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Synaptic activity in neurons leads to the rapid activation of genes
involved in mammalian behavior. ATP-dependent chromatin
remodelers such as the BAF complex contribute to these responses
and are generally thought to activate transcription. However, the
mechanisms keeping such “early activation” genes silent have
been a mystery. In the course of investigating Mendelian recessive
autism, we identified six families with segregating loss-of-function
mutations in the neuronal BAF (nBAF) subunit ACTL6B (originally
named BAF53b). Accordingly, ACTL6B was the most significantly
mutated gene in the Simons Recessive Autism Cohort. At least 14
subunits of the nBAF complex are mutated in autism, collectively
making it a major contributor to autism spectrum disorder (ASD).
Patient mutations destabilized ACTL6B protein in neurons and
rerouted dendrites to the wrong glomerulus in the fly olfactory
system. Humans and mice lacking ACTL6B showed corpus callosum
hypoplasia, indicating a conserved role for ACTL6B in facilitating
neural connectivity. Actl6b knockout mice on two genetic back-
grounds exhibited ASD-related behaviors, including social and
memory impairments, repetitive behaviors, and hyperactivity. Sur-
prisingly, mutation of Act/6b relieved repression of early response
genes including AP1 transcription factors (Fos, Fosl2, Fosb, and
Junb), increased chromatin accessibility at AP1 binding sites, and
transcriptional changes in late response genes associated with
early response transcription factor activity. ACTL6B loss is thus
an important cause of recessive ASD, with impaired neuron-
specific chromatin repression indicated as a potential mechanism.
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Autism spectrum disorder (ASD) represents a heterogeneous
group of neurodevelopmental disorders that are character-
ized by social deficits and restricted or repetitive behaviors, and
affect ~1% of children worldwide (1, 2). The heritability of ASD
is estimated to be ~80% (3), implicating genetic mutation as the
prominent cause of autism. Indeed, exome-sequencing studies
have identified hundreds of genetic mutations that substantially
increase ASD risk (4). Among the most frequently mutated genes
in ASD are subunits of the mammalian SWI/SNF (BAF) ATP-
dependent chromatin remodeling complex (4). BAF complexes
facilitate dynamic changes in gene expression by controlling DNA
accessibility to the transcriptional machinery (5). To accomplish this,
BAF complexes mobilize nucleosomes, evict polycomb repressive
complexes, and recruit type II topoisomerases that decatenate
DNA (6-9).

www.pnas.org/cgi/doi/10.1073/pnas.1908238117

Although present in all cells, BAF complexes orchestrate cell
type-specific functions through combinatorial assembly of ~15
subunits from the products of 29 genes (5). During neural
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development, exit from the cell cycle is accompanied by BAF
subunit exchange: neural progenitor (np) subunits ACTL6A
(BAF53a), DPF2/PHF10 (BAF45a/d), and SS18 are exchanged
for neuron-specific (n) subunits ACTL6B (BAF53b), DPF1/3
(BAF45b/c), and SS18L1 (CREST), respectively (10-13). Subunit
exchange is critical for neuronal function, as genetic deletion of
either ACTL6B or SSI8L1 impairs activity-dependent dendritic
arborization (14, 15). Furthermore, expression of the two microRNAs,
miR9* and miR124, which control BAF subunit switching, is sufficient
to convert fibroblasts into neurons (13).

Recent findings link mutations in nearly every constitutive
member of the BAF complex to ASD or intellectual disability (ID),
including syndromic forms such as Coffin—Siris and Nicolaides—
Baraitser syndromes (16-18). Implicated subunits include the fol-
lowing (protein/gene): BAF250b/ARID1B, BAF250a/ARIDI1A,
BAF200/ARID2, BCL11A/BCL11A4, BRG1/SMARCA4, BRM/
SMARCA2, BAF155/SMARCC1, BAF170/SMARCC2, BAF45a/
PHF10, BAF45d/DPF2 BAF47/SMARCBI1, BAF57/SMARCEI,
BAF53a/ACTL6A, BAF53b/ACTL6B, BAF60a/SMARCDI, and
p-actin/ACTB (17, 19-29). BAF mutant forms of ASD share over-
lapping clinical features such as corpus callosal hypoplasia, epilepsy,
ID, lack of speech, craniofacial abnormalities, developmental de-
lays, and fifth-digit shortening (17). The mechanisms through which
BAF subunit mutations give rise to ASD are unclear.

Results

Biallelic Inherited Mutations in ACTL6B Cause Recessive Autism.
Phenotypic and genotypic heterogeneity in ASD make this a
challenging disorder to study at the molecular level. Distinct
molecular mechanisms may underlie social deficits and repetitive
behaviors, as well as ID, epilepsy, sleep and mood disorders,
hyperactivity, and systemic issues that are frequently comorbid
with autism (30). Because autism mutations are predominantly
de novo and can occur in genes that function in a variety of
tissues during development (4, 16, 21, 31), it can also be difficult
to define the relevant developmental and cellular contexts in
which to study ASD mechanisms. Finally, many ASD mutations
increase susceptibility but do not consistently cause autism
phenotypes in humans or in animal models (32, 33).

