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ABSTRACT This paper is concerned with performance analysis for bounded persistent disturbances of
continuous-time linear time-invariant (LTI) systems. Such an analysis can be done by computing the
L∞-induced norm of continuous-time LTI systems since it corresponds to the worst maximum magnitude of
the output for the worst persistent external input with a unit magnitude. In our preceding study, piecewise
constant and linear approximation schemes for analyzing this norm have been developed through two
alternative approximation approaches, one for the input and the other for the relevant kernel function, via
the fast-lifting technique. The approximation errors in these approximation schemes have been shown to
converge to 0 at the rates of 1/N and 1/N 2, respectively, as the fast-lifting parameter N is increased.
Along this line, this paper aims at developing generalized techniques that offer improved accuracy named
the piecewise quadratic and cubic approximation schemes. The generalization and the associated accuracy
improvement discussed in this paper are not limited to the increased orders of approximation but are extended
further to taking advantage of the freedom in the point around which relevant functions are expanded to
Taylor series. The approximation errors in the piecewise quadratic and cubic approximation schemes are
shown to converge to 0 at the rates of 1/N 3 and 1/N 4, respectively, regardless of the point at which the Taylor
expansion is applied. Finally, effectiveness of the developed computation methods is confirmed through a
numerical example.

INDEX TERMS Approximate computing, approximation methods, linear systems, performance analysis,
robustness.

I. INTRODUCTION
Mathematical models of the real control systems such as
electrical circuit systems, mechanical systems and electrome-
chanical systems are often described as continuous-time lin-
ear time-invariant (LTI) systems. On the other hand, because
they are usually affected by unknown disturbances at either
their input or output, evaluating the effect of such distur-
bances on the real control systems when they are under feed-
back control is quite important in the associated performance
analysis problem. To put it another way, unexpected elements
such as external disturbances are unavoidable in real control
systems, and thus there have been a number of studies on
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evaluating performances of control systems against unknown
disturbances. One of the most typical methods for evaluating
such performances is to compute a system norm, which is
adequately defined depending on the nature of the distur-
bances affecting the system and the desired performance
specifications. Developing computation methods of system
norms have been important issues in the field of control
engineering.

Among various system norms used in the performance
analysis for external disturbances, theH2 andH∞ norms have
been frequently considered, as in [1]–[7] and the references
therein. More precisely, the studies on the H2 norm take
the L2 norms of the outputs for impulse disturbance inputs
while those on the H∞ norm consider the L2 norm of the
output for the worst disturbance inputs among those with
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a unit L2 norm. Simply put, if the impulse response of a
single-input/single-output (SISO) system is denoted by g(t),
the H2 norm of this system is given by

‖g‖L2 :=
(∫
∞

0
g2(t)dt

)1/2

It is also well-known that theH2 norm is closely related to the
power of the output of this system under a white noise input.
On the other hand, if a SISO system has the input u(t) and the
output y(t), its H∞ norm is given by

sup
‖u‖L2≤1

‖y‖L2

It is obvious from the above equation that the H∞ norm
corresponds to the worst energy of the output. To put it
another way, because the L2 norm of a signal corresponds to
the energy of the signal, the studies on the H2 and H∞ norms
could be interpreted as taking the energy of the output as the
performance measure.

However, the use of the H2 and H∞ norms cannot suitably
match the control applications such as collision avoidance
of mechanical manipulators, protecting chemical plants from
being overly pressured, and so on. This is because the
maximum magnitude rather than the energy of the outputs
should be evaluated in such control application problems.
Furthermore, these norms do not correspond to dealing with
bounded persistent disturbances, which are often encoun-
tered in real control systems because of unknown external
elements such as unexpected environmental changes. In con-
nection with this, practical issues for bounded persistent dis-
turbances have been extensively discussed in various fields,
such as robot manipulators [8], humanoids [9], aerospace
systems [10], [11], model predictive control [12], Markovian
jump systems [13], networked control systems [14], and so
on. When we are in a position to consider the effect of
bounded persistent disturbances, taking the L∞ norm is quite
appropriate because the L∞ norm of a signal corresponds
to its maximum amplitude and the L∞-induced norm of a
system corresponds to the worst maximum magnitude of the
output for bounded persistent disturbances with a unit mag-
nitude. In this sense, this paper aims at numerically analyzing
the L∞-induced norm of continuous-time finite-dimensional
linear time-invariant (FDLTI) systems as accurately as pos-
sible (where the term of ‘finite-dimensional’ means that the
size of state vector has a finite value).

A. RELATED STUDIES ON THE L∞-INDUCED
NORM ANALYSIS
The studies associated with the treatment of the L∞-induced
norm have been called the L1 problem because this induced
norm is known to coincide with the L1 norm of the impulse
response of the system in the single-input/single-output
(SISO) LTI case. The L1 problem with a special case of SISO
LTI systems is formulated in [15] for the first time, while a
general case of SISO LTI systems is dealt with in [16], [17].
Subsequently, to alleviate the difficulties in computing the L1

norm of the impulse response, an approximate computation
method for the SISO LTI case is developed in [18]. More
precisely, an integer parameter N is introduced to divide a
sufficiently large time interval [0,H ) into N subintervals,
on which the Cauchy-Schwarz inequality is applied to all
the integrals of the absolute value of the impulse response.
Such a procedure could lead to an algorithm, by which
an upper bound and lower bound on the L1 norm of the
impulse response can be derived, and the gap between the
bounds is suppressed to a pre-specified tolerance by tak-
ing a sufficiently large N . However, neither its extension
to multi-input/ multi-output (MIMO) LTI systems nor the
associated mathematical analysis on the convergence order
about the parameter N has been discussed in that study.

In contrast to the conventional studies [15]–[18], new
methods named the input approximation approach [19] and
the kernel approximation approach [20] have been recently
introduced to tackle the L1 analysis problem for the MIMO
case directly. Both (i.e., the input and kernel) approxima-
tion approaches also take a sufficiently large time interval
[0,H ) over which the associated input-output behavior is
dealt with and some sorts of approximation schemes are
developed in a piecewise manner. Namely, two types of
schemes called the piecewise constant approximation scheme
and the piecewise linear approximation scheme were stud-
ied for both fundamentally different approaches; the input
approximation approach [19] deals with the input-output
behavior through the approximation of the (external) input
and output signals themselves, while the kernel approxi-
mation approach [20] applies approximation to the ‘‘inter-
nal equation’’ governing the input-output relation. More
precisely, both approximation approaches consider specific
approximations in an operator-theoretic fashion, where the
fast-lifting treatment [21] plays an important role; its idea is
to take an integer parameter N and divide the interval [0,H )
into N subintervals with an equal width without introduc-
ing sampling, and thus keeping the full information on the
original functions on each subinterval allows us somewhat
sophisticated approximations based on the Taylor expansion
(with order 0 and 1) of relevant functions.

