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Abstract

Holographic duality conjecture has been proposed to be a novel non-perturbative theoretical framework 
for the description of strongly correlated electrons. However, the duality transformation is not specified to 
cause ambiguity in the application of this theoretical machinery to condensed matter physics. In this study, 
we propose a prescription for the holographic duality transformation. Based on recursive renormalization 
group (RG) transformations, we obtain an effective field theory, which manifests the RG flow of an effective 
action through the introduction of an extra dimension. Resorting to this prescription, we show that RG 
equations of all coupling constants are reformulated as emergent geometry with an extra dimension. We 
claim that the present prescription serves as microscopic foundation for the application of the holographic 
duality conjecture to condensed matter physics.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Holographic duality conjecture [1–7] states that a (D + 1)-dimensional quantum gravity 
theory is a dual hologram of a D-dimensional quantum field theory, where D is a spacetime 
dimension. The emergent extra dimension of the quantum gravity theory is claimed to play the 
role of an energy scale for the renormalization group (RG) transformation of the quantum field 
theory. In other words, the bulk quantum gravity theory manifests an RG flow of the boundary 
quantum field theory through the evolution of geometry along the extra-dimensional space. This 
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emergent quantum gravity theory describes the dynamics of conserved currents of the quantum 
field theory in terms of dual field variables such as metric tensor and U(1) gauge fields. It turns 
out that quantum fluctuations of such dual field variables are suppressed when the number of 
“local degrees of freedom” is “infinite”. Taking the so called large N limit, the quantum gravity 
theory becomes classical. This classical gravity theory is regarded as a novel mean-field theory 
which takes into account renormalization effects in a non-perturbative way beyond the conven-
tional mean-field theory.

So far, there is no consensus for the holographic duality transformation that maps the boundary 
quantum field theory into the bulk quantum gravity theory [8–36]. In other words, it is not clear 
how to relate the RG equations of the coupling constants in the quantum field theory with the 
evolution of the geometry along the extra-dimensional space in the quantum gravity theory. We 
believe that this ambiguity gives rise to an obstruction in the application of this non-perturbative 
theoretical framework to condensed matter physics.

Recently, we proposed a prescription for the holographic duality transformation based on 
the Wilsonian scheme of RG transformations [32–36]. Here, we put a D-dimensional quantum 
field theory on a D-dimensional curved spacetime just formally although the quantum field the-
ory is originally written in a D-dimensional Euclidean spacetime. In addition, we perform the 
Hubbard-Stratonovich transformation for effective interactions that introduces a collective dual 
field variable into the quantum field theory in a standard fashion. Then, we apply the Wilsonian 
RG transformation to this effective field theory. Separating all dynamical field variables into slow 
and fast degrees of freedom, we perform the path integral with respect to the fast modes of both 
original matter fields and collective dual field variables. As a result, we obtain an effective field 
theory in terms of the slow modes, where their effective interactions are renormalized by quan-
tum fluctuations of both heavy degrees of freedom. An essential point is that this Wilsonian RG 
transformation generates novel effective interactions for low-energy quantum fluctuations, which 
cannot be fitted into the original form of the resulting effective action by renormalizations of in-
teraction parameters. Here, renormalization effects of effective interactions are given by quantum 
fluctuations of high-energy original matter fields and described by updating the metric tensor that 
returns the effective action into its original form. Since these newly generated effective interac-
tions originate from quantum fluctuations of high-energy collective dual field variables, an idea 
to complete this Wilsonian RG transformation is to perform the Hubbard-Stratonovich transfor-
mation once again, which introduces the second collective dual field variable into the resulting 
renormalized effective action. Now, the effective field theory of the original form is described by 
the renormalized metric tensor and the second order parameter field.

To compare this RG procedure with the conventional mean-field theory, one may take the large 
N limit, where N is the flavor number of original quantum fields. Then, quantum fluctuations 
of such two collective order parameter fields are suppressed and their dynamics are described 
by two coupled mean-field equations. These coupled mean-field equations turn out to describe 
that the first order parameter evolves into the second one under the renormalization, where inter-
action parameters are renormalized by the RG transformation. Since these mean-field equations 
describe the RG flow of the order parameter field, it is natural to continue the RG transformation 
in a recursive way. Then, renormalization effects are accumulated and described by the RG flow 
of the metric tensor. One can reformulate the iteration steps of the RG transformations as an 
extra-dimensional space. As a result, the RG flow of the metric tensor manifests in the level of 
the effective action. Furthermore, the RG flow of the collective dual field also manifests through 
the emergent extra-dimensional space, which may be identified with the Callan-Symanzik equa-
tion [37] of a one-particle Green’s function. This recursive RG framework takes into account 
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renormalization effects of both interaction vertices and order parameter fields in a self-consistent 
way, regarded to be a non-perturbative theoretical framework beyond the conventional mean-field 
theory.

In this study we show equivalence between the RG flow of the metric tensor and the RG 
β-functions of interaction vertices based on the above prescription for the holographic duality 
conjecture. More precisely, we prove the equivalence between the partition function of Eq. (2)
and that of Eq. (6) up to a normalization constant. Here, we focus on the case of one space di-
mension for an explicit demonstration. Based on this correspondence, we confirm the emergence 
of AdS3 metric at the quantum critical point of interacting scalar bosons.

2. Overview: dual holographic effective field theories based on recursive renormalization 
group transformations

We define our problem precisely. We consider an effective field theory in D-spacetime dimen-
sions [38]

Z =
∫

Dφα(x) exp
[
−

∫
dDx

√
gB(x)

{
g

μν
B (x)[∂μφα(x)][∂νφα(x)] + m2φ2

α(x)

+ u

2N
φ2

α(x)φ2
β(x)

}]
. (1)

Here, φα(x) is a real scalar field with a flavor index α that runs from 1 to N . gμν
B (x) is a 

background metric tensor, given by gττ
B (x) = 1 and gij

B (x) = v2
φδij with gτj

B (x) = giτ
B (x) = 0, 

where i and j run from 1 to D − 1. m is the mass of this scalar field and u is the strength of 
self-interactions between these scalar bosons. We emphasize that the metric tensor has been in-
troduced into this effective field theory just formally. In this study we focus on D = 2 and N = 1, 
which corresponds to an effective field theory for the transverse-field Ising model [39].

Recently, we applied recursive Wilsonian RG transformations to this interacting boson model 
[34] as discussed in the introduction. First, we perform the Hubbard-Stratonovich transformation 
to decompose the self-interaction term in terms of a collective dual scalar field ϕ(x). Second, 
we separate both scalar fields of φα(x) and ϕ(x) into their slow and fast degrees of freedom. 
Third, we integrate over all the fast modes and obtain an effective field theory in terms of the 
slow modes with renormalized interactions. To return this expression into the original form of 
the effective field theory, we update the metric tensor with rescaling. However, it turns out that 
quantum fluctuations of the heavy dual scalar bosons result in effective self-interactions. Per-
forming the Hubbard-Stratonovich transformation for this newly generated self-interaction term 
as the fourth step, we obtain an effective field theory with the second dual scalar field. Fifth, 
reshuffling several terms and updating the metric tensor with rescaling, we complete the first 
Wilsonian RG transformation and find a recursive expression for the effective field theory. Sixth, 
we repeat this Wilsonian RG transformation and complete a recursive expression of the effective 
field theory. Finally, we take a continuum approximation for the number of recursive Wilsonian 
RG transformations and reformulate the recursive expression of the effective field theory with the 
introduction of an extra-dimensional space. As a result, the RG flow of the effective field theory 
manifests in the resulting partition function through the extra-dimensional space. It turns out that 
this recursive Wilsonian RG procedure is completely straightforward and easily implemented 
[32–36].



4 K.-S. Kim / Nuclear Physics B 959 (2020) 115144
The effective partition function is given by [34]

Z =
∫

Dφα(x)Dϕ(x, z)Dgμν(x, z)δ
(
gμν(x,0) − g

μν
B (x)

)
δ
{
∂zg

μν(x, z) − gμν′
(x, z)

(
∂ν′∂μ′Gxx′ [gμν(x, z),ϕ(x, z)]

)
x′→x

gμ′ν(x, z)
}

exp
[
−

∫
dDx

√
g(x, zf )

{
gμν(x, zf )[∂μφα(x)][∂νφα(x)] + [m2 − iϕ(x, zf )]φ2

α(x)
}

− N

∫
dDx

√
g(x,0)

{ 1

2u
[ϕ(x,0)]2

}

− N

zf∫
0

dz

∫
dDx

√
g(x, z)

{ 1

2u
[∂zϕ(x, z)]2 + Cϕ

2
gμν(x, z)[∂μϕ(x, z)][∂νϕ(x, z)]

+ 1

2κ

(
R(x, z) − 2�

)}]
. (2)

We emphasize that the RG flow of the effective action manifests through the emergence of 
an extra-dimensional space although this partition function is exactly identical to the original 
partition function of Eq. (1) up to a normalization constant. As discussed in the introduc-
tion and above, the metric tensor evolves by this RG transformation, given by ∂zg

μν(x, z) =
gμν′

(x, z)
(
∂ν′∂μ′Gxx′ [gμν(x, z), ϕ(x, z)]

)
x′→x

gμ′ν(x, z) inside the δ-function constraint. Here, 

z is the coordinate of an emergent extra-dimensional space, which corresponds to the iteration 
step of the RG transformations. Gxx′ [gμν(x, z), ϕ(x, z)] is the Green’s function of high-energy 
quantum fluctuations of φα(x), given by{

− 1√
g(x, z)

∂μ

(√
g(x, z)gμν(x, z)∂ν

)
+ 1

ε
[m2 − iϕ(x, z)]

}
Gxx′ [gμν(x, z),ϕ(x, z)]

= 1√
g(x, z)

δ(D)(x − x′). (3)

ε is an energy scale for the RG transformation proportional to dz, which controls quantum fluc-
tuations of high-energy modes of original matter fields. It is this Green’s function that encodes 
the dynamical information in the recursive RG transformation.