One strategy to uncover causative mechanisms in ASD is to
study families with recessively inherited autism, since it is rare for
two copies of a mutant gene to segregate perfectly with recessive
autism by chance. Thus, we studied 135 ASD probands from
consanguineous marriages recruited for the Simons Recessive
Autism Cohort (SRAC) (34-37). Genomic DNA underwent
whole-exome sequencing and were compared with a cohort of
256 controls with recessive neurodevelopmental disease (NDD)
without ASD (SI Appendix, Supplementary Text). To identify
significantly mutated genes, we generated quartile—quartile
(Q-Q) plots comparing the observed to expected number of
damaging recessive genotypes (deletion, frameshift/stop, or
damaging missense) in the SRAC vs. non-ASD recessive NDD
cohorts. When considering all coding genes, only ACTL6B, a
subunit of the nBAF complex, and CD36, a fatty acid translocase
and scavenger receptor (38), showed genome-wide significance
for mutations in the SRAC (Fig. 1 4 and C). Limiting to just loss
of function (LoF)-intolerant genes (i.e., those with pLI > 0.9) left
only ACTL6B with genome-wide significance (P < 107'%) (SI
Appendix, Fig. S14). A similar statistical analysis was conducted
on the non-ASD NDD cohort of 256 individuals of similar ge-
netic background, matched for consanguinity. The non-ASD
NDD cohort showed enrichment for genes previously impli-
cated in non-ASD NDD (39) but not ACTL6B (Fig. 1B and SI
Appendix, Fig. S1B). To test whether ACTL6B mutations were
enriched in a genetically distinct recessive autism cohort, we rank
ordered 409 genes with recessive missense variants in the Autism
Sequencing Consortium by their RAFT P value and found that
ACTLO6B was the sixth most significantly mutated gene (SI
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Appendix, Fig. S1C) (25). Individuals with recessive ASD-like
phenotypes linked to biallelic ACTL6B mutations have also
been identified in recent case studies (29, 40, 41). Cumulatively,
these findings implicate mutations in ACTL6B as an important
cause of recessive autism.

Focusing on ACTL6B, we more closely examined the patient
phenotype and sought to understand how mutations in this gene
give rise to autism. Six families representing 4.4% of the SRAC
cohort demonstrated homozygous variants in ACTL6B with fully
penetrant recessive inheritance (Fig. 1D and SI Appendix, Table
S1). Variants were not present in EXAC or gnomAD databases,
nor in ethnically matched controls from the Greater Middle East
Variome or the cohort of 256 controls (42, 43), indicating that
they are rare variants. Subjects exhibited nonverbal autism with
stereotypies, as well as ID, developmental delay, hyperactivity,
and mild spasticity (SI Appendix, Table S2 and Movie S1). There
were no syndromic features that would have identified these
patients as unique a priori from other SRAC subjects (SI Ap-
pendix, Table S2 and Supplementary Text). Epilepsy was seen in
all subjects, presenting at 2 wk to 5 y of age, and generally
responded to anticonvulsant medication. Males and females
were similarly affected, consistent with fully penetrant in-
heritance. While the SRAC patients were of Middle Eastern
descent, similar phenotypes have been reported for ACTL6B
mutant individuals of French-Canadian, Sicilian, and Finnish
descent (29, 40, 41, 44, 45). The high penetrance and perfect
segregation of mutant alleles with ASD indicate a causal re-
lationship between ACTL6B mutation and autism. This distin-
guishes ACTL6B from most other autism-associated genes,
which substantially increase risk when mutated, but alone may
not be sufficient to cause disease.

Patient Mutations Destabilize ACTL6B and Reduce Its Incorporation
into the BAF Complex. Consistent with the recessive mode of in-
heritance, patient variants were protein truncating, frame shift-
ing, or missense for highly conserved residues (SI Appendix, Fig.
S2 A-C). Variants occurred throughout the open reading frame,
arguing against dominant-negative effects. Gibbs free energy
calculations revealed that the missense variants likely disrupt
protein folding, in line with PolyPhen-2 “damaging” predictions
(SI Appendix, Fig. S2D). To visualize how the patient mutations
are oriented in relation to the BAF complex, we generated a
protein model of human ACTL6B binding to the conserved HSA
domain of SMARCAA4. This revealed two patient missense var-
iants (L154F and G393R) located in residues that are critical for
stabilizing the hydrophobic binding interface between ACTL6B
and SMARCA4 (SI Appendix, Fig. S2E), consistent with a LoF
disease mechanism.

To test these predictions in vitro, we assessed ACTL6B mis-
sense mutant protein expression and incorporation into BAF
complexes in the HEK293T cell line, human embryonic stem
cells, and Actl6b™'~ primary mouse neurons. To rule out the ef-
fects of species or cellular context, we also derived induced
pluripotent stem cells (iPSCs) from control or affected humans
in family 2703 (ACTL6B->*"-15%F) and conducted neural dif-
ferentiation over 8 wk. RNA sequencing (RNA-seq) of (n = 3)
control individuals confirmed that the switch of progenitor BAF
subunits for nBAF subunits (11) was conserved in humans, as
indicated from down-regulation of nonneuronal ACTL6A and
up-regulation of ACTL6B (SI Appendix, Fig. S3 A and B). In
each cellular context, ACTL6B mutant protein expression was
dramatically reduced relative to wild type, with little to no mu-
tant protein incorporated into neuronal or nonneuronal BAF
(Fig. 2 A-D and SI Appendix, Fig. S4 A-E). These data suggest
that the patient mutations destabilize ACTL6B protein and re-
sult in the formation of nBAF complexes that lack ACTL6B.

Wenderski et al.
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Fig. 1. Biallelic mutations in ACTL6B cause recessive autism. (A) Q-Q plot showing the observed/expected number of mutations for all coding genes in the
SRAC. ACTL6B and CD36 were significantly mutated. (B) Q-Q plot showing the observed/expected number of mutations for all coding genes in a genetically
matched non-ASD recessive neurodevelopmental cohort, where ACTL6B was not found to be enriched. (C) ACTL6B encodes a tissue-restricted subunit of the
neuronal (NBAF) BAF complex. Representation of the multisubunit nBAF complex containing ubiquitously expressed subunits (gray), a core ATPase subunit
(dark blue), and neuronal-specific subunits (yellow) including ACTL6B in bold. The balls on a string represent nucleosomes. (D) Recessive ASD inheritance with
ACTL6B mutations in six independent consanguineous families. Double lines, first cousin status; squares, males; circles, females; slash-through, mortality; black
fill, ASD. Missense variants (green) and truncating variants (blue). Obligate carriers depicted with dot at center of symbol.