With the strength of the fast-lifting technique mentioned
above, computable upper and lower bounds on the
L∞-induced norm for the MIMO LTI case have been suc-
cessfully derived through these approximation approaches.
More importantly, it was shown in [19] and [20], both for the
input approximation approach and the kernel approximation
approach, respectively, that the gap between the derived upper
and lower bounds converges to 0 at the rate of 1/N for the
piecewise constant approximation scheme and at the rate of
1/N 2 for the piecewise linear approximation scheme. Even
though this might sound that the accuracy are the same for the
input approximation and kernel approximation approaches as
long as the same approximation scheme (or approximation
order) is adopted, this is true only for a simplified view from
the convergence rates, and a more important consequence of
the study [20] from a numerically more quantitative point
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of view is that the kernel approximation approach leads to a
smaller gap between upper and lower bounds.

B. CONTRIBUTIONS AND ORGANIZATION
OF THIS PAPER
Stimulated by the success of the L∞-induced norm analysis
in the preceding studies, this paper pursues extended schemes
named the piecewise quadratic and piecewise cubic approx-
imations for achieving better convergence rates than those
in [19], [20]; these new schemes are developed again under
both the input and kernel approximation approaches through
the fast-lifting treatment together with the arguments of the
Taylor expansion of relevant functions.

These schemes readily allow us to compute upper and
lower bounds on the L∞-induced norm of MIMO LTI sys-
tems, and the gap between the upper and lower bounds is
shown to converge to 0 at the improved rates of 1/N 3 and
1/N 4 in the piecewise quadratic and piecewise cubic approx-
imation schemes, respectively, regardless of the input approx-
imation approach or the kernel approximation approach. Very
importantly, the improvement over our earlier studies [19],
[20] is not limited simply to the use of such higher order
approximation schemes (and establishing theoretical bases
for these schemes) but includes generalized arguments rel-
evant to how the Taylor expansion of relevant functions is
used; even though the earlier studies only considered the
Taylor expansion at the beginning of each subintervals result-
ing from the application of fast-lifting, this paper considers
taking advantage of the freedom in the time instant around
which relevant functions are expanded to Taylor series. In this
respect, this paper corresponds to a significantly extended
version of an earlier conference paper by the authors [22],
which discussed the development of the piecewise quadratic
and cubic approximation schemes for the first time (with-
out associated proofs and numerical examples). Under such
generalized treatment, it is once again shown that the kernel
approximation approach is quantitatively superior to the input
approximation approach in terms of the gap between the
upper and lower bounds, even though the convergence rate
itself (as mentioned above) is shared by the two approaches
under the same approximation order.

The organization of this paper is as follows. In Section II,
we first state our problem and describe some prelimi-
nary arguments for our input and kernel approximation
approaches through piecewise approximation schemes. The
input approximation approach is considered in Section III
while the kernel approximation approach is dealt with in
Section IV. Even though these two sections are confined to
treatment over a sufficiently large but finite time interval,
Section V provides unified arguments about the ultimate
L∞-induced norm computation for the input approximation
and kernel approximation approaches with the treatment over
the infinite time interval [0,∞). In Section VI, a numerical
example is provided to demonstrate the effectiveness of the
computation approaches introduced in this paper. Finally,
we state concluding remarks in Section VII.

Throughout the paper, we use the following notations.
The symbols Rν and N are used to denote the sets of
ν-dimensional real numbers and positive integers, respec-
tively, while N0 is used to imply N ∪ {0}. The notation | · |∞
is used to mean either the ∞-norm of a finite-dimensional
vector, i.e.,

|v|∞ := max
1≤i≤ν

|vi| (1)

for v ∈ Rν , where vi is the ith element of v, or the∞-norm
of a finite-dimensional matrix, i.e.,

|A|∞ := sup
|v|∞≤1

|Av|∞
|v|∞

= max
1≤i≤ν1

ν2∑
j=1

|Aij| (2)

for A ∈ Rν1×ν2 , where Aij is the (i, j) element of A. The
notation ‖ · ‖∞ is used to mean either of the following: the
L∞[0,H ) norm of a vector function, i.e.,

‖f (·)‖∞ := ess sup
0≤t<H

|f (t)|∞ (3)

that with H replaced by H/N (=: h) or ∞, the L∞[0,H )-
induced norm of an operator, i.e.,

‖F‖∞ := sup
‖w‖∞≤1

‖Fw‖∞
‖w‖∞

(4)

or that withH/N (=: h) or∞ instead ofH , whose distinction
will be clear from the context.

To summarize, the L∞ norm of a signal and the
L∞-induced norm of a system are defined as (3) and (4),
respectively, with taking H →∞. Because these two norms
are based on the vector∞-norm defined as (1), it is obvious
from (3) that the L∞ norm is dependent on the dimension
of input or output signal, and thus the L∞-induced norm
formulated by using the L∞ norm as shown in (4) is also
dependent on the dimensions of both input and output signals.

II. PRELIMINARIES FOR COMPUTING
THE L∞-INDUCED NORM
Let us first consider definition of the L∞ space. For a
vector-valued function f (·), we say that f (·) is an element of
L∞ if its L∞ norm given by (3) is well-defined and bounded.
The elements of L∞ are usually called bounded persistent
signals. We next deal with the stable continuous-time linear
time-invariant (LTI) system described by{

ẋ = Ax + Bw
z = Cx + Dw

(5)

where x(t) ∈ Rn is the state,w(t) ∈ Rnw is the input and z(t) ∈
Rnz is the output. For the continuous-time LTI system given
by (5), this paper considers the worst maximum magnitude
of z for bounded persistent w as a performance measure.
In other words, w and z are assumed to belong to (L∞)nw

and (L∞)nz , respectively, and this paper aims at computing
the L∞-induced norm from w to z as shown in Fig 1.

To this end, we first note the input/output relation of (5)
through the convolution integral

z(t) =
∫ t

0
C exp(A(t − θ ))Bu(θ )dθ + Du(t) (6)
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FIGURE 1. The problem of L∞-induced norm analysis.

and define the operator G : (L∞)nw → (L∞)nz associated
with the above convolution integral by (Gw)(t) = z(t).