The recursive RG transformation terminates at z = zf and the resulting renormalized metric 

tensor appears in the effective action SIR[ϕ(x, zf )] = ∫
dDx

√
g(x, zf )

{
gμν(x, zf )[∂μφα(x)]

[∂νφα(x)] + [m2 − iϕ(x, zf )]φ2
α(x)

}
. Here, zf is a phenomenologically introduced IR cut-off 

energy scale, given by zf = f ε, where f is the iteration number of recursive RG transforma-
tions. Although we can stop these recursive RG transformations at any energy scale zf , the full 
integration is achieved by zf = �UV , where �UV is the UV cut-off energy scale. For example, 
suppose that �UV is a UV cut-off scale for dynamically fluctuating field variables in momen-
tum space. Then, zf = �UV covers the whole region of the momentum space for such quantum 
fields, where the full integration up to zf = �UV completes the recursive RG transformations. 
In this respect zf may be considered as the UV cut-off scale rather than the IR cut-off scale 
although physically it corresponds to the IR scale. The renormalized metric tensor at z = zf

describes not only the wave-function renormalization but also the mass renormalization effects 
[36], to be clarified in section 4. Here, we point out our gauge fixing choice gDD(x, z) = 1 and 
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gμD(x, z) = gDν(x, z) = 0, where μ and ν run from 0 to D − 1. Performing the path integral 
with respect to the original matter field φα(x), we obtain

SIR[ϕ(x, zf )] = −N

2
trxx′ ln

√
g(x, zf )

{
− 1√

g(x, zf )
∂μ

(√
g(x, zf )gμν(x, zf )∂ν

)

+ [m2 − iϕ(x, zf )]
}

≈ N

∫
dDx

√
g(x, zf )

{Cf
ϕ

2
gμν(x, zf )[∂μϕ(x, zf )][∂νϕ(x, zf )]

+ 1

2κf

(
R(x, zf ) − 2�f

)}
,

where the gradient expansion with respect to m has been performed. Cf
ϕ is a positive numerical 

coefficient, which decreases as m increases. The last Einstein-Hilbert action results from vacuum 
fluctuations of quantum matter fields, referred to as induced gravity [40,41].

The bulk effective action originates from quantum fluctuations of the high-energy modes of 
φα(x) in the recursive RG transformations. Actually, the induced gravity action and the kinetic 
energy of the dual scalar field at a given slice z of the bulk result from

SBulk[ϕ(x, z); z] = −N

2
trxx′ ln

√
g(x, z)

{
− 1√

g(x, z)
∂μ

(√
g(x, z)gμν(x, z)∂ν

)

+ 1

ε
[m2 − iϕ(x, z)]

}
≈ εN

∫
dDx

√
g(x, z)

{Cϕ

2
gμν(x, z)[∂μϕ(x, z)][∂νϕ(x, z)] + 1

2κ

(
R(x, z) − 2�

)}
,

where ε is the energy scale of the RG transformation as pointed out before. Here, ε
∑f

z=1 may 

be replaced with 
∫ zf

0 dz in the continuum representation for the extra-dimensional coordinate z. 
As a result, the bulk effective action is given by

SBulk[ϕ(x, z)] = N

zf∫
0

dz

∫
dDx

√
g(x, z)

{ 1

2u
[∂zϕ(x, z)]2

+ Cϕ

2
gμν(x, z)[∂μϕ(x, z)][∂νϕ(x, z)] + 1

2κ

(
R(x, z) − 2�

)}
.

Since we would like to emphasize the physical meaning of the IR boundary condition in sec-
tion 3.2, we kept the superscript f for both the induced gravity action and the kinetic energy 
term of the dual scalar field at the IR boundary. However, all these coefficients are the same as 
those of the bulk effective action. As a result, the bulk effective action is smoothly connected 
with the IR boundary action with the gauge fixing mentioned above.

This effective action plays a central role in the dynamics of the collective dual field variable 
ϕ(x, z). Taking the large N limit, quantum fluctuations of these scalar bosons are suppressed. 
Performing the variation of this effective action with respect to ϕ(x, z), ∂zϕ(x, z), and ∂μϕ(x, z), 
we obtain a Lagrange equation of motion for the collective dual field variable. As discussed in 
the introduction, this equation of motion describes the RG flow of the order parameter field, thus 
identified with the Callan-Symanzik equation of a one-particle Green’s function of the original 
matter field. Since it is the second-order differential equation, we need two boundary conditions. 
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The UV boundary condition is given by the variation of the effective action in Eq. (2) with re-
spect to ϕ(x, 0) and [∂zϕ(x, z)]z=0. In the same way the IR boundary condition is given by the 
variation of the effective action in Eq. (2) with respect to ϕ(x, zf ) and [∂zϕ(x, z)]z=zf

. It turns 
out that the IR boundary condition is reduced into the conventional mean-field equation for the 
order parameter field in the limit of zf → 0, where renormalization effects are not introduced. 
In other words, the IR boundary condition takes into account not only the renormalization ef-
fects of interaction vertices but also the RG flow of the order parameter field in a self-consistent 
intertwined way.

It is necessary to discuss the physical origin of the emergent cosmological constant �. It may 
be regarded as a vacuum-fluctuation energy, here given by quantum fluctuations of high-energy 
degrees of freedom, which are accumulated in the recursive RG transformation. More precisely, 
high-energy fluctuations of original matter fields φα(x) give rise to the following effective action 
at a fixed slice z in the continuum-coordinate representation of z

−N

2
trxx′ ln

√
g(x, z)

{
− 1√

g(x, z)
∂μ

(√
g(x, z)gμν(x, z)∂ν

)
+ 1

ε
[m2 − iϕ(x, z)]

}
,

as discussed above. We pointed out that both the Einstein-Hilbert action and the kinetic energy 
of the dual scalar field result from the gradient expansion of this effective action [40,41]. As a 
result, the bare cosmological constant is given by

�

κ
= −1

2
lnm2. (4)

We point out that this is the result of the large N limit: Although there appear several terms 
more, which come from RG transformations for other dynamical field variables, such terms are 
less dominant in the large N limit, and thus neglected. This expression indicates that the sign of 
the bare cosmological constant changes, approaching the quantum critical point. However, it is 
also important to check out how this cosmological constant renormalizes in the quantum gravity 
theory beyond the large N limit. For the case of fermions, the overall sign becomes opposite at 
least for this mass contribution [35].

One may point out that the metric tensor is not dynamical, where the RG flow of the metric 
tensor is given by the δ-function constraint. In this respect the Einstein-Hilbert action has noth-
ing to do with the dynamics of the emergent metric tensor, which serves as a vacuum energy 
only. The absence of the metric-tensor dynamics results from the fact that effective interactions 
between energy-momentum tensor currents are not taken into account from the start here. We 
recall that the bulk dynamics of the dual scalar field ϕ(x, z) given by the kinetic energy orig-
inates from the recursive RG transformation with the Hubbard-Stratonovich transformation for 
the effective interaction term of the density-density (O(N) singlet) channel. In this respect we 
have to introduce an effective interaction term between energy-momentum tensor currents into 
the effective action from the start in order to promote the metric tensor to be dynamical. Actu-
ally, this point has been clearly discussed in Ref. [34], following the proposal of Ref. [42]. As 
a result of the introduction of this tensor-type effective interaction, we obtain the kinetic energy 
of the metric tensor, which results in the equation of motion for the emergent metric tensor from 
the minimization of the free-energy functional with respect to the metric tensor, given by the 
second-order differential equation with respect to the emergent extra-dimensional space. In this 
case the effective Einstein-Hilbert action gives rise to an Einstein equation at a fixed slice along 
the extra-dimensional space.
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Solving both the RG flow of the metric tensor with the Green’s function and the equation 
of motion of the dual scalar field with UV and IR boundary conditions, we can reveal non-
perturbative physics not only near but also away from the quantum critical point of this effective 
field theory. As a result, one may have interesting insight from geometrical interpretation of a 
quantum phase transition, where a “horizon” solution appears to describe the quantum phase 
transition [32]. This theoretical framework may shed light on even the problem of the black 
hole entropy [43]. However, it is not convenient to consider a field theory from the first for the 
application to the condensed matter physics. It is necessary to start from a lattice model. Here, 
we consider a one-dimensional lattice model

Z =
∫

Di(τ) exp
[
−

β∫
0

dτ

L∑
i=1

{(
∂τi(τ )

)2 − t
(
i(τ)i+1(τ ) + i+1(τ )i(τ )

)

+ m2[i(τ)]2 + u

2
[i(τ)]4

}]
. (5)

i(τ) is a real scalar field at site i. t is the hopping integral between nearest neighbor sites. m is 
the mass of this scalar field and u is the strength of self-interactions between these scalar bosons. 
This model may be regarded as an effective lattice field theory of the transverse-field Ising model 
[39].