Patient Mutations Produce LoF “Perfect Dendritic Retargeting”
Phenotype in Fly Brain. Social communication is a key defect in
ASD (30). In insects, social communication is dependent upon
olfactory cues (46) and specifically olfactory projection neurons,
which transmit signals to specific glomeruli in a stereotyped
manner. Previously, human ACTL6B was shown to genetically
complement the fly ortholog Bap55 and rescue a LoF “perfect
dendritic retargeting” phenotype in the fly olfactory system,
where dendritic trees project cell autonomously to the wrong
glomerulus with 100% expressivity (47). This results in a switch
in synaptic specificity that may affect how the fly interprets
chemical cues. Using the mosaic analysis with a repressible cell
marker (MARCM) method (48), we simultaneously replaced
the fly ortholog with human wild-type or ASD mutant ACTL6B
and expressed GFP in single neurons or neuroblast clones (S
Appendix, Fig. S54). We found that wild type but not patient
ACTL6B missense alleles quantitatively rescued targeting
(Fig. 2 E and F and SI Appendix, S5 B and C), confirming that
patient mutations show LoF in vivo and suggesting that altered
synaptic specificity may contribute to the ACTL6B autism
phenotype.

Wenderski et al.

Defects in Callosal Anatomy in Humans and Mice Lacking ACTL6B.
Perfect dendritic retargeting in ACTL6B mutant flies may be
mechanistically related to a distinctive clinical feature of BAF
mutant ASD: reduced or absent corpus callosum (17, 49). This
defect involves a failure of axons to cross to the opposite cerebral
hemisphere and is often associated with mutations in guidance
molecules such as semaphorins, which also direct dendritic and
axonal targeting in flies (50-52). Hypogenesis of the corpus
callosum may further reflect altered functional connectivity, as
has been detected by resting-state functional MRI in some ASD
patients (53, 54). We compared available clinical brain MRIs
(axial and midline sagittal) to identify evidence of altered brain
anatomy in autistic patients with ACTL6B mutations. Compared
with a healthy control, affected individuals showed reduced ce-
rebral white matter volume and most showed corpus callosal
hypoplasia (Fig. 34).

Actl6b knockout mice have thinner myelin sheaths (14), con-
sistent with the reduction in white matter in ACTL6B patients.
This prompted us to examine Actl6b knockout mice for evidence
of reduced or absent corpus callosum. We immunostained co-
ronal sections of adult mouse brain for neurofilament and
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Fig. 2. Patient mutations destabilize ACTL6B protein and cause a loss-of-function “perfect dendritic retargeting” phenotype in the fly olfactory system. (A)
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Missense mutant proteins showed decreased recovery following coimmunoprecipitation with SMARCA4 from striatal neurons shown in C; n = 1 (see similar
results in cortical neurons, human ESCs, and HEK293Ts shown in S/ Appendix, Fig. S4 B-E). (E) MARCM (mosaic analysis with a repressible cell marker) was used
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clones. Arrows, cell bodies; Ncad, neuropil marker. (Scale bar, 20 pm.) (F) Quantification of E where single PNs were correctly targeted to DL1 or mistargeted

to DA4I or DM6; n = animals per condition.

measured relative corpus callosum thickness using Imagel.
Actléb™~ mice showed a ~20% reduction in corpus callosum
thickness compared to wild type (Fig. 3 B and C). Heterozygous
mice showed no difference in corpus callosum thickness, in-
dicating that this is a recessive phenotype in mice. No significant
differences in cortical thickness were observed (Fig. 3D). Re-
duced corpus callosum volume has also been reported in mice
lacking one copy of the ASD-related BAF subunit Arid1b (55).
Thus, like other BAF subunits, ACTL6B is required for corpus
callosum formation in humans and mice.

Actléb™~ Mice Exhibit Autism-Related Behaviors in Two Genetic
Backgrounds. Because the patient mutations were LoF and
Actléb™~ mice showed corpus callosum hypoplasia like ACTL6B
patients, we asked whether Actl6b™~ mice exhibit ASD-related
behaviors. In 2007, we generated Actléb™ mice with mixed 129/
Sv; C57BL/6 background and found that few survived past
weaning (14). Subsequent backcrossing over many generations to
C57BL/6 produced litters with Actl6b™'~ at the expected 25%
ratio and with most mice living to adulthood when provided with
recovery gel after weaning. In parallel, a second cohort of
Actl6éb*'~ mice were crossed for many generations to either
129S6/SvEv or C57BL/6 strains at Fujita Health University, and
the F; cross of these congenic strains also produced Actl6b™'~
mice that survived to adulthood. We conducted our behavioral
characterization on both cohorts of Actl6b~'~ mice and their
littermates separately, and then compared results after data
were acquired.
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We assessed social behavior, a hallmark of autism, using a
juvenile interaction test and three-chamber sociability assay
(Fig. 4 A and B). The juvenile interaction test measured the
amount of time 7-wk-old test mice spent interacting with a
4-wk-old juvenile wild-type mouse of the same sex. This revealed
significant and gene dosage-dependent decreases in social in-
teraction in both male and female C57BL/6 mice (P < 0.0001 for
male or female wild type vs. Actl6b ™'~ or Actléb™~, P = 0.011 for
Actléb™~ vs. Actléb™'~ males, P = 0.0047 for Actl6b*'~ vs.
Actléb™~ females by one-way ANOVA; Fig. 4C). These results
were specific for social defects, because replacing the juvenile
mouse with a novel toy mouse revealed no differences in in-
teraction across genotypes (Fig. 4D). Similarly, male knockout
mice on C57BL/6 x 129S6/SvEv background showed significantly
reduced social interactions with an adult mouse of the same sex
and genotype (P = 0.0208, Student’s ¢ test; SI Appendix, Fig. S6 A
and B), suggesting a role for Actl6b in murine social interaction
that is independent of genetic background.