Regarding a sophisticated computation of the L∞-induced
norm ‖G‖∞, we introduce the following alternative represen-
tation [20] with u(·) := w(t−·) to alleviate the difficulty about
the convolution integral in computing ‖G‖∞:

‖G‖∞ = sup
0≤t<∞

sup
‖u‖∞≤1

∣∣∣∣∫ t

0
C exp(Aθ )Bu(θ )+ Du(0)

∣∣∣∣
∞

=: sup
0≤t<∞

sup
‖u‖∞≤1

|(Fu)(t)|∞

= lim
t→∞

sup
‖u‖∞≤1

|(Fu)(t)|∞ = ‖F‖∞ (7)

A. TRUNCATION TREATMENT OF OPERATOR F
We take sufficiently large H to confine our attention to the
interval [0,H ) in the treatment of F operating over [0,∞)
so that the difficulty in the computation of ‖F‖∞ would be
alleviated. We then first note for t ≥ H that

(Fu)(t) = F−H u+ (F+H u)(t) (8)

where

F−H u :=
∫ H

0
C exp(Aθ )Bu(θ )dθ + Du(0) (9)

(F+H u)(t) :=
∫ t

H
C exp(Aθ )Bu(θ )dθ (10)

In view of (7), ‖F‖∞ is bounded by the inequality

‖F−H ‖∞ ≤ ‖F‖∞ ≤ ‖F
−

H ‖∞ + ‖F
+

H ‖∞ (11)

where

‖F−H ‖∞ := sup
‖u‖∞≤1

|F−H u|∞ (12)

‖F+H ‖∞ := lim
t→∞

sup
‖u‖∞≤1

|(F+H u)(t)|∞ (13)

Here, it would be worthwhile to remark that the stability
assumption of (5) ensures that ‖F+H ‖∞ → 0 as H → ∞
(see (32) below taken from [20]). In this sense, our basic
strategy for computing ‖F‖∞ is to derive upper and lower
bounds of ‖F−H ‖∞ as accurately as possible through approx-
imation arguments improved over the preceding studies [19],
[20] (and the associated error bound analysis) while ‖F+H ‖∞
is treated in a comparatively simple way by deriving its upper
bound through the arguments similar to [20].
Remark 1: The preceding studies [19], [20] took
‖F−H ‖∞ − ‖F

+

H ‖∞ as a lower bound in (11). The above
improvement is straightforward but is first provided in the
present paper.

B. FAST-LIFTING APPROACH TO F−H
This subsection reviews the fast-lifting treatment [21] with
the parameter N ∈ N as the first step to develop approxima-
tion methods of F−H . For h := H/N , we introduce the map-
ping from u ∈ (L∞[0,H ))nw to ǔ := [(u(1))T · · · (u(N ))T ]T ∈
(L∞[0, h))nwN denoted by ǔ = LNu [21], where

u(m)(θ ) = u((m− 1)h+ θ ) (0 ≤ θ < h) (14)

It immediately follows from (9) that

F−H u = Du(1)(0)+
N∑
p=1

C(Ad )p−1Bu(m)

= Du(1)(0)+ CdNBǔ =: F−HN ǔ (15)

where

Ad := exp(Ah), Bu(m) :=
∫ h

0
exp(Aθ )Bu(m)(θ )dθ (16)

CdN :=
[
C CAd · · · C(Ad )N−1

]
(17)

and (·) denotes diag[(·), · · · , (·)] consisting of N copies
of (·). We can see from the definition of LN that
F−HN = F−HL−1N and ‖F−H ‖∞ = ‖F

−

HN‖∞. Hence, deal-
ing with F−HN instead of F−H is convenient since the input
or kernel function of B involved in the former operator
(i.e., F−HN ) is confined to the smaller interval [0, h) (rather
than [0,H ) on which F−H is defined) and the treatment of
D is essentially the same for both operators. This gives us
a better chance to derive sophisticated piecewise approxima-
tion arguments over the interval [0,H ). While our preceding
studies [19], [20] provided the piecewise constant and linear
approximation schemes through this idea, this paper aims at
developing higher-order approximation schemes. More pre-
cisely, we approximate the input or kernel function of B by
the second- or third-order polynomials and develop what we
call the piecewise quadratic approximation scheme and the
piecewise cubic approximation scheme. All these methods
can eventually be interpreted as different approximations of
the Taylor expansion of the kernel function of B defined on
[0, h).

III. INPUT APPROXIMATION APPROACH
This section deals with the input approximation approach to
F−H , where the quadratic and cubic approximation schemes of
the input ofB on [0, h) are developed in a quite nontrivial way
(by which we can lead to the piecewise quadratic and cubic
approximation schemes of F−H on [0,H )). The associated
convergence rates are further shown to be in the orders of
1/N 3 and 1/N 4, respectively.

A. PIECEWISE QUADRATIC AND CUBIC APPROXIMATIONS
The basic idea of the piecewise lth order input approxi-
mation approach with l ∈ N0 is to introduce the opera-
tor J[α]l : (L∞[0, h))nw → (L∞[0, h))nw (α ∈ [0, 1]) to
approximate the input u over the interval [0, h) with the lth
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order polynomial J[α]l u, where

(J[α]l u)(θ ) =
l∑

p=0

(θ − αh)p
∫ h

0
f [α]lp (τ )u(τ )dτ (0 ≤ θ < h)

(18)

with adequately defined scalar-valued functions
f [α]lp (τ ) (p = 0, . . . , l). Once α ∈ [0, 1] and these functions
are given, they determine lth order polynomial approximation
of u ∈ (L∞[0, h))nw . This can alternatively be interpreted as
approximating B by B[α]

il := B · J[α]l , where the subscript
i stands for the input approximation approach. This further
leads to approximatingF−HN by replacing Bwith B[α]

il in (15),
i.e., by

F−[α]HNil ǔ := Du(1)(0)+ CdNB
[α]
il ǔ (19)

As shown in the appendix, this induces approximation of the
kernel function exp(Aτ )B of B by the lth order polynomial
l∑

p=0

f [α]lp (τ )B[α]pd , where

B[α]pd :=

∫ h

0
exp(Aθ )(θ − αh)pBdθ (p = 0, · · · , l) (20)

