at ≈1. As a result, a significant suppression
of intraband spin fluctuations occurs, which is detrimental to the AFM state. Thus, various rich aspects of
Hund’s physics in the hole-doped cuprates with smaller orbital splitting are highlighted.

The necessity to include d3z2−r2 orbital lying ∼1 eV below the Fermi level was invoked recently to
explain the difference between the superconducting transition temperature (Tc) of La2−x(Sr,Ba)xCuO4 and
HgBa2CuO4+δ [17, 18]. The eg orbitals splitting in the former is ≈1 eV while it is ≈2 eV in the latter. The
splitting size is dependent on the distance of apical oxygen from CuO2 plane [19]. For cuprates, the splitting
between the two sets eg and t2g of orbitals is also ≈2 eV. Therefore, dx2−y2 orbital based one-orbital model
can describe the correlation effects for cuprates with larger eg splitting, whereas it is important to include
both eg orbitals for those with smaller splitting.

Necessity of d3z2−r2 orbital was also emphasized in order to describe certain features of magnon
dispersion in the hole-doped La2CuO4, which otherwise could not be described within the one-orbital
model [20]. A significant hybridization of bands involving d3z2−r2 orbital has also been reported in the
angle-resolved photoelectron spectroscopy (ARPES) experiments [21, 22].

All above observations indicate a multiorbital nature of the electrons in the cuprates. We, therefore,
consider a two-orbital Hamiltonian including d3z2−r2 orbital in addition to dx2−y2 orbital:

H =
∑

ij

∑
l,m

∑
σ

tlm
ij a†ilσajmσ + U

∑
i,l

nil↑nil↓ +

(
U ′ − J

2

)∑
i,l<m

nilnim− 2J
∑
i,l<m

Sil ·Sim + J
∑

i,l<m,σ

a†ilσa†ilσ̄aimσ̄aimσ.

(1)

a†ilσ (ailσ) is the creation (destruction) operators for electron with spin σ at site i in the orbital l, where
l ≡ dx2−y2 , d3z2−r2 . The first term represents kinetic energy with tlm

ij as hopping matrix elements from
orbital l at site i to orbital m at site j, respectively. They are listed in table 1 for La2−x (Sr/Ba)xCuO4

(reference [17, 18]). We have introduced a slight modification so that all the parameters are reduced by a
factor f = 0.87. This is primarily aimed to capture the correct high-energy scale of spin-wave excitations in
accordance with the experiments. The second and third terms incorporate the intra- and inter-orbital
Coulomb interaction, respectively. The fourth and fifth term represent the Hund’s coupling and the pair
hopping while the condition U = U′ + 2J is set in all the calculations below to ensure the rotational
invariance in the orbital space.

The mean-field Hamiltonian in the (π,π) AFM state can be expressed as [23]

Hk =
∑

kσ

Φ†
kσ

[
ĥk + N̂ sgn σ̄Δ̂

sgn σ̄Δ̂ ĥk+Q + N̂

]
Φkσ , (2)

2
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Table 1. Hopping parameters within two-orbital model of
cuprates. t1, t2, and t3 are the parameters corresponding to
nearest, next nearest, next-next nearest neighbors hoppings
in the unit of eV. The on site splitting between the two
orbitals is 0.80 eV.

Hoppings t1 t2 t3

t11(dx2−y2 ←→ dx2−y2 ) −0.410 0.0811 −0.0639
t12(dx2−y2 ←→ d3z2−r2 ) 0.155 0.0 0.0224
t22(d3z2−r2 ←→ d3z2−r2 ) −0.103 0 0

Figure 2. Orbital-resolved magnetization ((a) and (b)) and charge densities ((c) and (d)) as a function of electronic densities for
different Hund’s coupling J. Both mls and nls exhibit a linear dependence. The doping dependent behavior is remarkably
different in the electron- and hole-doped regimes. At higher J, the magnetization and charge density in dx2−y2 are almost
constant, while the same change linearly for d3z2−r2 orbital.