In the three-chamber assay for sociability, animals were given
the choice of inhabiting a chamber containing a novel juvenile
mouse in a cage or a novel, empty cage (Fig. 4B). Social pref-
erence scores, calculated from the ratio of time spent in each
chamber, indicated that Actl6b™~ and Actléb™ mice were less
sociable compared to wild types (for males, P = 0.025 for wild
type vs. Actl6b*’~ and P = 0.048 for wild type vs. Actléb™~; for
females, P = 0.038 for wild type vs. Actl6b™’~ and P = 0.0037 for
wild type vs. Actl6b™'~ by one-way ANOVA; Fig. 4E). Female
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Fig. 3. Loss of ACTL6B causes corpus callosum hy-
poplasia in humans and mice. (A) Human brain MRI
scans of control compared with ACTL6B mutated
subjects. (Top row) Midline sagittal. White arrows:
corpus callosum hypoplasia. (Bottom row) Axial im-
ages at the level of the foramen of Monroe showing
paucity of white matter compared with control. (B)
Adult mouse coronal brain slices from wild type,
Actl6b*'~, or Actléb™~ were stained with antibodies
to neurofilament light chain (NFL) to visualize cal-
losal axon tracks. Representative images of male
wild-type, Actléb™, and Actléb™ brain slices. Actléb™
corpus callosum was visibly thinner, indicated with a
white arrow. (C) Quantification of relative callosal
thickness showing significantly thinner callosum in
knockouts. Blinded measurements from n = 2 slices

C Corpus callosum D Cortex . were averaged for each animal and compared for n =
@ 22 2 @ 64 3 Wild type 4 mice per genotype. (D) Quantification of relative

2C o * ) = Actléb*- thickness of the somatosensory cortex in slices used for

o ; 18 o ; 62 1 Acti6b™ C showing no significant difference. Significance was

gc 16 = £s 60 assessed by ordinary one-way ANOVA with Tukey's

£ 5 14 Q £ %X 58 correction for multiple comparisons; F g, = 10.73

= S 12 = S 56 for C; F,09y = 0.62 for D. Error bars indicate SEM.

mice exhibited a trend toward increasing social avoidance with
decreasing Actlob gene dosage. These results suggest a direct
role for Actl6b in social interaction and sociability.

Patients with autism also display restricted or stereotypic
(repeated) behaviors. We thus assessed stereotypy in the open-
field test in male littermates (Actl6b™'~ 129S6/SVEy x Actlob™'~
C57BL/6 F, cross) using repeated breaks of the same photobeam
(stereotypic counts). Actlob™~ mice showed significantly ele-
vated stereotypic counts, consistent with increased repetitive
behaviors (P < 0.0001, Student’s ¢ test; Fig. 4F).

ID affects 45% of all autism patients (30), is a consistent
feature of BAF mutant ASD (17), and was present in affected
individuals with ACTL6B mutations. We therefore conducted
the Barnes maze test for spatial memory (Fig. 4G) and the
T-maze forced alternation test for working memory (SI Appen-
dix, Fig. S6C). These forms of memory depend upon neural
circuits involving the hippocampus and prefrontal cortex, re-
spectively (56, 57). Both tests revealed significant memory im-
pairment in male Actl6b™'~ mice (129S6/SVEv x C57BL/6 F,
cross) (P = 0.0003 for Barnes maze and P < 0.0001 for T-maze
forced alternation, Student’s ¢ test; Fig. 4G and SI Appendix, Fig.
S6 D and E), consistent with previous studies showing impaired
hippocampal memory consolidation, striatum-dependent cocaine-
conditioned place preference, and amygdala-based fear learning
in heterozygous Actl6b™'~ mice (58-60). We conclude that Actl6b
is required for memory formation in multiple neuronal systems.

Hyperactivity and anxiety are common comorbidities in ASD
that show bias toward males and females, respectively (30).
However, all affected individuals with ACTL6B mutations
showed hyperactivity. We recorded the location and distance
mice traveled in an open field to assess anxiety and activity levels
(Fig. 44 and SI Appendix, Fig. S6F). Male Actl6b™'~ mice showed
no clear trend in anxiety as indicated from relative time spent in
the open field center; however, female Actléb™~ were more
anxious than their heterozygous or wild-type sisters (P = 0.0017
for Actl6b™~ vs. Actlob™'~ and P = 0.064 for Actl6b™'~ vs. wild
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*P < 0.05; **P < 0.01; ***P < 0.001.

type, one-way ANOVA; SI Appendix, Fig. S6 G and H). Total
distance traveled in the open field indicated that Actl6b™'~ mice
of both cohorts and sexes traveled more than three times greater
distance than their littermates, suggestive of a recessive hyper-
active phenotype (P < 0.001 in all comparisons to Actl6b™" for
each sex, one-way ANOVA; Fig. 4H, SI Appendix, Fig. S6 I-L,
and Movies S2 and S3). We conclude that Actl6b™'~ mice ro-
bustly model general autism-related behaviors and behaviors
that are characteristic of ACTL6B mutant ASD.