To obtain an effective holographic dual field theory, we apply the Kadanoff block-spin trans-
formation [39] in a recursive way. First, we perform the Hubbard-Stratonovich transformation for 
the self-interaction term and reformulate it in terms of a collective dual field variable. Second, 
we separate all dynamical field variables into those on even and odd sites. Third, we perform 
the path integral with respect to all dynamical fields on even sites and obtain an effective lattice 
field theory in terms of the original matter field and the collective dual field variable on odd 
sites, where their effective interactions are renormalized by quantum fluctuations of even-site 
fields. Since the path integral with respect to the order parameter field gives rise to effective self-
interactions between the original matter fields, fourth, we perform the Hubbard-Stratonovich 
transformation for these effective interactions once again and rewrite this term in terms of the 
second collective dual field variable. Fifth, we update all the coupling constants with rescaling to 
return the effective action to its original form. As a result, we find a recursive expression of the 
effective action in the partition function, which consists of the RG β-functions of the coupling 
constants and the RG flow of the order parameter fields. Taking the large N limit when the flavor 
degeneracy is introduced into the above lattice field theory, the coupled equations of motion for 
both order parameter fields describe the RG flow of the order parameter field, identified with 
the Callan-Symanzik equation for the order parameter field. This mean-field theoretical frame-
work is beyond the conventional mean-field theory in the respect that renormalization effects of 
both effective interactions and order parameter fields are taken into account in a self-consistent 
intertwined way.

Repeating these recursive RG transformations a la Kadanoff and reformulating the iteration 
steps of the RG transformations with a continuous coordinate z, we obtain an effective holo-
graphic dual field theory as follows

Z =
∫

Di(τ)Dϕ(z)Dm2(z)Dt(z)Du(z)δ
(
m2(0) − m2

)
δ
(
t (0) − t

)
δ
(
u(0) − u

)

δ

(
∂zm

2(z) + 2m2(z)[t (z)]2

a
(

2[m2(z)]2 + u(z)
)

)
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δ

(
∂zt (z) + 1

a
t (z) − m2(z)[t (z)]2

a
(

2[m2(z)]2 + u(z)
) − i

2
∂zϕ(z)

)

δ

(
∂zu(z) + 1

a
u(z) − u(z)[t (z)]4

2a[m2(z)]2
(

2[m2(z)]2 + u(z)
)

)
exp

[
−

β∫
0

dτ

L∑
i=1

{(
∂τi(τ )

)2

+
(
m2(zf ) − iϕ(zf )

)
[i(τ)]2 − t (zf )

(
i(τ)i+1(τ ) + i+1(τ )i(τ )

)}

−
β∫

0

dτ

L∑
i=1

1

2u(0)
[ϕ(0)]2 −

zf∫
0

dz

β∫
0

dτ

L∑
i=1

{ a

2u(z)

(
∂zϕ(z)

)2

+ u(z)

2a
(

2[m2(z)]2 + u(z)
) + 1

2aβ
ln

{
2 sinh

(β

2
m(z)

)}}]
. (6)

We emphasize that this effective partition function is completely identical to the original one 
Eq. (5) up to a constant value. First three δ-function constraints indicate three initial condi-
tions for the coupling constants of mass, nearest-neighbor hopping integral, and self-interaction, 
respectively. Next three δ-function constraints impose the RG flow equations of the coupling 
constants, given by the first-order differential equation as expected. These RG flow equations 
terminate at z = zf and fully renormalized values of the coupling constants appear in the 

IR effective action SIR[ϕ(zf )] = ∫ β

0 dτ
∑L

i=1

{(
∂τi(τ )

)2 +
(
m2(zf ) − iϕ(zf )

)
[i(τ)]2 −

t (zf )
(
i(τ)i+1(τ ) + i+1(τ )i(τ )

)}
.

Neglecting quantum fluctuations of the collective dual field variables, or more formally, tak-
ing the large N limit when the flavor degeneracy is introduced into the original matter field, we 
obtain a classical equation of motion for the order parameter field, given by the variation of the 

bulk effective action SBulk[ϕ(z)] = ∫ zf

0 dz
∫ β

0 dτ
∑L

i=1

{
a

2u(z)

(
∂zϕ(z)

)2 + u(z)

2a
(
2[m2(z)]2+u(z)

) +
1

2aβ
ln

{
2 sinh

(
β
2 m(z)

)}}
with respect to ϕ(z) and ∂zϕ(z). It is the second-order differential 

equation with respect to the emergent extra-dimensional space. Both UV and IR boundary con-
ditions are given by the variation of the effective action with respect to ϕ(0) and [∂zϕ(z)]z=0 for 
UV and ϕ(zf ) and [∂zϕ(z)]z=zf

for IR. As will be shown in the next section, the IR boundary 
condition generalizes the conventional mean-field equation in a non-perturbative way, introduc-
ing not only renormalization effects of the coupling constants but also the RG flow of the order 
parameter field in an intertwined way.

In this paper we show the equivalence between Eq. (2) and Eq. (6) up to a normalization 
constant. Since Eq. (1) is identical to Eq. (5) up to a constant, these two dual holographic partition 
functions have to be the same. In section 3, we show derivation from Eq. (5) to Eq. (6). In 
section 4, we prove the equivalence between Eq. (2) and Eq. (6). In section 5, we show the 
emergence of AdS3 geometry at the quantum critical point of the transverse-field Ising model. In 
section 6, we consider the Majorana-fermion representation of the transverse-field Ising model 
[45] and discuss the boson-fermion duality in a geometrical point of view.



K.-S. Kim / Nuclear Physics B 959 (2020) 115144 9
3. A dual holographic effective field theory for a one-dimensional lattice field theory of 
interacting bosons

3.1. Derivation of an effective lattice field theory Eq. (6) from Eq. (5)

We perform the Hubbard-Stratonovich transformation for the self-interaction term in Eq. (5). 
Then, we obtain

Z =
∫

Di(τ)Dϕ(0) exp
[
−

β∫
0

dτ

L∑
i=1

{(
∂τi(τ )

)2 +
(
m2 − iϕ(0)

)
[i(τ)]2

− t
(
i(τ)i+1(τ ) + i+1(τ )i(τ )

)
+ 1

2u
ϕ(0)2

}]
, (7)

where ϕ(0) is the collective dual field variable.
To implement the Kadanoff block-spin transformation, we separate all dynamical fields into 

those on even and odd sites. Then, we perform the path integral with respect to quantum fluctua-
tions on even sites. Performing the path integral for even-site original matter fields, we obtain the 

vacuum-fluctuation contribution of even-site boson fields given by 1
2trττ ′ ln

(
− ∂2

τ +m2 − iϕ
(0)
2l

)
and an effective coupling term between next-nearest-neighbor-site bosons given by − t2

2

(
2l−1 +

2l+1

)(
− ∂2

τ + m2 − iϕ
(0)
2l

)−1(
2l−1 + 2l+1

)
. Here, 2l and 2l − 1 represent even- and odd-

site, respectively. Performing the gradient expansion for these two effective actions with respect 
to iϕ(0)

2l /m2 up to the second order, and doing the path integral for the collective dual scalar field 

ϕ
(0)
2l in the Gaussian level, we obtain

Z =
∫

Di(τ)Dϕ(0) exp
[
−

β∫
0

dτ

L∑
i=1

{(
∂τi(τ )

)2

+
(
m2 − 2m2t2

2[m2]2 + u
− iϕ(0)

)
[i(τ)]2

− m2t2

2[m2]2 + u

(
i(τ)i+1(τ ) + i+1(τ )i(τ )

)
+ 1

2u
ϕ(0)2

+ ut4

16[m2]2
(

2[m2]2 + u
)(

2[i(τ)]2 + i(τ)i+1(τ ) + i+1(τ )i(τ )
)2

+ u

2
(

2[m2]2 + u
) + 1

4β

{
ln

(
1 − e−βm

)
+ ln

(
eβm − 1

)}}]
, (8)

where rescaling has been performed. This RG transformation procedure is straightforward and 
justified as far as iϕ(0)

2l /m2 � 1 is satisfied. Quantum fluctuations of even-site original mat-
ter fields give rise to renormalization effects on all the coupling constants of the mass pa-
rameter, the hopping integral, and the self-interaction parameter. Even-site order-parameter 
fluctuations result in effective interactions for the original matter fields, given by Veff =

ut4

16[m2]2
(
2[m2]2+u

)(
2[i(τ)]2 + i(τ)i+1(τ ) + i+1(τ )i(τ )

)2
.
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To return this expression into the original form of the effective action, we perform the 
Hubbard-Stratonovich transformation once again for this newly generated effective interaction. 
As a result, we obtain the following expression