In connection with this, our preceding study [20] has
dealt with the piecewise constant and linear approximations
(i.e., l = 0 and l = 1) only for α = 0 and succeeded in
deriving the functions f [0]lp (τ ) (p = 0, . . . , l) ‘appropriately’
in the sense that they successfully lead to the convergence
rates of the approximation errors of ‖F−HN‖∞ by ‖F−[α]HNil ‖∞
in the orders of 1/N l+1 (l = 0, 1). Extending the arguments
for determining the functions f [α]lp (τ ) to the case of the piece-
wise quadratic approximation scheme (l = 2) and general α,
we are reasonably led to the use of the functions f [α]2p (τ ) in the
form of the quadratic functions

f [α]2p (τ ) =
2∑
j=0

c[α]2pj

hp+j+1
(τ − αh)j (p = 0, 1, 2) (21)

where the coefficients c[α]2pj (p, j = 0, 1, 2) are independent
of h. Then, we can determine these coefficients in such a

way that a portion of the function
l∑

p=0

f [α]lp (τ )B[α]pd (almost)

matches the Taylor expansion (around τ = αh) of the kernel
function exp(Aτ )B of B up to the second order in τ , by which
the L1[0, h) norm of each entry of the remaining portion
is made to be bounded in the order of h4; this, in turn,
makes the convergence rate of the approximation error of
‖F−H ‖∞ = ‖F

−

HN‖∞ by ‖F−[α]HNi2‖∞ (where the latter can
be computed explicitly) in the order of h3 and thus 1/N 3 as
N →∞ (as we show in the following subsection). Through
such arguments, we arrive at the coefficients given in Table 1,
whose detailed derivation process is given in the appendix.

TABLE 1. Coefficients in piecewise quadratic approximation scheme.

Similarly for the case of the piecewise cubic approximation
scheme (l = 3), we are led to

f [α]3p (τ ) =
3∑
j=0

c[α]3pj

hp+j+1
(τ − αh)j (p = 0, 1, 2, 3) (22)

with c[α]3pj (p, j = 0, 1, 2, 3) independent of h and given
in Table 2 (provided that these functions are assumed
to be cubic functions), which are also obtained through
the third-order truncation of the Taylor expansion (around
τ = αh) of the kernel function exp(Aτ )B of B and allow
us to obtain the improved convergence order of 1/N 4 for the
approximation error of ‖F−H ‖∞ = ‖F

−

HN‖∞ by ‖F−[α]HNi3‖∞
(where the latter can be computed explicitly) as we show
in the following subsection, compared with that for the
piecewise quadratic approximation scheme given by 1/N 3.

B. CONVERGENCE AND upper/LOWER BOUND ANALYSIS
In connection with the approximation of input by the above
piecewise quadratic approximation and piecewise cubic
approximation schemes, we are led to the following two
lemmas.
Lemma 1 (Piecewise Quadratic/Cubic Approximation):

For l = 2 and 3, let T [α]
lm (m = 1, . . . ,N ) be the matrix

consisting of the L1[0, h) norm of each entry of the matrix
quadratic/cubic function

C(Ad )m−1
l∑

p=0

G[α]
lp (θ − αh)p (23)

where the matrices G[α]
lp (p = 0, · · · , l) are defined as

G[α]
lp :=

l∑
j=0

B[α]jd

c[α]ljp

hp+j+1
(24)

Then, we have ‖F−[α]HNil ‖∞ = |F
−[α]
HNil |∞ with

F−[α]HNil :=

[
D T [α]

l1 · · · T [α]
lN

]
(25)

Lemma 2: The inequality

‖F−HN − F−[α]HNil ‖∞ ≤
K [α]
Nil

N l+1 (l = 2, 3) (26)
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TABLE 2. Coefficients in piecewise cubic approximation scheme.

holds, where K [α]
Nil is defined as

K [α]
Nil :=

|CdN |∞
N

· | exp(Aαh)Al+1B|∞ · e|A|∞h×H l+2
· K [α]

il

(27)

with K [α]
il given by

K [α]
il :=

l∑
p=0

l∑
j=0

( (1− α)l+p+2 + αl+p+2
(l + 1)! · (l + p+ 2)

×
(1− α)j+1 + αj+1

j+ 1
· |c[α]lpj |

)
+

(1− α)l+2 + αl+2

(l + 2)!
(28)

Furthermore, K [α]
Nil has the uniform upper bound with respect

to N given by

K [α]
ilU := |C|∞ · |A

l+1B|∞ · e(1+α)·H ·|A|∞ · H l+2
· K [α]

il (29)

Remark 2: The assertions of the above lemmas corre-
sponding to l = 0, 1 with α = 0 have been established
in [19], [20] for piecewise constant and linear approxima-
tions, and possibly hold also for even higher-order approx-
imations. However, such a direction does not necessarily
seem to be appealing as stated in a concluding remark in
Section VII.
Remark 3: K [α]

il of (28) corresponds to the L1[0, h)
norm of the matrix ∞-norm for the difference between
l∑

p=0

f [α]lp (τ )B[α]pd and exp(Aτ )B, and it is derived by using the

Taylor expansions of exp(Aτ ) around τ = αh appearing
in the former and the definition of the latter (i.e., exp(Aθ )
in (16)). In connection with this, roughly speaking, the first
term in (28) is related with the L1[0, h) norm of the matrix
∞-norm for the trailing part of the Taylor expansion of the

former with the orders in τ higher than l, while the second
term in (28) corresponds to that of the latter with the orders
in θ higher than l. In contrast, K [α]

kl , which will be defined
in the following section relevant to the kernel approximation
approach, coincides with the second term in (28) since the
kernel approximation approach completely matches the lth
order truncation of the Taylor expansion of exp(Aτ )B around
τ = αh (see (37) for details).

The aim of Lemma 1 is to provide the explicit methods
for computing ‖F−[α]HNil ‖∞ (l = 2, 3) approximating ‖F−H ‖∞
(= ‖F−HN‖∞), while that of Lemma 2 is to give the asso-
ciated error bounds between ‖F−[α]HNil ‖∞ (l = 2, 3) and
‖F−H ‖∞(= ‖F

−

HN‖∞). The proofs of these lemmas are given
in the appendix since they are quite technical. Combining
Lemmas 1 and 2 together with ‖F−HN‖∞ = ‖F

−

H ‖∞ leads
to the following theorem.
Theorem 1: The following inequality holds for l = 2, 3:

|F−[α]HNil |∞ −
K [α]
Nil

N l+1 ≤ ‖F
−

H ‖∞ ≤ |F
−[α]
HNil |∞ +

K [α]
Nil

N l+1 (30)

Theorem 1 clearly means that the matrix ∞-norm
|F−[α]HNil |∞ tends to ‖F−H ‖∞ at the convergence rate of 1/N l+1

as N → ∞ (by the existence of the uniform upper bound
K [α]
ilU for K [α]

Nil ). On the basis of the above theorem, the details
of our ultimate main results relevant to the upper and lower
bounds on the L∞-induced norm with ‖F+H ‖∞ in (11) taken
into account will be provided in SectionV, including those for
the kernel approximation approach discussed in the following
section.