Actléb™'~ nBAF Complexes Retain the Nonneuronal Variant Actl6a and
Have Reduced Affinity for Neuronal Chromatin. Having established
conserved roles for ACTL6B in mammalian social behavior and
neural circuit formation, we sought to uncover the molecular
function of ACTL6B and explore disease-relevant mechanisms.
In mouse and human, ACTL6B expression is restricted to neu-
rons, with lower expression in testes (10, 61). Previous studies
have indicated that the majority of ACTL6B protein is likely
associated with the nBAF complex (11, 12, 14). Because
ACTL6B mutant proteins were not incorporated into nBAF
complexes, we considered that the assembly of nBAF might be
affected by the loss of Actléb. We immunoprecipitated Actl6b™'~
or wild-type nBAF complexes with the J1 antibody, which
recognizes both Smarca2 and Smarca4 (62), and then digested
and labeled peptides with “heavy” A4 (**C!°N) or “light”
A0 ("*C"N) mTRAQ reagent, respectively. Peptides from each
complex were pooled 1:1 and analyzed by mass spectrometry,
where +4-Da shifted peaks indicated Actl6b™'~ peptides (SI
Appendix, Fig. S74). Normalized automated statistical analysis
of protein (ASAP) ratios of heavy knockout to light wild-type
peptides were generated (Protein Prophet Probability cutoff > 0.9)
such that values <1 indicated reduced interactions and >1 in-
dicated stabilized interactions in Actl6b~~ nBAF complexes (ST
Appendix, Fig. S7 B-D). The total number of peptides from the
pool of wild-type and knockout complexes was also recorded.
Because BAF complexes are highly abundant in the nucleus
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Fig. 4. Actléb™"~ mice exhibit autism-related behaviors. (A) Social interaction and control tests: relative interaction time between the adult test mouse and a
juvenile mouse (3-5 wk) or novel object. Open-field test measured activity over 20 min as total distance traveled. (B) Schematic of three-chamber sociability assay: Test mice
may enter the zone with a novel object or the zone with a novel juvenile mouse. Social preference scores were calculated from time spent in each zone using the formula
shown. (C) Box plots showing male and female littermates of Actl6b*~ x Actléb™~ crosses with gene dosage-dependent impairment in social interaction with a juvenile
mouse but not with (D) a control novel object. (E) Actléb*~ and Actléb™~ mice of both sexes showed defects in sociability, which were most severe in female knockouts. (F)
Single, repeated photobeam breaks or “sterectypic counts” represented by a small red box in an open field. Male Act/6b™~ mice showed repetitive movements indicated
from increased stereotypic counts over 120 min. (G) Diagram of Barnes maze test of spatial memory: an elevated, white, circular open field containing 12 holes, with one
“target” escape hole leading to a comfortable cage. Visual cues provided the mouse with a frame of reference for the location of the target hole. Male Actl6b™~ mice
spent less time around the target hole, indicating impaired memory as to the location of the target hole. (H) Actl6b™" mice of both sexes showed increased activity, not
observed in Actl6b*~. Tests shown in C, E, and H were conducted at Stanford University on a cohort of mice highly backcrossed to the C57BL/6 background; mice (", *=, 7):
n=29, 12,7 males, n= 11, 12, 10 females for C; n = 10, 13, 6 males, n = 11, 12, 9 females for D; n = 10, 12, 7 males, n = 11, 12, 9 females for E; n = 10, 13, 6 males, n= 11, 11,5
females for H. Values for each test in this cohort were as follows: Fi 30remales = 79.87 and Fiz 25males = 59.49 for C; Fo 2g)remales = 0.29 and Fiz26/males = 0.74 for D; Fip 29)remales =
6.82 and F 2gymales = 4.83 for E; and Fp2aremales = 13.44 and Fo xgymales = 8.60 for H. Stereotypic counts in F and spatial memory in G were assessed at Fujita Health University
on adult male mice that were the F; offspring of a cross between Actléb*'~ 12956/SVEv x Actléb*'~ C57BL6. Mice (***, 7"):n=22,21inF,and n=22, 14in G. Significance
was calculated for B, E, and H using a one-way analysis of variance (ANOVA) with Tukey’s multiple-comparison post hoc. Significance for F and G was calculated using
Student's t test: t;; = 8.68 in F and t34 = 3.99 in G. Whiskers indicate 10th and 90th percentiles. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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(300,000 per cell), its interactions with low abundance proteins
(e.g., transcription factors) of <10,000 per cell are difficult to
detect. Thus, we included proteins recovered as only a single
peptide (62) as a resource, but with cautious interpretation.

Proteomic analysis of Actl6b™~ nBAF complexes indicated
complete assembly of nBAF subunits, with peptides specific to
the nonneuronal homolog Actl6a recovered in place of Actl6b.
The Actlob ASAP ratio ~2 and nearly equivalent peptide counts
for Actl6a (in knockout) and Actl6b (in wild type) suggested that
Actléb™~ nBAF complexes fully retain Actl6a (SI Appendix, Fig.
S7B). Mutant nBAF complexes showed reduced interaction with
the abundant chromatin protein histone H1 and with autism-
related proteins including Kat6a/Myst3 and Adnp, both con-
firmed BAF interacting proteins (63, 64) (SI Appendix, Fig. S7C).
Several proteins exhibited stronger interactions with mutant than
wild-type complexes (SI Appendix, Fig. S7TD), including Wiz, a
promoter binding protein previously linked to abnormal social
behavior in mouse (65). The proteomic data indicate that Actl6b
loss results in the formation of an abnormal nBAF complex
containing Actléa with reduced interactions with established
binding partners and gained interactions with novel partners.

Actl6a and Actléb proteins share 95% sequence similarity
except in the 43-residue subdomain 2, which shows only 53%
sequence similarity (66). We previously showed that Actl6a
cannot rescue neuronal function of nBAF in Acil6b™~ cells, and
neither can a chimeric Actléb containing the subdomain 2 of
Actl6a (14). To confirm misincorporation of Actl6a into nBAF in
the absence of Actlob, we assessed Actlba expression and in-
corporation into nBAF complexes in postnatal day 0 (PO) brain
tissues from wild-type, Actléb™~, or Actléb™~ mouse littermates.
We found elevated Actl6a protein in Actl6b™~ cerebellar whole-
cell extracts and in nuclear extracts from hippocampal tissue at
PO (SI Appendix, Fig. ST E and G). BAF complexes immuno-
precipitated with nBAF-specific Ss1811 antibody from PO cere-
bellar, cortical, or hippocampal nuclear extracts showed Actl6b
gene dosage-dependent increases in Actl6a incorporation (SI
Appendix, Fig. S7 F and G). Given that microRNAs switch off
Actl6a expression during neural differentiation (13), we tested
whether the persistence of Actl6a in nBAF was transcriptionally
mediated. In cultured primary cortical neurons, we found sig-
nificantly increased (~1.2-fold) Actl6a transcripts by RT-qPCR
from Actl6b™~ compared with wild type (SI Appendix, Fig. STH).
This observation suggested that Actl6a was retained in nBAF in
part due to a failure to repress Actl6a transcription in postmitotic
neurons.