where Φ†
kσ = (a†k1σ , a†k2σ , a†k1̄σ , a†k2̄σ) with a†

kl̄ σ
= a†k+Qlσ and Q = (π,π). ĥk is the hopping matrix. The

elements of the matrices Δ̂ and N̂ are functions of the onsite interaction parameters, orbital magnetizations
and charge densities. Elements of Δ̂ are 2Δll = Umll + J

∑
l
=mmmm and 2Δlm = Jmlm + (U − 2J)mml. Next,

2Nll = Unll + (2U − 5J)
∑

l
=mnmm and 2Nlm = Jnlm + (4J − U)nml. The charge densities and
magnetizations are calculated as nlm =

∑
kσ〈a

†
klσakmσ〉 and mlm =

∑
kσ〈a

†
kl̄ σ

akmσ〉 sgn σ. Summation over k
is performed within the magnetic Brillouin zone. Eigenvalues and eigenvectors of the Hamiltonian matrix
are used to calculate the order parameters in a self-consistent manner.

First, we examine the orbital charge densities and magnetization plotted as a function of carrier
concentration in figure 2. For small J, the magnetization for dx2−y2 first increases on moving from
electron-doped region to hole-doped region. It reaches a maximum at zero doping and then decreases. On
the other hand, the charge density decreases steadily all along. Meanwhile, there is no change in either of the
quantities m3z2−r2 ≈ 0 and n3z2−r2 ≈ 2.0. This is not surprising because the corresponding band is placed
well below the Fermi level (Eb ≈ −1.5 eV) and the two orbitals are essentially decoupled in the absence of
strong enough Hund’s coupling. Therefore, the behavior of order parameters for dx2−y2 orbital noted here is
not different from what is expected in the one orbital case.

The features mentioned above can be noticed up to a critical Jc ∼ 0.1U. Beyond that, however, a
remarkable change occurs in the orbital-resolved magnetization and charge density for each of the orbitals.
While the magnetization and the charge density remains unchanged in the electron-doped region, there is a
role reversal in the hole-doped region. Inside the hole-doped region, neither the magnetization nor the
charge density changes for dx2−y2 orbital. In other words, the charge density and magnetization remain
almost fixed at nx2−y2 ≈ 1.0 and mx2−y2 ≈ 0.87, respectively, even though the hole density increases. But the
same does not hold for d3z2−r2 as m3z2−r2 increases while n3z2−r2 decreases almost linearly. Note that a
significant reduction in meanfield magnetization can occur due to the spin fluctuations [24–26]

To understand the unexpected behavior, we plot the density of states (DOS) in the hole-doped AFM
state (see figures 3(a) and (b)). For smaller J � Jc, the Fermi level is located slightly below the top of lower
dx2−y2 band. At the same time, the DOS contribution due to d3z2−r2 at the Fermi level is sharply peaked for
≈−1.5 eV. The scenario, however, changes dramatically for J � Jc (see figure 3(b)). The contribution at the
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Figure 3. Orbital-resolved DOS for two cases (a) J = 0 and (b) J = 0.2U. The d3z2−r2 DOS is sharply peaked near ω ≈ −1.5 eV
with vanishing contribution at the Fermi level and electronic state appears around (π/2,π/2). This is completely reversed for
J = 0.2U, when dx2−y2 DOS is suppressed and the electronic state of mainly d3z2−r2 characteristics appear near (π, 0). Exchange of
position with respect to the Fermi level can be easily noticed for lower dx2−y2 band and d3z2−r2 band ((c) and (d)).

Figure 4. Jc shows a linear dependence on the orbital splitting between two orbitals dx2−y2 and d3z2−r2 .

Fermi level due to dx2−y2 orbital is now suppressed while that from d3z2−r2 becomes dominant. This happens
because the lower dx2−y2 band and d3z2−r2 band exchange their position (see figures 3(c) and (d)).
Meanwhile, the asymmetry in the band structure is also suppressed. Both factors appears to be favorable for
the AFM state. The exchange splitting for almost completely filled d3z2−r2 band assumes a finite but non
zero value because of a small magnetization.