Z =
∫

Di(τ)Dϕ(1)Dϕ(0) exp
[
−

β∫
0

dτ

L∑
i=1

{(
∂τi(τ )

)2

+
(
m2 − 2m2t2

2[m2]2 + u
− iϕ(1)

)
[i(τ)]2

−
{ m2t2

2[m2]2 + u
+ i

2

(
ϕ(1) − ϕ(0)

)}(
i(τ)i+1(τ ) + i+1(τ )i(τ )

)

+ 1

2u
ϕ(0)2 +

[m2]2
(

2[m2]2 + u
)

ut4

(
ϕ(1) − ϕ(0)

)2

+ u

2
(

2[m2]2 + u
) + 1

4β

{
ln

(
1 − e−βm

)
+ ln

(
eβm − 1

)}}]
, (9)

where the second dual field variable ϕ(1) has been introduced.
We update all the coupling constants as follows

Z =
∫

Di(τ)Dϕ(1)Dϕ(0)Dm2(1)Dm2(0)Dt(1)Dt(0)Du(1)Du(0)δ
(
m2(0) − m2

)

δ
(
t (0) − t

)
δ
(
u(0) − u

)
δ

(
m2(1) − m2(0) + 2m2(0)[t (0)]2

2[m2(0)]2 + u(0)

)
δ

(
t (1) − m2(0)[t (0)]2

2[m2(0)]2 + u(0)

− i

2

(
ϕ(1) − ϕ(0)

))
δ

(
u(1) − u(0)[t (0)]4

2[m2(0)]2
(

2[m2(0)]2 + u(0)
)
)

exp
[
−

β∫
0

dτ

L∑
i=1

{(
∂τi(τ )

)2 +
(
m2(1) − iϕ(1)

)
[i(τ)]2

−t (1)
(
i(τ)i+1(τ ) + i+1(τ )i(τ )

)}
−

β∫
0

dτ

L∑
i=1

1

2u(0)
[ϕ(0)]2

−
β∫

0

dτ

L∑
i=1

{ 1

2u(1)

(
ϕ(1) − ϕ(0)

)2 + u(0)

2
(

2[m2(0)]2 + u(0)
) + 1

2β
ln

{
2 sinh

(β

2
m(0)

)}}]
,

(10)

where the first three δ-function constraints denote the initial values of the coupling constants and 
the last three δ-function constraints impose their renormalization equations. We point out that the 
resulting effective action is now written in terms of these updated coupling constants, essentially 
the same form as the original action.

We repeat these RG transformations. As a result, we obtain the following recursive expression 
for the effective action in the partition function
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Z =
∫

Di(τ)Dϕ(0)Dm2(0)Dt(0)Du(0)δ
(
m2(0) − m2

)
δ
(
t (0) − t

)
δ
(
u(0) − u

)
∫

�
f

k=1Dϕ(k)Dm2(k)Dt(k)Du(k)δ

(
m2(k) − m2(k−1)

a
+ 2m2(k−1)[t (k−1)]2

a
(

2[m2(k−1)]2 + u(k−1)
)
)

δ

(
t (k) − t (k−1)

a
+ 1

a
t(k−1) − m2(k−1)[t (k−1)]2

a
(

2[m2(k−1)]2 + u(k−1)
) − i

2

ϕ(k) − ϕ(k−1)

a

)

δ

(
u(k) − u(k−1)

a
+ 1

a
u(k−1) − u(k−1)[t (k−1)]4

2a[m2(k−1)]2
(

2[m2(k−1)]2 + u(k−1)
)
)

exp
[
−

β∫
0

dτ

L∑
i=1

{(
∂τi(τ )

)2 +
(
m2(f ) − iϕ(f )

)
[i(τ)]2

−t (f )
(
i(τ)i+1(τ ) + i+1(τ )i(τ )

)}
−

β∫
0

dτ

L∑
i=1

1

2u(0)
[ϕ(0)]2

−a

f∑
k=1

β∫
0

dτ

L∑
i=1

{ a

2u(k)

(ϕ(k) − ϕ(k−1)

a

)2 + u(k−1)

2a
(

2[m2(k−1)]2 + u(k−1)
)

+ 1

2aβ
ln

{
2 sinh

(β

2
m(k−1)

)}}]
. (11)

Here, a is introduced to play the role of an energy scale in the RG transformation, to be clarified 
below.

The final step is to reformulate this recursive expression as the form of a differential equation. 

It is conventional to replace a
∑f

k=1 with 
∫ zf

0 dz. In addition, we change ϕ(k)−ϕ(k−1)

a
to ∂zϕ(z), 

where the iteration step (k) of the RG transformation appears as an extra-dimensional space z
with an energy scale a. As a result, we obtain Eq. (6) as an effective dual holographic theory.

One may point out that the dual scalar order-parameter field ϕ(k) has to be a spacetime depen-
dent function. Although this criticism does make sense in principle, here we did not introduce 
it intentionally. More precisely speaking, as far as translational symmetry is preserved, we are 
allowed to focus on such spacetime independent solutions for the dual scalar field. Actually, such 
solutions are realized as far as we concern translationally invariant vacuum solutions. However, 
if we consider a spacetime dependent external field ϕext

i (τ ), we have to introduce the spacetime 
dependence of such dynamically fluctuating fields more explicitly. In this case, we also have 
to introduce the spacetime dependence in all the coupling constants such as the renormalized 
hopping integral, the renormalized mass parameter, and the renormalized effective interaction 
parameter. Then, it becomes more complex to compare the path-integral expressions of the two 
partition functions. In this resect we focus on the case of translational invariance for comparison.

3.2. Remarks on this dual holographic effective field theory

In this paper we do not perform detail analysis on this problem. Instead, we focus on how 
the RG flow is translated into geometry. However, it is necessary to discuss how this theoretical 
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framework describes non-perturbative physics of the quantum phase transition in a mean-field 
fashion.

Performing the path integral with respect to the original matter fields, we obtain an effective 
mean-field free-energy functional

1

L
F [ϕ(z)] = 1

β

1

L

∑
k

ln

{
2 sinh

(
β

2

√
−2t (zf ) cosk + m2(zf ) − iϕ(zf )

)}

+ 1

2u(0)
[ϕ(0)]2

+1

a

zf∫
0

dz

(
a2

2u(z)

(
∂zϕ(z)

)2 + u(z)

2
(

2[m2(z)]2 + u(z)
) + 1

2β
ln

{
2 sinh

(β

2
m(z)

)})
. (12)

The first term is a typical form of the free energy for relativistic massive scalar fields, where their 
velocity and effective mass are renormalized and described by the RG flow equations

a∂zm
2(z) = − 2m2(z)[t (z)]2

2[m2(z)]2 + u(z)
(13)

for the mass parameter and

a∂zt (z) = −t (z) + m2(z)[t (z)]2

2[m2(z)]2 + u(z)
+ i

2
a∂zϕ(z) (14)

for the hopping integral. The RG flow of the self-interaction coefficient appears in the bulk sector 
of the free energy, given by

a∂zu(z) = −u(z) + u(z)[t (z)]4

2[m2(z)]2
(

2[m2(z)]2 + u(z)
) , (15)

which affects the RG flow of the order parameter field ϕ(z).
The last equation is the Lagrange equation of motion for the order parameter field, given by 

the variation of this free-energy functional with respect to ϕ(z) and ∂zϕ(z). Then, we obtain

−∂2
z ϕ(z) + [∂z lnu(z)][∂zϕ(z)] = 0. (16)

It is straightforward to solve this differential equation, the solution of which is

ϕ(z) = ϕ(0) + [∂zϕ(z)]z=0

u(0)

z∫
0

dz′u(z′). (17)

Here, there are two unknown coefficients ϕ(0) and [∂zϕ(z)]z=0 as expected. These constants 
are determined by two boundary conditions, given by the self-consistency of this theoretical 
framework.