To learn whether ACTL6A was transcriptionally up-regulated
in affected human neurons, we measured expression in brain
organoids, an improved culture method for modeling human
brain development (67). We first confirmed that human brain
organoids express ACTL6A and ACTL6B during maturation in
controls at day 69 (S/ A@pendix, Fig. S84). Brain organoids from
unaffected (ACTL6B™"**) or two affected (ACTL6B-"#7-15%F)
individuals of family 2703 were cultured to day 28 and harvested
for RNA or immunostained for developmental markers of neural
progenitors (Sox2) and immature neurons (Tujl). No gross dif-
ferences in development were observed between unaffected and
affected brain organoids (SI Appendix, Fig. S8B). However, brain
organoids from two affected individuals displayed about a three-
fold increase in ACTL6A transcript compared to the unaffected
control (SI Appendix, Fig. S7I). These data support a conserved
mechanism in which ACTL6A expression is increased transcrip-
tionally in the absence of functional ACTL6B, leading to the
formation of an abnormal nBAF complex.

The incorporation of Actl6a into Actl6b™"~ nBAF was associ-
ated with reduced interactions between mutant complexes and
histone H1 (SI Appendix, Fig. S7C), suggesting that mutant
nBAF complexes may have abnormal interactions with chro-
matin. To test this, we fractionated chromatin from embryonic

/=
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day 18.5 (E18.5)/day in vitro 7 (DIV7) wild-type vs. Actl6b™~
cortical neurons using increasing concentrations of salt (300
700 mM NaCl) and blotted for nBAF in the resulting soluble
nuclear or chromatin fractions. We found that Actl6b™~ nBAF
complexes were not as stably associated with chromatin as wild
type across a wide range of salt concentrations (68) (SI Appendix,
Fig. S7J), suggesting impaired BAF—chromatin interactions as a
result of altered nBAF constituency.

ACTL6B Suppresses the Activity-Responsive Transcriptional Program
in Resting Neurons. Actl6b is required in neurons for activity-
dependent dendritic outgrowth and long-term potentiation (14,
58), processes that require transcription and facilitate learning
and memory (69). Targeted chromatin immunoprecipitation
experiments in neurons have suggested that nBAF complexes are
bound to the promoter of the immediate early gene Fos and may
regulate its expression (70). However, genome-wide expression
studies in postmitotic neurons have yielded inconsistent insights
into the molecular function of Actléb and the neuronal BAF
complex (58, 71).

To clarify the role of ACTL6B in transcriptional regulation,
we conducted RNA-seq and ATAC sequencing (ATAC-seq) on
primary cortical neurons from wild-type or Actl6b~'~ E16.5 em-
bryos cultured for 7 DIV (72). Neurons from n = 5 wild-type and
n =7 knockout biological replicates (littermates) were collected
after 2-h treatment with TTX/APV, which silenced network ac-
tivity in order to reflect the resting state (73). RNA libraries were
prepared from a fraction of the neurons in each biological
sample, while another fraction was transposed with Tn5 to cut
and tag accessible chromatin for sequencing (ATAC-seq) (74)
(Fig. 54 and Datasets S1 and S2). The quality of collected data
were confirmed by principal-component analysis, which demon-
strated separation of biological samples by genotype in both
RNA-seq and ATAC-seq datasets (SI Appendix, Fig. S9 A and
B). We also confirmed Actl6b deletion in Actl6b™'~ neurons (SI
Appendix, Fig. S9C).

Comparing mRNA expression in wild-type vs. Actl6b™'~ neurons,
we identified 503 genes with increased expression and 383 genes
with reduced expression in the absence of Actl6b (false-discovery
rate [FDR] < 5%; absolute log, fold change > 0.5) (Fig. 5B). Gene
coexpression analysis revealed that down-regulated genes fre-
quently coexpress with ZNF821 (Fig. 5C), a transcription factor that
was previously linked to methamphetamine-associated psychosis
(75). Up-regulated genes in Actlob™~ frequently coexpress with
early response transcription factors Nr4a2 and members of the AP1
family including Fosb and Jun. This was surprising because early
response transcription factors are normally expressed at very low
levels in resting neurons. During neural activity, they are rap-
idly induced and subsequently regulate the expression of “late
response” genes, which encode proteins that support neural
plasticity (76).