IV. KERNEL APPROXIMATION APPROACH
This section provides the kernel approximation approach
to F−H , where the (direct as opposed to that induced
by the input approximation approach discussed in the
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preceding section) quadratic and cubic approximations of
the kernel function exp(Aθ )B of B on [0, h) are introduced
(by which we can achieve the piecewise quadratic and cubic
approximation schemes of F−H on [0,H )). It is also shown
that the associated convergence rates are in the orders of
1/N 3 and 1/N 4, respectively. These orders are the same
as those for the input approximation approach in the pre-
ceding section, but we further discuss a more quantitative
aspect of the advantage obtained by the kernel approximation
approach.

A. PIECEWISE QUADRATIC AND CUBIC
APPROXIMATIONS
Let us introduce the operator B[α]

kl : (L∞[0, h))
nw → Rn

described by

B[α]
kl u =

l∑
p=0

∫ h

0
exp(Aαh)

(A(θ − αh))p

p!
Bu(θ )dθ

(l = 2, 3; α ∈ [0, 1]) (31)

Here, the subscript k stands for the kernel approximation.
Introducing this operator corresponds to the lth-order trun-
cation of the Taylor expansion (around θ = αh) of the

kernel function exp(Aθ )B =
∞∑
p=0

exp(Aαh)
(A(θ − αh))p

p!
of

the operator B.
Next, consider the operator F−[α]HNkl obtained by replacing B

with B[α]
kl in (15), i.e.,

F−[α]HNkl ǔ := Du(1)(0)+ CdNB
[α]
kl ǔ (32)

which is precisely the idea of kernel approximation. In the
following subsection, it would be shown that ‖F−[α]HNk2‖∞ and
‖F−[α]HNk3‖∞ can be explicitly computed and tend to ‖F−H ‖∞
as N → ∞ with the associated convergence rates of 1/N 3

and 1/N 4, respectively.

B. CONVERGENCE AND UPPER/LOWER
BOUND ANALYSIS
With respect to the approximation of the kernel function by
the above piecewise quadratic approximation and piecewise
cubic approximation schemes, we give the following two
lemmas.
Lemma 3 (Piecewise Quadratic/Cubic Approximation):

For l = 2 and 3, let Y [α]
lm (m = 1, . . . ,N ) be the matrix

consisting of the L1[0, h) norm of each entry of the matrix
quadratic/cubic function

C(Ad )m−1
l∑

p=0

exp(Aαh)
(A(θ − αh))p

p!
(33)

contained in (32). Then, ‖F−[α]HNkl‖∞ coincides with the
∞-norm of the finite-dimensional matrix F−[α]HNkl defined as

F−[α]HNkl :=

[
D Y [α]

l1 · · · Y [α]
lN

]
(34)

Lemma 4: The inequality

‖F−HN − F−[α]HNkl‖∞ ≤
K [α]
Nkl

N l+1 (l = 2, 3) (35)

holds, where K [α]
Nkl is defined as

K [α]
Nkl :=

|CdN |∞
N

· | exp(Aαh)Al+1B|∞ · e|A|∞h

×H l+2
· K [α]

kl (36)

with K [α]
kl given by

K [α]
kl :=

(1− α)l+2 + αl+2

(l + 2)!
(37)

Furthermore, K [α]
Nkl has the following uniform upper bound

with respect to N .

K [α]
klU := |C|∞ · |A

l+1B|∞ · e(1+α)·H ·|A|∞ · H l+2
· K [α]

kl (38)

Lemma 3 corresponds to the exact computation method
for ‖F−[α]HNkl‖∞ (l = 2, 3) approximating ‖F−H ‖∞ (as well
as ‖F−HN‖∞) while Lemma 4 provides the associated error
bounds between ‖F−[α]HNkl‖∞ (l = 2, 3) and ‖F−H ‖∞
(= ‖F−HN‖∞). Their proofs are provided in Appendix VII
because they are quite technical. By combining the above
two lemmas, we are immediately led to the following
theorem.
Theorem 2: The following inequality holds for l = 2, 3:

|F−[α]HNkl |∞ −
K [α]
Nkl

N l+1 ≤ ‖F
−

H ‖∞ ≤ |F
−[α]
HNkl |∞ +

K [α]
Nkl

N l+1 (39)

Remark 4: In the same line of Remark 3, it readily follows
from (27) and (36) that

K [α]
Nkl ≤ K

[α]
Nil (40)

This clearly implies that even though the kernel approxi-
mation and input approximation approaches share the same
convergence rate when they take the approximation scheme
of the same order l, the former is quantitatively superior to
the latter when we consider the gap between the upper and
lower bounds on ‖F−H ‖∞.

V. ULTIMATE COMPUTATION OF THE L∞-INDUCED
NORM
This section provides ultimate methods for computing upper
and lower bounds on ‖F‖∞ by using Theorems 1 and 2
together with the upper bound computation of ‖F+H ‖∞
discussed in [20].
Proposition 1 in [20]: For q > 0 such that
| exp(Aq)|∞ < 1, the inequality

‖F+H ‖∞ ≤
q|B|∞ exp(|A|∞q)
1− | exp(Aq)|∞

· |C exp(AH )|∞ =: KHq (41)

holds, and KHq converges to 0 regardless of q as H →∞.
Combining Theorems 1 and 2 together with Proposition 1

in [13] immediately leads to the following theorem, which is
the ultimate main result of this paper.
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Theorem 3: For l = 2, 3, α ∈ [0, 1] and q > 0 such that
| exp(Aq)|∞ < 1, the following inequalities hold:

|F−[α]HNil |∞ −
K [α]
Nil

N l+1 ≤ ‖F‖∞

≤ |F−[α]HNil |∞ +
K [α]
Nil

N l+1 + KHq (42)

|F−[α]HNkl |∞ −
K [α]
Nkl

N l+1 ≤ ‖F‖∞

≤ |F−[α]HNkl |∞ +
K [α]
Nkl

N l+1 + KHq (43)

Furthermore, K [α]
Nil and K

[α]
Nkl have uniform upper bounds K [α]

ilU
and K [α]

klU in (29) and (38), respectively, while KHq converges
to 0 regardless of q as H →∞.
Regarding a guideline to take the parameters H , N and q,

it is worthwhile to remark that the uniform upper bounds
K [α]
ilU and K [α]

klU given in (29) and (38), respectively, are depen-
dent on H and increase as H becomes larger to reduce
KHq. However, because KHq is bounded from above in the
exponential order eδH regardless of q, where δ < 0 is the
maximum real part of the eigenvalues of A, the value of KHq
could be expected to be made small with a modest H . Hence,
the uniform upper bounds K [α]

ilU and K [α]
klU can be kept modest.