The first boundary condition is fixed by the first RG transformation, given by the so called 
UV free energy

FUV = 1 [ϕ(0)]2 − a
ϕ(0)[∂zϕ(z)]z=0. (18)
2u(0) 2u(0)
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Here, the second term results from the UV boundary contribution of the bulk effective action. 
Performing the variation of this boundary free energy with respect to ϕ(0) and [∂zϕ(z)]z=0, we 
obtain the corresponding UV boundary condition, which gives ϕ(0) = 0. The resulting solution 
is

ϕ(z) = [∂zϕ(z)]z=0

u(0)

1

a

z∫
0

dz′u(z′). (19)

The second boundary condition is fixed by the self-consistency of the last RG transformation 
in this effective field theory, given by the so called IR free energy

FIR = 1

β

1

L

∑
k

ln

{
2 sinh

(
β

2

√
−2t (zf ) cosk + m2(zf ) − iϕ(zf )

)}

− a

2u(zf )
[iϕ(zf )][i∂zϕ(z)]z=zf

. (20)

Here, the second term results from the IR boundary contribution of the bulk effective action. 
Performing the variation of this boundary free energy with respect to ϕ(zf ) and [∂zϕ(z)]z=zf

, 
we obtain the corresponding IR boundary condition

−1

4

1

L

∑
k

1√
−2t (zf ) cosk + m2(zf ) − iϕ(zf )

× coth

(
β

2

√
−2t (zf ) cosk + m2(zf ) − iϕ(zf )

)
= [a∂zu(z)]z=zf

2[u(zf )]2 [iϕ(zf )]. (21)

This IR boundary condition reminds us of the conventional mean-field equation. To verify how 
this expression generalizes the conventional mean-field equation of the order parameter field, we 
replace [a∂zu(z)]z=zf

with the RG flow of the self-interaction parameter

[a∂zu(z)]z=zf
= −u(zf ) + u(zf )[t (zf )]4

2[m2(zf )]2
(

2[m2(zf )]2 + u(zf )
) (22)

in this IR boundary condition. As a result, we obtain

1

4

1

L

∑
k

1√
−2t (zf ) cosk + m2(zf ) − iϕ(zf )

× coth

(
β

2

√
−2t (zf ) cosk + m2(zf ) − iϕ(zf )

)

= [iϕ(zf )]
2u(zf )

− [t (zf )]4

4u(zf )[m2(zf )]2
(

2[m2(zf )]2 + u(zf )
) [iϕ(zf )]. (23)

Taking the limit of zf → 0, we obtain

1

4

1

L

∑ 1√−2t cosk + m2 − iϕ
coth

(
β

2

√
−2t cosk + m2 − iϕ

)

k
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=
(

1 − t4

2[m2]2
(

2[m2]2 + u
)
)

iϕ

2u
, (24)

which is nothing but an RG-improved mean-field equation, where the self-interaction constant is 
renormalized in the one-loop level. This demonstration shows that the present dual holographic 
effective field theory generalizes the standard mean-field theory in a non-perturbative way, where 
renormalization effects of both all the coupling constants and dual order parameter fields are 
taken into account. More precisely, Eq. (23) takes into account quantum corrections of the all-
loop order, where not only interaction renormalizations described by their RG flows but also 
self-energy corrections up to the 1/Nf order are self-consistently resumed through the tech-
nique of recursive RG transformations. We recall that f is the iteration number of recursive RG 
transformations. In particular, the self-consistent intertwined renormalization structure between 
all the coupling functions and the dual order-parameter field is responsible for the description 
of non-perturbative physics [36]. Of course, this statement does not mean that this theoretical 
framework is exact. Instead, it is given by the large N limit that allows us to neglect quantum 
fluctuations of order parameter fields. In this respect we claim that our dual holographic effective 
field theory serves as a novel mean-field theory beyond the conventional mean-field theoretical 
framework.

4. Emergent geometry in recursive renormalization group transformations

4.1. Equivalence between two effective partition functions

In this section we show the equivalence between

Z =
∫

D(x)Dϕ(z)Dm2(z)Dt(z)Du(z)δ
(
t (0) − t0

)
δ
(
m2(0) − m2

0 + 2t0

)

δ
(
u(0) − u0

)
δ

(
∂zm

2(z) + 2m2(z)[t (z)]2

a
(

2[m2(z)]2 + u(z)
)

)

δ

(
∂zt (z) + 1

a
t (z) − m2(z)[t (z)]2

a
(

2[m2(z)]2 + u(z)
) − i

2
∂zϕ(z)

)

δ

(
∂zu(z) + 1

a
u(z) − u(z)[t (z)]4

2a[m2(z)]2
(

2[m2(z)]2 + u(z)
)

)

exp
[
−

∫
d2x

{(
∂τ(x)

)2 + t (zf )
(
∂x(x)

)2 +
(
m2(zf ) − iϕ(zf ) − 2t (zf )

)
[(x)]2

}

−
∫

d2x
1

2u(0)
[ϕ(0)]2

−
zf∫

0

dz

∫
d2x

{ a

2u(z)

(
∂zϕ(z)

)2 + u(z)

2a
(

2[m2(z)]2 + u(z)
) + m(z)

4a

}]
(25)

and
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Z =
∫

Dφ(x)Dϕ̃(z)Dgττ (z)Dgxx(z)δ
(
gττ (0) − 1

)
δ
(
gxx(0) − v2

φ

)
δ
{
∂zg

ττ (z) − gττ (z)
(
∂τ ∂τ ′Gxx′ [gμν(z), ϕ̃(z)]

)
x′→x

gτ ′τ (z)
}

δ
{
∂zg

xx(z) − gxx(z)
(
∂x∂x′Gxx′ [gμν(z), ϕ̃(z)]

)
x′→x

gx′x(z)
}

exp
[
−

∫
d2x

√
g(zf )

{
gττ (zf )[∂τφ(x)]2 + gxx(zf )[∂xφ(x)]2 + [m2 − iϕ̃(zf )][φ(x)]2

}
−

∫
d2x

√
g(0)

1

2u
[ϕ̃(0)]2

−
zf∫

0

dz

∫
d2x

√
g(z)

{ 1

2u
[∂zϕ̃(z)]2 + 1

2κ

(
R(z) − 2�

)}]
(26)

up to a normalization constant. Here, the first partition function is given by the continuum ap-
proximation of the lattice field theory Eq. (6). In the second partition function we neglect the 
spacetime dependence of both the metric tensor and the collective dual field variable, compared 
with the first partition function. To avoid confusion due to the use of the same letter, we introduce 
the tilde symbol to the collective dual field variable in the second partition function. The second 
partition function has to be supported by the Green’s function{

−gττ (z)∂2
τ −gxx(z)∂2

x + 1

ε
[m2 − iϕ̃(z)]

}
Gxx′ [gμν(z), ϕ̃(z)] = 1√

g(z)
δ(2)(x − x′). (27)

In these two partition functions x = (τ, x) represents a two-dimensional spacetime coordinate.
We show term-by-term correspondences between Eqs. (25) and (26) in subsection 4.2. More 

precisely, we suggest correspondence equations for not only UV and IR boundary conditions 
but also the bulk effective actions. Equivalence of the UV boundary conditions guarantees that 
both quantum field theories are same in the beginning. Correspondence of the bulk effective 
actions gives rise to an equation to relate these two dual scalar order-parameter fields with each 
other. Equivalence between the IR boundary conditions results in equations between the coupling 
functions of hopping integral, renormalized mass, and effective interaction in Eq. (25) and the 
metric tensor fields in Eq. (26). Finally, we enforce equivalence equations between the RG flows 
of the coupling functions in Eq. (25) and those of the metric tensor fields in Eq. (26). As a result, 
we find complete correspondence equations between all microscopic parameters of both effective 
actions. Simplifying the RG flow equations for the metric tensor fields in subsection 4.3, where 
translational symmetry is preserved for the ground-state manifold, we represent the RG flow 
equation of the metric tensor in terms of the running mass parameter in subsection 4.4, which 
completes proof for the equivalence between two emergent holographic partition functions of 
Eqs. (25) and (26).

4.2. Correspondences

It is straightforward to make correspondences between all the terms in these two partition 
functions. First, we have the correspondence between two UV effective actions∫

d2x
1

2u(0)
[ϕ(0)]2 ⇐⇒

∫
d2x

√
g(0)

1

2u
[ϕ̃(0)]2. (28)

As a result, we obtain two equations of
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1

u(0)
=

√
g(0)

u
(29)

and

ϕ(0) = ϕ̃(0). (30)

The first equation gives

u0 = vφu (31)

between two bare interaction parameters. It is also trivial to see the correspondence between the 
hopping integral and the initial velocity as follows

t (0) = gxx(0), (32)

which results in

t0 = v2
φ. (33)

We have one more relation between the bare mass parameters, given by

m2(0) − 2t (0) = m2
0 − 2t0 = m2. (34)

Second, we have the correspondence between two bulk effective actions in the following way

zf∫
0

dz

∫
d2x

{ a

2u(z)

(
∂zϕ(z)

)2 + u(z)

2a
(

2[m2(z)]2 + u(z)
) + m(z)

4a

}

⇐⇒
zf∫

0

dz

∫
d2x

√
g(z)

{ 1

2u
[∂zϕ̃(z)]2 + 1

2κ

(
R(z) − 2�

)}
. (35)

This correspondence gives rise to two equations

a

2u(z)

(
∂zϕ(z)

)2 = √
g(z)

1

2u
[∂zϕ̃(z)]2 (36)

for the dynamics of the bulk dual field variable and

u(z)

2a
(

2[m2(z)]2 + u(z)
) + m(z)

4a
+ C[m(z); z] = 1

2κ

√
g(z)

(
R(z) − 2�

)
(37)

for the vacuum-fluctuation energy, respectively. In the second equation we introduced a function 
C[m(z); z], which depends on the renormalized mass parameter only. Below, we show that this 
functional can result from the difference between two RG schemes.

Third, we have the correspondence between two IR effective actions as follows∫
d2x

{(
∂τ(x)

)2 + t (zf )
(
∂x(x)

)2 +
(
m2(zf ) − iϕ(zf ) − 2t (zf )

)
[(x)]2

}

⇐⇒
∫

d2x
√

g(zf )
{
gττ (zf )[∂τφ(x)]2 + gxx(zf )[∂xφ(x)]2 + [m2 − iϕ̃(zf )][φ(x)]2

}
.