The interorbital density-density interaction
(
U ′ − J/2

)
ni1ni2 is responsible for the exchange of position

for lower dx2−y2 band and d3z2−r2 band. It can be easily seen by carrying out the meanfield decoupling of the
term

(
U ′ − J/2

)
ni1ni2 ≈ (U − 5J/2)(〈n2〉n1 + 〈n1〉n2) + const. The occupancies of the two orbital differ

by ≈ 1, i.e, 〈n1〉 ≈ 1 and 〈n2〉 ≈ 2. This amounts to an orbital splitting of ∼ (−5J/2)(〈n2〉 − 〈n1〉) ≈ −1.5
eV (in comparison to when J = 0). This orbital splitting is exactly opposite to the one caused by ligand field,
i.e., the apical oxygen height from CuO2 plane.

The d3z2−r2 DOS is sharply peaked because of relatively smaller intraorbital hopping in comparison to
dx2−y2 . Moreover, the interorbital hopping is also very small and so is the hybridization. The extent of
hybridization, which has remained a controversial issue, is hardly of any consequence for the results
obtained here. We have checked it explicitly. However, the extent to which the d3z2−r2 orbital is below the
Fermi level in the unordered state is crucial for Jc as evident from figure 4 [27–37]. Jc can be seen to depend
linearly on the orbital splitting.

The central implications of the above results are as follows. First of all, orbital-selective robustness of gap
against hole doping for dx2−y2 orbital is facilitated entirely by the Hund’s exchange coupling between the
two orbitals. This indicates the stability of doped-AFM state, which is possible for a realistic J ∼ 0.15U.

4
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There is a close resemblance with the orbital-selective Mottness. Latter can result from the fact that the hole
resides on a significantly localized d3z2−r2 orbital. Secondly, an additional scenario is made possible by the
Hund’s coupling for the charge-transfer like mechanism. Earlier proposals indicated that the doped holes
may get transferred to oxygen atom. But when the eg splitting is small, the holes may also display d3z2−r2

orbital characteristics.
Our results also indicate that the nature of Mott transition unlike one orbital case is more complex

mainly because of the additional player ‘Hund’s exchange interaction’, which itself is a subject of intense
current debate [38, 39]. The Hund’s coupling is known to support a high-spin configuration. It also
suppresses the double occupancy, a characteristics associated with the Mott transition near the half-filling in
the one-orbital model. On the other hand, an increase in charge fluctuations may accompany with a
reduction of quasiparticle spectral weight, a behavior contrary to what is observed in a one orbital model
because of the strong correlation effects [40]. Thus, an important aspect of the Mott physics in the cuprates
may also involve the suppression of orbital fluctuations or orbital decoupling as found to be important here
[41, 42].

The stability of the hole-doped AFM state is already indicated by the fact that the dx2−y2 orbital remains
nearly half filled as well as dx2−y2 orbital DOS is tiny at the Fermi level. In the following, however, we test
the robustness of the meanfield state by subjecting it to the transverse spin fluctuations.

The transverse spin susceptibility for the two-orbital model is given by

χ+−
αβ,lm(q, q′, iωn) = T

∫ 1/T

0
dτeiωnτ 〈Tξ[S+

αβ(q, τ)S−
ml(−q′, 0)]〉. (3)

q, q′ = q or q + Q components of the spin operators in the Fourier space are given by
S i
αβ(q) =

∑
k

∑
σσ′a

†
ασ(k + q)σi

σσ′aβσ′(k). σi being Pauli matrices. Thus, the spin susceptibility for q′ = q is

given in terms of Green’s function as χ+−
αβ,lm(q, q, iωn) =

∑
k,iω′

n
G↑
αl(k + q, iω′

n + iωn)G↓
mβ(k, iω′

n), where

G↑
αl(k, iωn) is obtained from the ↑-spin part of the meanfield Hamiltonian (equation (2)).