The results from coexpression analysis prompted us to explore
a connection between transcriptional changes in Actl6b™~ and
transcriptional changes due to neural activity. To define activity-
responsive genes, we conducted RNA-seq on wild-type E16.5/
DIV7 cortical cultures that were silenced with TTX/APV for 1 h
and then stimulated for 1 or 6 h with 55 mM KCl to model neural
activity (n = 5 biological replicates each for 1-h KCI and 1-h
control, n = 3 for 6-h KCl, and n = 4 for 6 h control). In wild-
type mice, we identified 534 up-regulated and 237 down-
regulated “early response” genes at 1-h KCI; and 2,603 up-
regulated and 2,287 down-regulated late response genes at 6-h
KCl (FDR < 5%, absolute log, fold change > 0.5) (SI Appendix,
Fig. S10 4 and B). Over 40% of differentially expressed genes in
Actl6b™~ neurons could be classified as “activity responsive”
(Fig. 5D). Of the 66 early response genes that were differentially
expressed in resting Actl6b~'~ neurons, 94% followed a pattern
of expression expected during neural activity (Spearman correlation
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Fig. 5. ACTL6B suppresses the activity-responsive transcriptional program in resting neurons. (A) Experimental design: Primary E16.5/DIV7 cortical cultures
from (n = 5) wild-type or (n = 7) Actl6b~'~ littermates were treated for 2 h with TTX/APV to silence action potentials and represent the “resting” neuronal
state. RNA was collected to measure transcription by RNA-seq and DNA was transposed with Tn5 to measure chromatin accessibility by ATAC-seq. (B) MA plot
of transcriptional changes in resting Act/6b™~ (KO) neurons relative to wild type (WT). Differentially expressed genes showing FDR < 5% and absolute log,
fold change >0.5 were defined as “significant” and highlighted in red. Gene names are shown for the top 30 most significant genes. (C) Transcription factor
coexpression analysis was performed on the significantly up- or down-regulated genes in resting Act/6b™'~ (KO) neurons. Up-regulated genes commonly
coexpress with early response transcription factors such as Jun, Nr4a2, and Fosb, indicating possible activity-dependent transcription factor activity. (D) Heat
maps showing log, fold changes for genes that were both significantly differentially expressed in resting Actl6b~~ (KO) neurons and in wild-type (WT)
neurons that were stimulated for 1 or 6 h with 55 mM KClI. Early response genes showed altered expression after 1-h KCl stimulation in wild type (S/ Appendix,
Fig. S104) and late response genes showed altered expression after 6-h KCl stimulation in wild type (S/ Appendix, Fig. S10B). Representative genes from each
group are labeled. Transcriptional changes in resting Act/6b™'~ neurons significantly correlated with activity-induced responses in wild type. (E) mRNA expression
of activity-responsive genes in the biological samples used for RNA-seq, measured by RT-qPCR. AP1 transcription factors Fos, Fosb, Fosl2, and their late response
target gene Vgf were significantly increased in resting Act/6b~"~ neurons. (F) mRNA expression of activity-responsive genes in 28-d-old cerebral brain organoids
cultured from induced pluripotent cells of an unaffected father (ACTL6B">#7*) and his two affected children (ACTL6B-">#7-"5%F) in family 2703, measured by RT-
gPCR; n = 3 technical replicates per individual. AP1 transcription factors FOS, FOSB, FOSL2, JUN, and their late response target gene VGF were significantly in-
creased in affected human brain organoids. (G) Chromatin accessibility was assayed by ATAC-seq as described in A, and HOMER de novo motif analysis was
performed on the significantly increased or decreased sites in Act/6b™'~ (KO) neurons. Sites with increased chromatin accessibility were selectively enriched for the
AP1 transcription factor binding motif, indicated by FRA1. (H) Summary model: Autism mutant ACTL6B “B"” proteins are unstable and rapidly degraded, leading
to retention of the nonneuronal homolog ACTL6A “A" in the nBAF complex. The loss of ACTL6B relieves transcriptional repression on early response transcription
factors but increases repression on repetitive elements in resting neurons. mRNAs encoding early response transcription factors, particularly those in the AP1
family, are translated into proteins that regulate the expression of late response neuronal genes. Multisubunit nBAF complexes containing ubiquitously expressed
subunits (gray), a core ATPase subunit (dark blue), neuronal-specific subunits (yellow), and neural-progenitor subunit ACTL6A (purple). AP1 transcription factor
proteins are shown in pink. Balls on a string indicate nucleosomes. The arrow represents transcriptional activation; T represents transcriptional repression. Dashed
lines in H indicate that the mechanism of repression may be direct or indirect. Significance was calculated by Spearman rank correlation in D, individual Student’s
t tests in E, and two-way analysis of variance (ANOVA) in F. Error bars indicate SEM. *P < 0.05; **P < 0.01; ***P < 0.001.
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coefficient r, = 0.53, P = 7.3 x 107 Fig. 5D and SI Appendix,
Fig. S10C). Up-regulated genes in resting Actl6b~'~ neurons
included immediate early transcription factors Fos, Fosb, Fosl2,
Junb, Nrda2, Npas4, Arc, Egrl, Egr2, Egr4, and KIfl10 (Fig. 5D
and Dataset S1).

A predicted consequence of immediate early transcription
factor activation is that late response genes will show an ex-
pression pattern mimicking activity. Of 365 late response genes
that were differentially expressed in Actl6b™~ neurons, 84%
were altered as if by activity (Spearman correlation coefficient =
0.61; P < 2.2 x 107'°, Fig. 5D and SI Appendix, Fig. S10D).
Expression changes in early and late response genes were vali-
dated by RT-qPCR in E16.5/DIV7 murine cortical cultures
(Fig. 5E) and in 65-d-old brain organoids derived from affected
individuals in family 2703 (ACTL6B"">*"-1>%F) (Fig. 5F). These
findings indicate a conserved role for ACTL6B in suppressing the
activity-responsive transcriptional program in resting neurons.

A functional readout for chromatin remodeling activity and
transcription factor binding is chromatin accessibility, which we
measured by ATAC-seq. Accessible sites in resting neurons were
predominantly found in intergenic and intronic regions, with
~20% in promoters (SI Afpendtlx, Fig. S114). Chromatin was
more accessible in Actl6b™~ than in wild-type neurons, with 843
sites showing increased accessibility and 174 sites showing re-
duced accessibility (SI Appendix, Fig. S11B). To learn which
DNA binding proteins might occupy differentially accessible
sites, we conducted de novo motif analysis using HOMER. Sites
with increased accessibility in Actl6b™'~ neurons were signifi-
cantly and selectively enriched for the AP1 transcription factor
motif (Fig. 5G), consistent with increased expression of AP1
subunits Fos, Fosb, Fosl2, and Junb. These sites were dis-
proportionally located at distal intergenic regions, suggestive of
enhancer activation (SI Appendix, Fig. S11C). Decreased sites
were modestly enriched for DNA binding proteins Hoxa3, Nfia,
Mef2a, and Ctcf (Fig. 5G), and were inordinately found in introns
(SI Appendix, Fig. S11D). The profound enrichment of API
motifs at gained accessible sites suggested increased AP1 tran-
scription factor activity in resting Actl6b™'~ neurons.

