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CMIP6 simulations suggest that anthropogenic
greenhouse gas forcing has at least doubled the
likelihood of 2015-19 like prolonged droughts over
the South African Western Cape, with large cancel-
lation due to other anthropogenic effects.

ture-based economy and reservoir-based water sup-

ply system, is vulnerable to drought, and during
2015-19 it experienced a multiyear drought condition. A
recent study (Otto et al. 2018) reported that anthropogen-
ic influence increased the likelihood of exceeding rainfall
reduction over the Cape Town region during the first three
years of that drought (2015-17) by a factor of 3. During that
period, Cape Town experienced a water crisis threatening

S outh Africa’s Western Cape (WC) with its agricul-
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a shutdown of water supply to the four million residents (Masante et al. 2018) with wa-
ter supply dropping to 20% of capacity in January 2018 (Muller 2018). In 2019, the WC
experienced further dry conditions, extending the earlier drought and resulting in 2019
crop yield reduction by 25% (AGRI SA 2020).

The recent anthropogenic warming (IPCC 2018) likely caused drying trends over
Southern Hemisphere subtropics associated with Hadley cell expansion (Purich et al.
2013; Butrls et al. 2019) and is expected to increase drought durations over South Africa
in the future (e.g., Ukkola et al. 2020). However, understanding of anthropogenic influ-
ence on the observed prolonged drought duration (e.g., multiple years) remains limit-
ed. Here, we investigate anthropogenic impact on meteorological drought duration in
the broader WC region, posing the following questions: How unusual is the duration
of the 2015-19 WC drought? Is there an anthropogenic contribution, particularly the
contribution of greenhouse gas increases, to such prolonged droughts? By answering
these questions, this study provides actionable information to policy makers and local
stakeholders for drought mitigation and management.

Data and methods.

First, we computed regional averages of monthly precipitation over the WC from CRU
(version TS v4.04; Harris et al. 2014), GPCC (version 2018; Schneider et al. 2011), and
GPCP (version 2.3; Adler et al. 2018) datasets, rather than from station observations
that cover only the western (wetter) part of the WC (1933-2017; Wolski et al. 2020). We
found some stations excluded in the CRU and GPCC data since 2000 and 2010, respec-
tively. The impact of changing numbers of stations is lower in GPCC than in CRU over
the WC (Wolski et al. 2020); also, GPCC includes fewer observational stations before
1950 and after 1998 than CRU (Otto et al. 2018). Nevertheless, an overall consistency is
found between gridded data and station observations (Figs. 1a—c).

Next, we computed the 12-month Standard Precipitation Index (SPI-12) over the
study region (Fig. 1f; McKee et al. 1993) as the WC drought index. SPI-12 threshold val-
ues of —0.8 and 0.2 were used to identify drought onset and recovery, respectively, fol-
lowing Mo (2011). We also computed the Standardized Precipitation Evapotranspira-
tion Index (SPEI) using the CRU data and found no significant difference from SPI (not
shown), confirming the dominant role of precipitation in determining the WC drought
(Otto et al. 2018).

To identify anthropogenic influence on the long-lasting drought, five CMIP6 mod-
el simulations were analyzed over 1901-2019: historical (ALL; 32 ensemble runs),
natural-only (NAT; 30), and greenhouse gas-only (GHG; 25), which give 289, 324, and
233 drought events, respectively. First, seven CMIP6 models were selected based on
the availability of multiple ensemble members (>3 members for ALL, NAT, and GHG;
see Table ES1 in the online supplemental information) and then the five models were
finally selected based on the performance of the seasonality of precipitation over WC
(Fig. ES1). The ALL simulations (ended in 2014) were extended up to 2019 using the
corresponding Shared Socioeconomic Pathway 2.45 or 3.70 scenario runs, which were
chosen based on the data availability considering their similar radiative forcing over
2015-19 (O’Neill et al. 2016). The ALL simulations include anthropogenic (increases in
greenhouse gases and aerosols) and natural forcings (changes in solar and volcanic
activities) while the NAT simulations contain only natural forcings. The GHG simu-
lations are driven by only greenhouse gas increases, designed to isolate responses
to GHG forcing from other forcings including aerosols, solar, and volcanic forcings
(Meinshausen et al. 2017).