Within the random-phase approximation, the transverse-spin susceptibility in the (π,π)-AFM state is
obtained as ˆ̄χRPA(q, iωn) = (1̂ − ˆ̄χ(q, iωn)Û)−1 ˆ̄χ(q, iωn), where 1̂ is a 8 × 8 identity matrix. Interaction
matrix is block diagonal and can be expressed as

Û =

[
Ûo Ô
Ô Ûo

]
. (4)

Elements of 4 × 4 matrix Ûo are given as Uo
11;11 = Uo

22;22 = U, Uo
11;22 = Uo

22;11 = U − 2J, Uo
12;12 = Uo

21;21 = J,

and Uo
12;21 = Uo

21;12 = J′. Ô is a null matrix.
The bare-level susceptibility matrix in the AFM state is given by

ˆ̄χ(q, iωn) =

[
ˆ̄χ(q, q, iωn) ˆ̄χ(q, q + Q, iωn)

ˆ̄χ(q + Q, q, iωn) ˆ̄χ(q + Q, q + Q, iωn)

]
, (5)

where the elements in the ordered state are χ̄αβ,lm = χ+−
αβ,lm + χ+−

ᾱβ ,̄l m
+ χ+−

αβ̄,lm̄
+ χ+−

ᾱβ̄ ,̄l m̄
. Note that the

Umklapp processes are also included. Physical transverse-spin susceptibility can be calculated as
χ̄ps(q, iωn) =

∑
αμ χ̄αα,μμ(q, q, iωn) [43]. In the following, analytic continuation iωn → ω + iη with

η = 0.01 eV is used throughout. Unit of energy is set to be eV.
Figure 5 shows Imχ

ps
RPA(q,ω) calculated in the two-orbital model as a function of Hund’s coupling,

where the hole doping is xh = 0.04 or total electron density is n = 2.96. As expected, the structure of
spin-wave excitations for J � Jc (figure 5(a)) is same as one would expect for the one orbital model.
Especially, there seem to exist zero energy modes besides the Goldstone mode with momenta shifted away
from the ordering wavevector Q. While the Goldstone mode for Q directly follows from the breaking of
continuous spin-rotation symmetry, the existence of other nearby zero-energy modes Q′ signals the
presence of negative energy magnon branch. This implies the instability of the hole-doped AFM state.
Presence of d3z2−r2 orbital does not make any difference because of the reasons mentioned earlier.

The negative energy excitations branches signaling the instability of the hole-doped AFM state get
suppressed beyond the critical J � Jc (figure 5(b)). This should also be reflected in the spin-wave spectral
weight distribution, where features with sharp peak may be noticed near and beyond Jc. Thus, the stability
of hole-doped AFM state is made possible by suppression of the intraband spin fluctuations in the lower
dx2−y2 band. Further, the intraband fluctuations coming mainly from the upper d3z2−r2 band do not exhibit
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Figure 5. Behavior of spin-wave excitations as a function Hund’s coupling (a) J = 0.0U and (b) J = 0.2U in the AFM state with
hole concentration xh = 0.04. Negative energy modes are absent of Hund’s coupling J � Jc indicating the stability of the
hole-doped AFM state.

Figure 6. Comparison of calculated spin-wave dispersion within two-orbital model with the neutron-scattering data [44]. The
intra-orbital Coulomb interaction parameter is taken to be 2.85 eV while the parameter f = 0.96 as defined in the text.

a hostility towards the AFM state. This bears a remarkable similarity to the electron-doped case in the
one-orbital model with stabilized AFM state.

Although, we have demonstrated the stability of the hole-doped AFM state for xh ∼ 0.04, our
conclusions remain valid for other fillings as well. For xh < 0.04, the critical Jc ∼ 0.15U has a realistic value.
However, the hole-doped region for stable AFM state may actually be small in view of other factors such as
doping induced disorder and the ordering tendency towards d-wave superconductivity.