To learn how elevated early response gene expression in
resting Actléb™'~ neurons affected transcriptional responses to
neural activity, we measured mRNA levels for activity-responsive
genes in wild-type or Actl6b™~ E16.5/DIV7 cortical cultures
stimulated with or without KCl, as above. KCl stimulation in-
duced the expression of immediate early genes and reduced the
expression of Txnip in wild-type neurons, as expected (SI Ap-
pendix, Fig. S124). However, the expression of activity-regulated
genes in Actl6b™~ neurons was significantly higher than in wild
type (SI Appendix, Fig. S12B). Thus, early response gene ex-
pression was abnormally elevated in resting and active Actl6b™/~
neurons.

Repetitive element transcription has been used as a measure
of global transcriptional noise in resting neurons (77). However,
neural activity can also induce repetitive element transcription
(78). To test whether increased early response gene expression in
Actléb™~ neurons was associated with global transcriptional
noise, we measured repetitive element transcripts in wild-type or
Actl6b™~ neurons shown in Fig. 5E, whose network activity had
been blocked for 2 h with TTX/APV. Intriguingly, repetitive
element transcript levels were reduced in Actl6b~'~ neurons
compared to wild type (SI Appendix, Fig. S12C). Following 1-h
KCl stimulation, repetitive element transcripts were strongly
induced in wild-type but not in Actl6b~'~ neurons, resulting in
much lower expression of repetitive elements in Actl6b™~ neu-
rons in the context of neural activity (SI Appendix, Fig. S12D).
These results indicate that early response gene activation in
Actl6b™~ neurons was not a consequence of globally increased
transcriptional noise. Rather, early response genes were specifically
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de-repressed while repetitive elements were more silenced in the
absence of Actl6b.

Since activity-dependent transcription is required for long-
term memory formation (69, 76), the inappropriate activation
of activity responsive genes in resting Actl6b~"~ neurons is a
plausible explanation for impaired memory in Actl6b mutant
mice (Fig. 4G and SI Appendix, Fig. S6 C-E) (58-60, 79) and in
affected humans (SI Appendix, Table S1) (29, 40, 41, 44, 45,
80-82). However, it is unclear whether this mechanism can ac-
count for other aspects of the ACTL6B patient phenotype, such
as social deficits or corpus callosum hypogenesis. To gain deeper
insight into the molecular changes in Act/6b~'~ neurons and how
these relate to aspects of the ACTL6B mutant phenotype, we
used the Enrichr (83, 84) tool to perform a set of enrichment
analyses on up-regulated and down-regulated genes in mutant
neurons. The most enriched term for molecular functions of up-
regulated genes in Actl6b™~ neurons was transcription factor
activity, consistent with the DNA binding activity of many early
response genes (SI Appendix, Fig. S134). Enrichment analysis for
down-regulated genes highlighted terms related to the nucleo-
some remodeling and histone deacetylase (NuRD) complex,
semaphorin signaling, and genes involved in ion balance. These
terms are consistent with altered chromatin repression, impaired
axon guidance, and seizure activity, respectively.

Biological pathway analysis revealed that up-regulated genes
in Actléb™'~ neurons were involved in neuroactive ligand-receptor
interactions and in serotonin and anxiety-related events (SI Ap-
pendix, Fig. S13 B and C). Genes associated with these terms
included stress-related corticotrophin releasing hormone (Cr,
also known as CRF) and its receptor Crhrl, as well as serotonin
receptors 1b (Htrlb), 2¢c (Htr2c), and 3a (Htr3a). CRF adminis-
tration can induce seizures in rats (85), and both CRF and se-
rotonin have been implicated in memory and social behaviors
(86, 87). Pathway analysis of down-regulated genes identified
roles in axon guidance and fatty acid biosynthesis, in line with
callosal defects and loss of white matter observed in ACTL6B
mutant humans and mice (Fig. 3 4-C). Enrichment analysis thus
revealed potential mechanisms underlying the corpus callosum
defects, seizures, memory, and social impairments in ACTL6B
mutant humans and mice.

Discussion

We identified ACTL6B as the most significantly mutated gene in
the SRAC, indicating that mutations in this gene may be a rel-
atively common cause of recessive autism. In line with this
finding, ACTL6B was the sixth most significantly mutated gene
out of 409 genes with recessive missense variants in the Autism
Sequencing Consortium (25), and recent case studies have
identified individuals with biallelic ACTL6B variants showing
similar recessive neurodevelopmental phenotypes to the patients
we describe. Severe epilepsy, ID, lack of speech, developmental
delays, feeding difficulties, microcephaly, hypomyelination, and
corpus callosum hypogenesis were consistent clinical features
associated with ACTL6B LoF (29, 40, 41, 44, 45, 82). One pa-
tient was diagnosed with Rett syndrome (82). Several patients
passed away before 10 y of age (29, 41). Patients were not uni-
formly diagnosed with autism, possibly due to the severity of the
phenotype or to differences in diagnostic criteria. ACTL6B
mutations segregated perfectly with recessive phenotypes in a
variety of genetic backgrounds (Middle Eastern, French Cana-
dian, Finnish, Sicilian) and in children of both consanguineous
and nonconsanguinous parents, affirming high penetrance.
Interestingly, two dominant ACTL6B alleles (G343R or
D77G) were recently identified in patients with autism who did
not experience seizures but otherwise exhibited characteristics of
the recessive ACTL6B patient