(38)
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We point out that the RG scheme with the metric tensor preserves the relativistic invariance with 
the Euclidean signature in two dimensions while the Lorentz invariance is explicitly broken in the 
Kadanoff block-spin transformation. To make a correspondence between these two IR effective 
actions, it is necessary to consider

(x) =
(√

g(zf )gττ (zf )
) 1

2
φ(x). (39)

As a result, we obtain the following correspondence∫
d2x

√
g(zf )

{
gττ (zf )[∂τφ(x)]2 + gττ (zf )t (zf )[∂xφ(x)]2

+gττ (zf )
(
m2(zf ) − iϕ(zf ) − 2t (zf )

)
[φ(x)]2

}
⇐⇒

∫
d2x

√
g(zf )

{
gττ (zf )[∂τφ(x)]2 + gxx(zf )[∂xφ(x)]2 + [m2 − iϕ̃(zf )][φ(x)]2

}
.

(40)

This relation results in two equations

gττ (zf )t (zf ) = gxx(zf ) (41)

for the kinetic energy and

gττ (zf )
(
m2(zf ) − iϕ(zf ) − 2t (zf )

)
= m2 − iϕ̃(zf ) (42)

for the mass term.
Finally, we have the correspondence between the RG β-functions of the coupling constants 

and the RG-flow equations of the metric tensor

∂zm
2(z) = − 2m2(z)[t (z)]2

a
(

2[m2(z)]2 + u(z)
) ,

∂zt (z) = −1

a
t (z) + m2(z)[t (z)]2

a
(

2[m2(z)]2 + u(z)
) + i

2
∂zϕ(z),

∂zu(z) = −1

a
u(z) + u(z)[t (z)]4

2a[m2(z)]2
(

2[m2(z)]2 + u(z)
)

⇐⇒ ∂zg
ττ (z) = gττ (z)

(
∂τ ∂τ ′Gxx′ [gμν(z), ϕ̃(z)]

)
x′→x

gτ ′τ (z),

∂zg
xx(z) = gxx(z)

(
∂x∂x′Gxx′ [gμν(z), ϕ̃(z)]

)
x′→x

gx′x(z). (43)

In summary, we must have correspondence equations between

t (z), m2(z), u(z), ϕ(z), a (44)

and

gττ (z), gxx(z), ϕ̃(z), ε. (45)
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We recall that a (ε) is an energy scale of the recursive Kadanoff block-spin transformations (the 
recursive RG transformations with the metric tensor). It seems that the number of the correspond-
ing variables does not match between these correspondences. However, we point out that t (z) is 
related with ϕ(z) in the RG β-function. Indeed, we have the following relation

a

2u(z)

(
∂zϕ(z)

)2 = − 2a

u(z)

(
∂zt (z) + 1

a
t (z) − m2(z)[t (z)]2

a
(

2[m2(z)]2 + u(z)
)

)2

, (46)

performing the path integral with respect to ϕ(z) in Eq. (25), where the δ-function constraint 
gives rise to the replacement between ∂zϕ(z) and ∂zt (z). As a result, we have four indepen-
dent parameters, where their correspondences are determined by four equations: two RG-flow 
equations

∂zm
2(z) = − 2m2(z)[t (z)]2

a
(

2[m2(z)]2 + u(z)
) ,

∂zu(z) = −1

a
u(z) + u(z)[t (z)]4

2a[m2(z)]2
(

2[m2(z)]2 + u(z)
)

⇐⇒ ∂zg
ττ (z) = gττ (z)

(
∂τ ∂τ ′Gxx′ [gμν(z), ϕ̃(z)]

)
x′→x

gτ ′τ (z),

∂zg
xx(z) = gxx(z)

(
∂x∂x′Gxx′ [gμν(z), ϕ̃(z)]

)
x′→x

gx′x(z), (47)

one kinetic-energy equation

gττ (z)t (z) = gxx(z), (48)

and the bulk-field correspondence equation

a

2u(z)

(
∂zϕ(z)

)2 = − 2a

u(z)

(
∂zt (z) + 1

a
t (z) − m2(z)[t (z)]2

a
(

2[m2(z)]2 + u(z)
)

)2

= √
g(z)

1

2u
[∂zϕ̃(z)]2. (49)

The correspondence between both UV and IR boundary conditions has been presented above. In 
particular, the matching condition Eq. (42) for the IR boundary guarantees the equivalence for 
the solution of the order parameter field, given by the second-order differential equation.

4.3. RG flow equations for the metric tensor

To represent the metric tensor in terms of running mass and interaction parameters, we first 
simplify the RG-flow equations of the metric tensor. We point out that the Green’s function is

G(q, i�) = 1√
g(z)

1

gττ (z)�2 + gxx(z)q2 + 1
ε
[m2 − iϕ̃(z)] (50)

in the frequency-momentum space. Then, the RG-flow equation is given by

∂z lngττ (z) = 1√
g(z)

∫
d�

2π

∫
dq

2π

gττ (z)�2

gττ (z)�2 + gxx(z)q2 + 1 [m2 − iϕ̃(z)] (51)

ε
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for the time component and

∂z lngxx(z) = 1√
g(z)

∫
d�

2π

∫
dq

2π

gxx(z)q2

gττ (z)�2 + gxx(z)q2 + 1
ε
[m2 − iϕ̃(z)] (52)

for the space component, respectively.
One can simplify these expressions further as follows

∂z lngττ (z) =
∫

dy

2π

∫
dx

2π

y2

y2 + x2 + 1
ε
[m2 − iϕ̃(z)] ,

∂z lngxx(z) =
∫

dx

2π

∫
dy

2π

y2

x2 + y2 + 1
ε
[m2 − iϕ̃(z)] . (53)

As a result, we obtain [44]

∂z lngττ (z) = 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
[m2 − iϕ̃(z)] (54)

for the time component of the metric tensor, where the space component is given by

gττ (z)

gττ (0)
= gxx(z)

gxx(0)
. (55)

Here, the upper cutoff � is proportional to zf .

4.4. Consistency between RG β-functions and metric evolution equations

Resorting to gττ (z)t (z) = gxx(z) and gττ (z)
gττ (0)

= gxx(z)
gxx(0)

, we find that the hopping integral does 
not run, given by

t (z) = gxx(0)

gττ (0)
. (56)

This coincides with the initial condition for the hopping integral, given by t0 = v2
φ .

Next, we reformulate the RG β-functions of the mass and interaction parameters. We intro-
duce an effective coupling constant as

U(z) ≡ u(z)

2[m2(z)]2 . (57)

Then, one can reformulate the RG-flow equation of the self-interaction parameter in terms of this 
effective coupling constant. Considering the constant hopping integral, we find that the effective 
interaction coefficient is given by the mass parameter as follows

U(z) = U(0)
[m2(0)]2

[m2(z)]2 exp
{

− 1

a
z + t2

0

8

( 1

[m2(z)]2 − 1

[m2(0)]2

)}
. (58)

Inserting this expression into the RG β-function of the mass parameter, we obtain

a∂z[m2(z)]2 = − 2t2
0 [m2(z)]2

[m2(z)]2 + U(0)[m2(0)]2 exp
{

− 1 z + t2
0
(

1
2 2 − 1

2 2

)} , (59)
a 8 [m (z)] [m (0)]
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which implies non-perturbative nature of this RG framework.
The final task is to represent the RG-flow equation of the metric tensor in terms of the running 

coupling constants. Taking one more derivative with respect to z for the evolution equation of 
the metric tensor, we obtain

∂2
z lngττ (z) = 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
[−i∂zϕ̃(z)]. (60)

The bulk-field correspondence equation is rewritten as

i∂zϕ̃(z) =
( a

√
t0ugττ (z)

2[m2(z)]2U(z)

)1/2
i∂zϕ(z). (61)

Inserting this expression into the above, we obtain

[gττ (z)]−1/2
∂2
z lngττ (z)

= 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)( a
√

t0u

2[m2(z)]2U(z)

)1/2[−i∂zϕ(z)]. (62)

We recall that the RG β-function of the hopping integral is

i∂zϕ(z) = 2

a
t0 − t2

0

am2(z)
(

1 + U(z)
) . (63)

Using Eq. (58), we rewrite this β-function as

ia∂zϕ(z) = 2t0 − t2
0 m2(z)

[m2(z)]2 + U(0)[m2(0)]2 exp
{

− 1
a
z + t2

0
8

(
1

[m2(z)]2 − 1
[m2(0)]2

)} . (64)

Inserting this expression into Eq. (62), we represent the RG flow of the metric tensor in terms of 
the running mass parameter in the following way

[gττ (z)]−1/2∂2
z lngττ (z)

= − 4

aε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
(

a
√

t0u

2U(0)[m2(0)]2 exp
{

− 1
a
z + t2

0
8

(
1

[m2(z)]2 − 1
[m2(0)]2

)}
)1/2

(
2t0 − t2

0 m2(z)

[m2(z)]2 + U(0)[m2(0)]2 exp
{

− 1
a
z + t2

0
8

(
1

[m2(z)]2 − 1
[m2(0)]2

)}
)

. (65)

This expression completes our proof.
Finally, we reconsider Eq. (37). Introducing U(z) ≡ u(z)

2[m2(z)]2 into Eq. (37), we obtain

U(z) + m(z) + C[m(z); z] = a √
g(z)

(
R(z) − 2�

)
.