The role of Hund’s coupling in stabilizing the magnetic phases such ferromagnet or stripe order is well
known. In particular, J suppresses the quantum corrections. The suppression increases further with the
number of orbitals, which leads to an enhanced stability of the ferromagnetic state [45, 46]. Moreover, role
of J in stabilizing the striped magnetic order in iron pnictides against doping induced reduction in the
Fermi surface nesting has also been pointed out [47–49]. Our results for the (π, π) type AFM state further
highlight perhaps a general trend of stabilization of magnetic order by the Hund’s coupling irrespective of
the nature of spin arrangement in a multiorbital system. Therefore, it role should not be overlooked in
multiorbital electron systems. In the present case, the stabilization of hole-doped AFM state is a direct result
of the Hund’s first rule which requires the maximization of total spin. This maximization can occur only
when the electrons are removed from the completely filled d3z2−r2 orbital instead of the half filled dx2−y2

orbital.
Figure 6 shows the spin-wave dispersion obtained within the two-orbital model for U = 2.85 eV,

J = 0.2U and f = 0.96. For comparison, we have also shown the neutron scattering data [44]. For a realistic
set of interaction and hopping parameters, we find a very good agreement with experimental data except
the strong damping near (1/2, 0) as noted in a recent experiment [50]. Besides, the spin-wave excitation
may have a non zero spin-wave spectral weight for qz ≈ 0 because of a very weak electronic dispersion along
kz [51].

We have also calculated the spin-wave dispersion for zero doping (n = 3.00) and electron-doped region
(n = 3.05) as a function J (figure 7). For simplicity, we have set the intraorbital hopping for d3z2−r2 zero. For
electron doping, the AFM state is known to be stable in one-orbital model, a result which continues to hold
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Figure 7. Spin-wave energies along different high-symmetry directions for various J when (a) n = 3.00 and (b) n = 3.05. For
low-energy excitations, J dependence is almost absent. But a significant dependence can be noticed at higher energies particularly
near q = (1/2, 0) and (3/4, 1/4).

even in the two-orbital model. Thus, the spin-wave excitation is well defined for any J in the electron-doped
regime as in the one-orbital case. It can be seen that J affects the high energy modes near high-symmetry
points like (1/2, 0) or (3/4, 1/4) significantly with increase in their energy while low-energy excitations
remains largely untouched. More or less a similar behavior is observed in the electron-doped region. The
spin-wave excitations may show dependence on the orbital-splitting size as indicated in an RIXS (resonant
inelastic x-ray scattering) study [20].

Although our work is based on the static meanfield approximation, it provides a new insight into the
role of Hund’s coupling in stabilizing the AFM state at low temperature. Further insight into the role of
Hund’s coupling on the nature of Mott transition can be obtained with the help of theoretical tools such as
dynamical meanfield theory (DMFT) or meanfield theory based on the slave-spin approximation. The
former one has been used but in the absence of Hund’s coupling [52]. The slave-spin approximation also
has been successful in describing the Mottness near integer fillings for various multiorbital systems [5]. It is
to be noted that for higher doping our mean-field calculations become less reliable because of the charge
fluctuations, which is largely suppressed in our approach, becomes more important.

In conclusions, we have investigated stability of the hole-doped AFM state in a two-orbital model for
cuprates. The instability existent in the one-orbital model on hole doping is removed largely because of the
Hund’s coupling. Our results show that the doped holes may also occupy d3z2−r2 orbital in addition to the
oxygen p orbitals. This is possible because of shifting of low-lying d3z2−r2 band up above the lower Hubbard
split dx2−y2 band. The feature appears similar to the charge-transfer mechanism with an important
difference that the oxygen p band is unaffected or does not shift. Thus, our work highlights the crucial role
of Hund’s coupling in the cuprates with relatively smaller splitting of eg orbitals dx2−y2 and d3z2−r2 .
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