In this sense, it would be reasonable to take a relatively
small q as long as | exp(Aq)|∞ < 1 to avoid undue increase
of exp(|A|∞q) in KHq. With a fixed q, the next step would
be to take a sufficiently large H such that KHq is as small
as we wish. Once q and H are fixed, the uniform upper
bounds K [α]

ilU and K [α]
klU in (29) and (38), respectively, are also

determined. The last step would be taking an N by which
K [α]
ilU /N

l+2 andK [α]
klU/N

l+2 are as small as wewish. Following
this kind of guideline undoubtedly leads to the analysis of the
L∞-induced norm of the continuous-time LTI system (5) with
any degree of accuracy.

Furthermore, it would be worthwhile to note that the
computation methods developed in this paper can be readily
applied to general continous-time LTI systems regardless of
invertible or non-invertible case of the systems since they do
not involve an inverse matrix computation.
Remark 5: Our preceding studies [19], [20] relevant to the

piecewise constant (l = 0) and piecewise linear (l = 1)
approximation schemes under α = 0 can be regarded as
special cases of (42) and (43) except for the following issue:
the particular situation for the input approximation approach
with the piecewise constant approximation scheme allowed
us to derive a slightly improved lower bound |F−[α]HNi0|∞ instead
of the corresponding leftmost side of (42).

VI. NUMERICAL EXAMPLE
This section is devoted to examining the effectiveness of
the developed methods for computing upper/lower bounds
through comparison with the results of the well-known fixed
stepsize Runge-Kutta 4th-order method (RK4) [23]. More
precisely, we compute the impulse state response of (5) by
solving the state equationwith RK4, together with the integral

FIGURE 2. Mass-spring-damper system.

TABLE 3. Computation results for K [α]
il (l = 2,3).

TABLE 4. Computation results for K [α]
kl (l = 2,3).

of the absolute value of the impulse output response over the
same interval [0,H ] as that underlying F−H in our arguments.
In particular, the integral computation is recast as solving
an associated differential equation (corresponding to that of
an integrator), which is actually solved with RK4 simulta-
neously with the above state equation, where the stepsize is
determined as h := H/N ; this treatment leads to the accuracy
of RK4 in the same order of 1/N 4 as that in the arguments of
the piecewise cubic approximation scheme in this paper and
makes the comparison fair when our upper/lower bounds are
computed with the same fast-lifting parameter N .
Note, however, that RK4 do not care about F+H

in (10) and (13). This observation indicates that the upper
bound (UB) and lower bound (LB) in Theorem 1 or
Theorem 2 (about ‖F−H ‖∞) rather than those in Theorem 3
(about ‖F‖∞) are the adequate values that are to be compared
with the results of RK4; our interest arises from the fact that
RK4 cannot give fully theoretical upper and lower bounds
and is directed to observing if the results of RK4 lies within
the upper and lower bounds for the methods in this paper.

Let us consider the mass-spring-damper system shown
in Fig. 2, where m, k, c, l and d denote the mass,
spring constant, damper constant, displacement of the mass
from its equilibrium point and unknown disturbance in L∞
(i.e., bounded persistent disturbance) affecting the mass m,
respectively. This system has been regarded as one of themost
useful models for describing real systems since a number of
mechanical systems can be represented by this system, and
its motion is given by the second-order transfer function

L(s) =
1

ms2 + cs+ k
D(s) (44)

where L(s) and D(s) denote the Laplace transforms of l and
d , respectively. We consider the case when m = k = 1 and
c = 0.6 and thus

A =
[
−0.6 − 1
1 0

]
, B=

[
1
0

]
, C=

[
0 1

]
, D=0 (45)

VOLUME 8, 2020 139875



J. H. Kim et al.: Computing the L∞-Induced Norm of LTI Systems

TABLE 5. Computation results with α = 0.5 and comparison to RK4 (analytical value ν = 2.1863 6798, KHq = 2.8× 10−8).

for which the L1 norm of ν of its impulse response is
given by the analytic expression (1 + exp(−ζπ/

√
1− ζ 2))/

(1 − exp(−ζπ/
√
1− ζ 2)) with ζ = 0.3, and this leads to

ν = 2.1863 6797.
We first take q = 2 together with H = 80, by which

we obtain | exp(Aq)|∞ = 0.8873 and KHq = 2.8 × 10−8.
Regarding an adequate choice of α over [0, 1] relevant to
B[α]
il and B[α]

kl , the computation results for K [α]
il and K [α]

kl
in (28) and (37), respectively, are given in Tables 3 and 4,
respectively, for reference. From Tables 3 and 4, it can be
confirmed that K [α]

kl is quite smaller than K [α]
il under the same

parameters l and α. Furthermore, we can see from these tables
that both K [α]

il and K [α]
kl achieve their minimum values at

α = 0.5 and thuswe takeα = 0.5whenwe compute ‖F−H ‖∞.
Then, we consider the case withN = 400 andN = 2000. The
associated computation results are given in Table 5, where
those values relevant to Theorem 3 with ‖F+H ‖∞ taken into
account are shown in italic.

It could be observed from Table 5 that all the compu-
tation results for ‖F−[0.5]HNi2 ‖∞, ‖F

−[0.5]
HNi3 ‖∞, ‖F

−[0.5]
HNk2 ‖∞ and

‖F−[0.5]HNk3 ‖∞ are closer to the exact value ν than those for
RK4 at the same parameter N . We next note the case of
N = 400 and examine whether the result for RK4 lies within
the ranges of the upper and lower bounds obtained by the
arguments in this paper (i.e., Theorems 1 and 2). We then see
that even though it lies within the range for the input approxi-
mation approach with the piecewise quadratic approximation
scheme, it fails to do so for other threemethodswith improved
tighter bounds. Even though the unfavorable situation for the
result of RK4 slightly improves in the case of N = 2000,

it still fails to lie within the ranges for the piecewise cubic
approximation scheme (which possesses the same conver-
gence rate with RK4) both under the input approximation and
kernel approximation approaches. Thus, we could see from
these observations that the methods developed in this paper,
particularly those with the piecewise cubic approximation
scheme, are superior to RK4 for the computation of the
L∞-induced norm of continuous-time LTI systems.

In addition, the developed methods are quite important
because, unlike RK4, they are aimed at providing upper and
lower bounds on the L∞-induced norm itself, as shown in
Theorem 3. In this context, we can further confirm from
the values in italic in Table 5 that the exact value ν for the
L∞-induced norm always lies within the range for each of
the four methods developed in this paper. These observations
undoubtedly suggest that our methods can be very promising
alternatives to a naive method that directly deals with the
impulse response numerically.