1 + U(z) 2 κ
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Considering that U(z) is a functional of the renormalized mass parameter m(z), given by Eq. (58), 
we find that the left hand side can be represented by purely a running mass parameter with the 
extra-dimensional space coordinate z. Recalling that the metric tensor is given by the running 
mass parameter only, given by Eq. (65), we realize that the right hand side can be also expressed 
in terms of only the running mass parameter. As a result, the difference between the vacuum 
energy, C[m(z); z] depends on m(z) only with z explicitly at most.

5. Emergence of AdS3 geometry at the quantum critical point

5.1. Dual holographic effective field theory in the metric formulation

We recall the effective partition function Eq. (26)

Z =
∫

Dφ(x)Dϕ̃(z)Dgττ (z)Dgxx(z)δ
(
gττ (0) − 1

)
δ
(
gxx(0) − v2

φ

)
δ
{
∂zg

ττ (z) − gττ (z)
(
∂τ ∂τ ′Gxx′ [gμν(z), ϕ̃(z)]

)
x′→x

gτ ′τ (z)
}

δ
{
∂zg

xx(z) − gxx(z)
(
∂x∂x′Gxx′ [gμν(z), ϕ̃(z)]

)
x′→x

gx′x(z)
}

exp
[
−

∫
d2x

√
g(zf )

{
gττ (zf )[∂τφ(x)]2 + gxx(zf )[∂xφ(x)]2 + [m2 − iϕ̃(zf )][φ(x)]2

}
−

∫
d2x

√
g(0)

1

2u
[ϕ̃(0)]2

−
zf∫

0

dz

∫
d2x

√
g(z)

{ 1

2u
[∂zϕ̃(z)]2 + 1

2κ

(
R(z) − 2�

)}]
.

Here, the Green’s function for the RG flow of the metric tensor in the δ-function constraint is 
given by Eq. (27){

− gττ (z)∂2
τ − gxx(z)∂2

x + 1

ε
[m2 − iϕ̃(z)]

}
Gxx′ [gμν(z), ϕ̃(z)] = 1√

g(z)
δ(2)(x − x′).

Inserting the Fourier transformation of the Green’s function Eq. (50) into the RG flow of the 
metric tensor, we obtain Eq. (54)

∂z lngττ (z) = 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
[m2 − iϕ̃(z)]

for the time component, where the space component is given by Eq. (55)

gxx(z) = gxx(0)

gττ (0)
gττ (z).

The “dynamics” of the static dual order parameter field is given by the RG flow in the above 
emergent curved spacetime background. Performing the variation of the effective action with 
respect to ϕ̃(z) and ∂zϕ̃(z), we obtain the Lagrange equation of motion in the extra-dimensional 
curved spacetime

∂z

√
g(z)

∂zϕ̃(z) +
√

g(z)
∂2
z ϕ̃(z) = 0. (66)
u u
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It is straightforward to solve this second-order differential equation, the solution of which is 
given by

ϕ̃(z) = ϕ̃(0) + [∂zϕ̃(z)]z=0

z∫
0

dz′
√

g(0)

g(z′)
. (67)

There are two unknown coefficients, which have to be determined by UV and IR boundary con-
ditions. These boundary conditions should be also derived from the effective field theory itself, 
as discussed before.

The bulk effective action gives rise to both UV and IR boundary terms as follows

zf∫
0

dz

∫
d2x

√
g(z)

1

2u
[∂zϕ̃(z)]2

=
zf∫

0

dz

∫
d2x

{
− 1

4u

(√
gxx(z)

gττ (z)
∂zgττ (z) +

√
gττ (z)

gxx(z)
∂zgxx(z)

)
ϕ̃(z)[∂zϕ̃(z)]

+
√

g(z)

2u
ϕ̃(z)[−∂2

z ϕ̃(z)]
}

+
∫

d2x
{√

g(zf )

2u
ϕ̃(zf )[∂zϕ̃(z)]z=zf

−
√

g(0)

2u
ϕ̃(0)[∂zϕ̃(z)]z=0

}
, (68)

where the integration-by-parts has been utilized. Then, we obtain the IR effective action

SIR[ϕ̃(zf )] =
∫

d2x
√

g(zf )
{
gττ (zf )[∂τφ(x)]2 + gxx(zf )[∂xφ(x)]2

+ [m2 − iϕ̃(zf )]φ2(x) + 1

2u
ϕ̃(zf )[∂zϕ̃(z)]z=zf

}
(69)

and the UV boundary action

SUV [ϕ̃(0)] =
∫

d2x
√

g(0)
{ 1

2u
[ϕ̃(0)]2 − 1

2u
ϕ̃(0)[∂zϕ̃(z)]z=0

}
, (70)

respectively.
Performing the variation of the UV boundary action with respect to ϕ̃(0) and [∂zϕ̃(z)]z=0, we 

obtain the UV boundary condition

1

4u

(√
gxx(0)

gττ (0)
[∂zgττ (z)]z=0 +

√
gττ (0)

gxx(0)
[∂zgxx(z)]z=0

)
ϕ̃(0) +

√
g(0)

u
ϕ̃(0) = 0. (71)

As a result, we find

ϕ̃(0) = 0, (72)

consistent with the case of the Kadanoff block-spin transformation in section 3. The solution is

ϕ̃(z) = [∂zϕ̃(z)]z=0

z∫
dz′

√
g(0)

g(z′)
, (73)
0



K.-S. Kim / Nuclear Physics B 959 (2020) 115144 23
where [∂zϕ̃(z)]z=0 is determined by the IR boundary condition.
Performing the variation of the IR boundary effective action with respect to ϕ̃(zf ) and 

[∂zϕ̃(z)]z=zf
, we obtain the IR boundary condition

1

4u

(√
gxx(zf )

gττ (zf )
[∂zgττ (z)]z=zf

+
√

gττ (zf )

gxx(zf )
[∂zgxx(z)]z=zf

)
ϕ̃(zf ) + i

√
g(zf )

〈
φ2(x)

〉
= 0.

(74)

Resorting to the Green’s function Eq. (50), we rewrite this expression as∫
d�

2π

∫
dq

2π

1

gττ (zf )�2 + gxx(zf )q2 + [m2 − iϕ̃(zf )]

= 1

2u

(√
gxx(zf )

gττ (zf )
[∂zgττ (z)]z=zf

+
√

gττ (zf )

gxx(zf )
[∂zgxx(z)]z=zf

)
[iϕ̃(zf )], (75)

where ϕ̃(zf ) is related with [∂zϕ̃(z)]z=0 in the following way ϕ̃(zf ) = [∂zϕ̃(z)]z=0
∫ zf

0 dz′
√

g(0)
g(z′) . 

Here, g(z′) = gττ (z
′)gxx(z

′) is the determinant of the metric tensor.
It is straightforward to solve this equation, the solution of which is given by

iϕ̃(zf ) = 4
( �∫

0

dw

2π

1√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

) 2u

[∂z lng(z)]z=zf

, (76)

where � is the same cutoff introduced before. As a result, we find the solution of the collective 
dual field variable

iϕ̃(z) = 4
( �∫

0

dw

2π

1√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

) 2u

[∂z lng(z)]z=zf

∫ zf

0 dz′
√

g(0)
g(z′)

z∫
0

dz′
√

g(0)

g(z′)
,

(77)

which describes how the mean-field value of the order parameter field evolves as a function of 
an energy scale.

5.2. Emergent geometry

Finally, we are ready to deduce the emergent geometry in this dual holographic effective field 
theory. Inserting the solution of the order parameter field Eq. (77) into the RG flow of the metric 
tensor Eq. (54), we obtain

∂z lngττ (z) = 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

){
m2

−4
( �∫

0

dw

2π

1√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

) 2u

[∂z lng(z)]z=zf

∫ zf

0 dz′
√

g(0)
g(z′)

z∫
0

dz′
√

g(0)

g(z′)

}
.

(78)
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The RG flow in the one-loop level is given by

[∂z lngττ (z)]z=0 = 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
m2, (79)

where the limit of z → 0 has been taken into account. On the other hand, the full RG flow is 
given by

[∂z lngττ (z)]z=zf
= 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

){
m2

−4
( �∫

0

dw

2π

1√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

) 2u

[∂z lng(z)]z=zf

}
, (80)

where z = zf has been considered.

Inserting g(z) = gττ (z)gxx(z) into the above expression and using gxx(z) = gxx(0)
gττ (0)

gττ (z), we 
find the solution of this RG flow at z = zf

[∂z lngττ (z)]z=zf
= 2

[
1

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
m2

±
√√√√{ 1

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
m2

}2 + 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( �∫
0

dw

2π

1√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)2
u

]
.

(81)

Accordingly, the renormalized value of the order parameter field is

iϕ̃(zf ) = −4
( �∫

0

dw

2π

1√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

) u

[∂z lngττ (z)]z=zf

. (82)

The resulting effective mass parameter is given by

M2(zf ) ≡ m2 − iϕ̃(zf ) = m2 + 4
( �∫

0

dw

2π

1√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

) u

[∂z lngττ (z)]z=zf

.