VII. CONCLUDING REMARKS
Regarding performance analysis for bounded persistent
disturbances of continuous-time linear time-invariant (LTI)
systems, this paper tackled the computation of upper and
lower bounds on the L∞-induced norm of continuous-time
LTI systems. Specifically, under the input approximation and
kernel approximation approaches, we developed piecewise
quadratic approximation and piecewise cubic approxima-
tion schemes for achieving better convergence rates than the
existing methods with the piecewise constant approximation
and piecewise linear approximation schemes. More precisely,
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it was shown that the error bounds in the treatment of ‖F−H ‖∞
under the fast-lifting parameter N converge to 0 at the rates
of 1/N 3 and 1/N 4 in the piecewise quadratic approxima-
tion scheme and the piecewise cubic approximation scheme,
respectively, under both the input approximation and kernel
approximation approaches. However, the contributions of this
paper are not limited simply to the use of higher-order approx-
imation. More specifically, this paper established generalized
arguments for enhanced use of the Taylor expansion of rele-
vant functions in our approximation approaches, which can
lead to improvement without increasing the approximation
order; our preceding studies with piecewise constant approx-
imation and piecewise linear approximation schemes [19],
[20] only used the Taylor expansion at the beginning of an
interval. Furthermore, we demonstrated through a numerical
example that the methods developed in this paper, particu-
larly those with the piecewise cubic approximation scheme,
are superior to a naive method such as the Runge-Kutta
4th-order method that directly deals with the impulse
response numerically. Furthermore, because the L∞-induced
norm is independent of time-delay contained in input and/
or output of a system, the computation methods proposed in
this paper could be expected to be widely used in a number
of practical systems.

It would be also worthwhile to remark that constructing
the lth-order approximants Bil and Bkl to B with l ≥ 4
can be studied by following the same line of the arguments.
However, the theoretical interest in taking such l, particu-
larly l > 4, is not clear since we are led to the (exact)
computation of the L1[0, h) norms of lth-order polynomials;
this is not theoretically appealing because of its relevance
to the finding of real roots of higher-order polynomials, for
which no analytical method exists when l > 4. Hence,
the only remaining issue of theoretical interest from the the
present authors’ viewpoint is studying whether the piecewise
quartic approximation approach could be constructed in a
similar way. Since it seems highly likely that we require rather
involved manipulations, a rigorous study remains open.

APPENDIX
This appendix is devoted to providing the rationale
for the specific choice of the functions f [α]lp (τ ) (l = 2, 3;
p = 0, . . . , l; α ∈ [0, 1]) given in (21) and (22) together with
the proofs of Lemmas 1–4.

APPENDIX A
THE RATIONALE FOR SPECIFIC CHOICE OF FUNCTIONS
We aim at showing that the scalar-valued functions
f [α]lp (τ ) (l = 2, 3; p = 0, . . . , l; α ∈ [0, 1]) in (21) and (22)
are such that

‖F−HN − F−[α]HNil ‖∞

= sup
‖u‖∞≤1

∥∥∥∥∥
N∑
m=1

C(Ad )m−1(B− B[α]
il )u(m)

∥∥∥∥∥
∞

(46)

converges to 0 at the rates of 1/N l+1 (l = 2, 3) as
N tends to infinity. To this end, it suffices to take such

functions f [α]lp (τ ) (l = 2, 3; p = 0, . . . , l) making

‖C(Ad )m−1(B− B[α]
il )‖∞ (47)

converges to 0 in the orders of 1/N l+2 (l = 2, 3) for
each m. Since |C(Ad )m−1|∞ has an upper bound independent
of N and m, it suffices for us to find such functions for which
‖B − B[α]

il ‖∞ is bounded by the order of 1/N l+2, which is
equivalent to the order of hl+2. Here, note that
‖B− B[α]

il ‖∞

= sup
‖u‖∞≤1

∣∣∣(Bu− BJ[α]l u)
∣∣∣
∞

= sup
‖u‖∞≤1

∣∣∣ ∫ h

0
exp(Aθ )Bu(θ )dθ −

∫ h

0
exp(Aθ )B

×

( l∑
p=0

(θ − αh)p
∫ h

0
f [α]lp (τ )u(τ )dτ

)
dθ
∣∣∣
∞

= sup
‖u‖∞≤1

∣∣∣ ∫ h

0
exp(Aθ )Bu(θ )dθ −

l∑
p=0

( ∫ h

0
exp(Aθ )

×B(θ − αh)pdθ
) ∫ h

0
f [α]lp (τ )u(τ )dτ

∣∣∣
∞

= sup
‖u‖∞≤1

∣∣∣ ∫ h

0

(
exp(Aτ )B−

l∑
p=0

f [α]lp (τ )B[α]pd

)
u(τ )dτ

∣∣∣
∞

(48)

where B[α]pd is described as (20). This immediately leads to

‖B− B[α]
il ‖∞≤

∫ h

0

∣∣∣∣∣∣exp(Aτ )B−
l∑

p=0

f [α]lp (τ )B[α]pd

∣∣∣∣∣∣
∞

dτ (49)

It readily follows from the Taylor expansions of exp(Aτ ) and
exp(Aθ ) in the definition of B[α]pd in (20) at αh that

exp(Aτ )B−
l∑

p=0

f [α]lp (τ )B[α]pd

=

∞∑
p=0

exp(Aαh)
Ap(τ − αh)p

p!
B

−

l∑
p=0

f [α]lp (τ )
∞∑
j=0

exp(Aαh)
Ajhp+j+1

(p+ j+ 1) · j!

× {(1− α)p+j+1 − (−α)p+j+1}B (50)

To satisfy the condition about the convergence order
mentioned above, an easy way is to assume that f [α]lp (τ ) is
given in the form

f [α]lp (τ ) =
l∑
j=0

c[α]lpj

hp+j+1
(τ − αh)j (51)

where c[α]lpj is independent of h but is dependent on α, and

find appropriate c[α]lpj (p, j = 0, . . . , l) (almost) nullifying all
the coefficients about (τ−αh)p (p = 0, . . . , l) of the function
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in (50). More precisely, the coefficients c[α]lpj (p, j = 0, . . . , l)
such that the function
l∑
j=0

Aj(τ − αh)j

j!
−

l∑
p=0

{( l∑
j=0

c[α]lpj

hp+j+1
(τ − αh)j

)

×

( l∑
i=0

Aihp+i+1

(p+ i+ 1) · i!
· {(1− α)p+i+1 − (−α)p+i+1}

)}
(52)

(obtained essentially by truncating the two infinite sums
in (50)) is identically zero make the integral in (49) obviously
bounded by the order of hl+2. Such coefficients of the func-
tions f [α]lp (τ ) (l = 2, 3; p = 0, . . . , l) in (21) and (22) can be
determined as follows. For a fixed j ∈ {0, . . . , l}, let us con-
sider the (l+ 1) linear equations with i ∈ {0, . . . , l} such that
l∑

p=0

c[α]lpj

hp+j+1
·
hp+i+1 · {(1− α)p+i+1 − (−α)p+i+1}

(p+ i+ 1) · i!