(83)

First, we pick up the minus sign in Eq. (81), given by

[∂z lngττ (z)]z=zf
= 2

[
1

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
m2

−
√√√√{ 1

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
m2

}2 + 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( �∫
0

dw

2π

1√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)2
u

]
.

(84)
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Taking the limit of ε → 0, we obtain

[∂z lngττ (z)]z=zf
≈ −4

( ∞∫
0

dz

2π

1

z2 + 1

)( �∫
0

dw

2π

1√
w2 + 1

) u

m2 . (85)

Then, the order parameter field takes

iϕ̃(zf ) ≈ m2. (86)

As a result, we are at the quantum critical point

M2(zf ) ≡ m2 − iϕ̃(zf ) ≈ 0. (87)

It is straightforward to solve Eq. (85). The time component of the metric tensor is given by

gττ (zf ) ≈ gττ (z) exp
{

− 4
( ∞∫

0

dz

2π

1

z2 + 1

)( �∫
0

dw

2π

1√
w2 + 1

) u

m2 (zf − z)
}
. (88)

Accordingly, the space component is

gxx(zf ) ≈ v2
φgττ (z) exp

{
− 4

( ∞∫
0

dz

2π

1

z2 + 1

)( �∫
0

dw

2π

1√
w2 + 1

) u

m2 (zf − z)
}
. (89)

This metric tensor is nothing but the AdS3 geometry if the coordinate of the extra-dimensional 
space is appropriately scaled. As a result, we confirm the emergence of the AdS3 metric at the 
quantum critical point of the transverse-field Ising model.

Next, we consider the positive sign in Eq. (81), given by

[∂z lngττ (z)]z=zf
= 2

[
1

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
m2

+
√√√√{ 1

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
m2

}2 + 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( �∫
0

dw

2π

1√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)2
u

]
.

(90)

Taking the limit of ε → 0, we obtain

[∂z lngττ (z)]z=zf
≈ 4

ε

( �∫
0

dw

2π

w2

√
w2 + 1

)( ∞∫
0

dz

2π

1

z2 + 1

)
m2, (91)

which results in

iϕ̃(zf ) = −ε
( �∫

0

dw

2π

1√
w2 + 1

)( �∫
0

dw

2π

w2

√
w2 + 1

)−1 u

m2 . (92)

As a result, we are in a gapped phase, given by the effective mass parameter
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M2(zf ) ≡ m2 − iϕ̃(zf ) = m2 + ε
( �∫

0

dw

2π

1√
w2 + 1

)( �∫
0

dw

2π

w2

√
w2 + 1

)−1 u

m2 . (93)

Solving Eq. (91), we obtain

gττ (zf ) ≈ gττ (z) exp
{1

ε

(∫
dw

2π

w2

√
w2 + 1

)(∫
dz

2π

1

z2 + 1

)
m2(zf − z)

}
, (94)

which shows divergence of the metric tensor in the zf → ∞ limit. This RG flow indicates a 
run-away behavior in the gapped phase.

6. Discussion: Fermion-boson duality in geometry

Recently, we revisited the quantum phase transition in the transverse-field Ising model and 
translated it in terms of emergent geometry [32]. There, we started from the Majorana-fermion 
representation, where the transverse-field Ising model turns into a p-wave superconductor model 
of spinless fermions, given by [45]

Z =
∫

Dψi(τ) exp
[
−

β∫
0

dτ

L∑
i=1

{
ψ

†
i (τ )∂τψi(τ ) − Jλψ

†
i (τ )τ3ψi(τ)

− Jψ
†
i (τ )(τ3 − iτ2)ψi−1(τ )

}]
. (95)

Here, ψi(τ) is the Nambu spinor for superconductivity and τl with l = 1, 2, 3 is the Pauli matrix 
acting on the Nambu-spinor basis. J is the ferromagnetic exchange interaction between Ising 
spins and Jλ is the transverse magnetic field. It is well known that this effective lattice model 
shows a quantum phase transition from a p-wave topologically nontrivial BCS superconducting 
phase in λ < λc to a p-wave topologically trivial BEC superconducting state in λ > λc, where λc

is the quantum critical point, described by two copies of Majorana fermions with c = 1/2 [45]. 
Here, c is the central charge.

Implementing the Kadanoff block-spin transformation in a recursive way, we obtained an 
effective field theory [32]

Z =
∫

Dψi(τ)δ
(
J (0) − J

)
δ
(
(0) − Jλ

)
δ
(
a∂zJ (z) + J (z) − 2[J (z)]2

(z)

)
δ
(
a∂z(z)

)

exp
[
−

β∫
0

dτ

L∑
i=1

{
ψ

†
i (τ )∂τψi(τ ) − (zf )ψ

†
i (τ )τ3ψi(τ)

−J (zf )ψ
†
i (τ )(τ3 − iτ2)ψi−1(τ )

}
+ 1

a

zf∫
0

dz

β∫
0

dτ

L∑
i=1

1

β
ln

{
2 cosh

(β

2
(z)

)}]
, (96)

which manifests the RG flow of the effective action. Here, both the ferromagnetic exchange in-
teraction parameter J (0) = J and the transverse magnetic field (0) = Jλ show their RG flows, 

given by a∂zJ (z) = −J (z) + 2[J (z)]2

(z)
and a∂z(z) = 0 and shown in the δ-function constraints, 

respectively. Their RG flows terminate at z = zf , and they appear in the IR effective action 

SIR = ∫ β
dτ

∑L
i=1

{
ψ

†
(τ )∂τψi(τ ) − (zf )ψ

†
(τ )τ3ψi(τ) − J (zf )ψ

†
(τ )(τ3 − iτ2)ψi−1(τ )

}
. 
0 i i i



K.-S. Kim / Nuclear Physics B 959 (2020) 115144 27
The bulk action SBulk = 1
a

∫ zf

0 dz
∫ β

0 dτ
∑L

i=1
1
β

ln
{

2 cosh
(

β
2 (z)

)}
describes vacuum fluctu-

ations of even-site fermions.
Based on this effective field theory, we translated the quantum phase transition of Eq. (95)

in terms of emergent geometry at zero temperature [32]. Taking the continuum approximation 
for Eq. (96), we could extract out the metric tensor to describe each superconducting phase. 
As expected, the quantum critical point is given by the AdS3 metric. On the other hand, the 
topologically trivial superconducting phase is described by AdS2 × R. An interesting point is 
that the topologically nontrivial superconducting state is characterized by the appearance of a 
horizon at some length along the extra-dimensional space, where the Ricci curvature diverges 
and the emergent spacetime terminates. To confirm the validity of this horizon geometry, we 
calculated the holographic entanglement entropy referred to as Ryu-Takayanagi formula [46,47]. 
It turns out that this holographic entanglement entropy coincides with that of the corresponding 
field theory [48,49] not only at the quantum critical point but also in the topologically nontrivial 
superconducting phase. Unfortunately, the holographic entanglement entropy in the topologically 
trivial superconducting state did not match that of the field theory, which implies that the AdS2
× R geometry may be valid only in the IR limit.

In this study we also found the AdS3 geometry at the quantum critical point of the bosonic 
representation. On the other hand, we got a divergent geometry of the zf → ∞ limit in the para-
magnetic phase corresponding to the topologically trivial superconducting state in the Majorana-
fermion representation. At present, it is not clear how the fermion-boson duality is realized in 
terms of geometry.

7. Conclusion

In conclusion, we proposed a prescription for a dual holographic description, based on re-
cursive Wilsonian renormalization group (RG) transformations. First, we introduced an effective 
dual holographic action, where the RG flow of the metric tensor manifests in the IR effective ac-
tion through the emergent extra-dimensional space. The bulk effective action gives rise to the RG 
flow of the dual order-parameter field in the large N limit, identified with the Callan-Symanzik 
equation of a one-particle Green’s function and supported by UV and IR boundary conditions. 
It is the intertwined renormalization structure between the metric tensor and the dual order-
parameter field that allows a non-perturbative description. In particular, we explicitly demon-
strated that the IR boundary condition generalizes the conventional mean-field theory, taking 
into account renormalization effects through the RG flow of the metric tensor in a self-consistent 
way. Second, we presented a version of condensed matter physics for a dual holographic de-
scription. Based on recursive Kadanoff block-spin transformations in two spacetime dimensions, 
we obtained an effective dual holographic theory, which manifests the RG flow of the effective 
action through the emergent extra-dimensional space. The RG flow of all coupling constants ap-
pears in the IR effective action, the RG flow of which is realized in the extra-dimensional space. 
The bulk effective action describes the RG flow of the order-parameter field in the presence 
of the RG flow of the interaction vertices, supported by both UV and IR boundary conditions. 
In particular, we showed that the IR boundary condition extends the conventional mean-field 
theory, which replaces the bare interaction parameters with their renormalized coupling con-
stants in a self-consistent way. Finally, we showed the equivalence between the first and the 
second dual holographic prescriptions. Resorting to term-by-term matching between these two 
dual holographic effective actions, we reformulated the RG flow of the metric tensor in terms 
of the running coupling constants of the microscopic lattice model. Based on this equivalence, 
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we verified that the AdS3 geometry emerges at the quantum critical point of the transverse-field 
Ising model.
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