=


1
j!

(if i = j)

0 (if i 6= j)
(53)

By solving the above linear equations in clpj (l, p = 0, . . . , l)
for all j ∈ {0, . . . , l} under the given l, we obtain those
in Tables 1 and 2 for l = 2 and l = 3, respectively.

APPENDIX B
PROOFS OF LEMMAS
Because the proofs of those in Section IV proceed in essen-
tially the same way relevant to those in Section III, only the
proofs of Lemmas 1 and 2 are given in this appendix.

1) PROOF OF LEMMA 1
By using (19), we have

F−[α]HNil ǔ = Du(1)(0)+
N∑
m=1

C(Ad )m−1B
[α]
il u

(m) (54)

By the definition of B[α]
il , we can see that

C(Ad )m−1B
[α]
il u

(m)

= C(Ad )m−1BJ
[α]
il u

(m)

= C(Ad )m−1
∫ h

0
exp(Aθ )B

l∑
p=0

(θ − αh)p

×

( ∫ h

0

l∑
j=0

c[α]lpj

hp+j+1
(τ − αh)ju(τ )dτ

)
dθ

= C(Ad )m−1
∫ h

0

l∑
p=0

(
B[α]pd

l∑
j=0

c[α]lpj

hp+j+1

× (τ − αh)j
)
u(τ )dτ

=

∫ h

0
C(Ad )m−1

l∑
j=0

G[α]
lj (τ − αh)ju(τ )dτ (55)

Note that the integrand involves the function used in defin-
ing T [α]

lm (l = 2, 3; m = 1, . . . ,N ). Hence, by the

property of L∞[0, h) and the definition of F−[α]HNil , it fol-
lows that ‖F−[α]HNil ‖∞ coincides with the ∞-norm of the
finite-dimensional matrix F−[α]HNil given in Lemma 1. This
completes the proof of Lemma 1.

2) PROOF OF LEMMA 2
We first note that

‖F−HN − F−[α]HNil ‖∞ = sup
‖ǔ‖∞≤1

∣∣∣(F−HN − F−[α]HNil )ǔ
∣∣∣
∞

= sup
‖ǔ‖∞≤1

∣∣∣CdN (B− B[α]
il )ǔ

∣∣∣
∞

≤ |CdN |∞ · sup
‖u‖∞≤1

∣∣∣(B− B[α]
il )u

∣∣∣
∞

= |CdN |∞ ·
∥∥∥B− B[α]

il

∥∥∥
∞

(56)

Here, note that ‖B−B[α]
il ‖∞ is evaluated in (49), in the RHS

of which the functions f [α]lp (τ ) (l = 2, 3; p = 0, . . . , l)

(in particular, the coefficients c[α]lpj (l = 2, 3; p = 0, . . . , l))
have been determined to make the function in (52) identically
zero. If we recall that (52) was obtained essentially by trun-
cating the two infinite sums in (50), it readily follows that

‖B− B[α]
il ‖∞

≤

∫ h

0

∣∣∣∣∣∣exp(Aτ )B−
l∑

p=0

f [α]lp (τ )B[α]pd

∣∣∣∣∣∣
∞

dτ

≤

∫ h

0

∣∣∣ ∞∑
p=l+1

exp(Aαh)
Ap(τ − αh)p

p!
B
∣∣∣
∞

dτ

+

∫ h

0

∣∣∣ l∑
p=0

f [α]lp (τ )
∞∑

j=l+1

exp(Aαh)
Ajhp+j+1

(p+ j+ 1) · j!

× {(1− α)p+j+1 − (−α)p+j+1}B
∣∣∣
∞

dτ

≤ | exp(Aαh)Al+1B|∞

∫ h

0

∞∑
j=0

|A|j∞ · |τ − αh|l+j+1

(l + j+ 1)!
dτ

+ | exp(Aαh)Al+1B|∞ ×
∫ h

0

l∑
p=0

|f [α]lp (τ )|

×

∞∑
j=0

|A|j∞hl+p+j+2 · {(1− α)l+p+j+2 + αl+p+j+2}
(l + p+ j+ 2) · (l + j+ 1)!

dτ

(57)

Here, we can show that∫ h

0

∞∑
j=0

|A|j∞ · |τ − αh|l+j+1

(l + j+ 1)!
dτ

≤
((1− α)l+2 + αl+2)hl+2

(l + 2)!
e|A|∞h (58)

∞∑
j=0

|A|j∞hl+p+j+2 · {(1− α)l+p+j+2 + αl+p+j+2}
(l + p+ j+ 2) · (l + j+ 1)!

≤
((1− α)l+p+2 + αl+p+2)hl+p+2

(l + p+ 2) · (l + 1)!
e|A|∞h (59)
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where we used∫ h

0
|τ − αh|l+j+1dτ

=

∫ αh

0
(−τ + αh)l+j+1dτ +

∫ h

αh
(τ − αh)l+j+1dτ

=
(αh)l+j+2

l + j+ 2
+

((1− α)h)l+j+2

l + j+ 2
(60)

in (58). From these inequality and the definition of f [α]lp (τ )
given in (51), the left hand side of (57) is further bounded
by

| exp(Aαh)Al+1B|∞
( ((1− α)l+2 + αl+2))hl+2

(l + 2)!
e|A|∞h

+

l∑
p=0

l∑
j=0

( |c[α]lpj |

hp+j+1
((1− α)j+1 + αj+1)hj+1

j+ 1

×
((1− α)l+p+2 + αl+p+2)hl+p+2

(l + p+ 2) · (l + 1)!
e|A|∞h

))
= | exp(Aαh)Al+1B|∞ · e|A|∞h · hl+2 · K

[α]
il (61)

This together with (56) proves the first assertion of Lemma 2
since h = H/N . The second assertion of Lemma 2 follows if
we note

|CdN |∞
N

· | exp(Aαh)Al+1B|∞ · e|A|∞h

≤ |C|∞ · e|A|∞(N−1)h
· |Al+1B|∞ · e|A|∞αh · e|A|∞h

= |C|∞ · |Al+1B|∞ · e|A|∞(H+αh)

≤ |C|∞ · |Al+1B|∞ · e|A|∞(1+α)H (62)
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