We used an areal conservative remapping method to interpolate all model data onto
the observed grids (50 km x 50 km) before taking WC area means, which accounts for
fractional contributions of the input grid boxes to each output grid box. Next, we fitted
gamma distribution to regional mean precipitation from ALL simulations and then
used it to compute SPI-12 for the ALL, GHG, and NAT simulations of the corresponding
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Fig. 1. Time series of the water year (WY; November through October of the following year) (a) total precipitation and the (b)
3-yr and (c) 5-yr running means of the WY annual total precipitation. In (a)-(c), orange dotted lines depict the stations data
(1933-2017) used in Wolski et al. (2020). Also shown are ranks of the 5-yr mean precipitation over November 2014 through
October 2019 from the (d) GPCC and (e) CRU data. Colored grid cells in (d) and (e) depict our study region, the Western Cape
(red, orange, and yellow depict the lowest, second lowest, and third lowest, respectively, since 1901). Time series of monthly
drought (SPI-12) index over 2014-19 (f). Red and blue dashed lines depict the threshold values for drought onset and recovery,
respectively. (g) Duration of the observed drought events identified from the SPI-12 values: CRU (black), GPCC (green), and
GPCP (blue).

model. Finally, we computed the duration of each drought event as done in the obser-
vations and compared the simulated frequency of long-term (>2 yr) droughts [the ratio
of the number of long-term drought events to the number of all drought events] within
a 20-yr moving window (McCabe et al. 2004) with the observed.

To construct a multimodel probability distribution of drought duration, we used the
last 30-yr segment (1990-2019) from the ALL, GHG, and NAT simulations and fitted the
gamma distribution function to durations of identified drought events. We used the
maximum likelihood estimation method for parameter estimation. Fitted gamma dis-
tributions are well matched with histograms of drought durations (positively skewed
with a large range from months to years; see Fig. ES2).

We estimated the probability ratio of long-term drought duration [PR= (P, , or P, )/
(Py,), where P, , P_ ., and P, are the probabilities of exceeding the drought dura-
tion thresholds (2, 3, 4, or 5 years) from the ALL, GHG, and NAT ensemble runs, respec-
tively]. We computed 90% confidence interval (CI) of PR using a bootstrap method.
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Fig. 2. (a) 20-yr moving averages of the frequency of long-term drought events from

the observations (black circles, plus signs, and cross signs depicts CRU, GPCC, and GPCP,
respectively) and the frequency of long-term drought events (divided by total number of
drought events within the 20-yr moving window) from model simulations. Orange, red
and green dots depict the MME drought frequency from the ALL, GHG, and NAT forcing
runs, respectively. The error bars depict the range within plus or minus one standard de-
viation of the MME from each experiment runs. (b) Gamma distributions fitted to drought
duration from the ALL (orange), GHG (red), and NAT (green) forcing runs over the 1990
2019 period (see Fig. ES2 for histograms). (c) Probability ratios (PRs) between ALL and
NAT (orange) and between GHG and NAT (red) for drought duration = 2, 3, 4, and 5 years,
respectively. Lines indicate 90% confidence interval (Cl) range of PRs. See text for details.

We first randomly select a sample (with repetition) of 289, 324, and 233 drought events
from the fitted distribution of ALL, NAT, and GHG simulations, respectively. Then, we
fit the gamma distribution to the drought durations of random samples and calculate
P_,P and P, and PRs. Finally, we repeated the entire procedure 10,000 times

ALL’> © GHG? NAT

and estimated the 90% CI of PR.

Results.

The WC had anomalously low precipitation during the water year 2019 (WY 2019; de-
fined based on precipitation’s seasonality as November 2018—October 2019; Fig. 1a).
WY 2019 is the second and fourth driest since 1901 in CRU and GPCC, respective-
ly. Three- and five-year averages ending in 2019 are the driest in all three datasets
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(Figs. 1b,c). The extremely long-lasting drought started in early 2015 and continued by
WY 2017 (Otto et al. 2018). Rainfall in WY 2018 was still low but slightly higher than
rainfall in WY 2016. The dry conditions during 2019 ranked the 2015-19 precipitation
the lowest (since 1901) over 37% (GPCC) or 68% (CRU) area of WC (Figs. 1d,e), extending
the 2015-17 drought to December 2019 (Fig. 1f).

We detected 41, 43, and 15 events over 119, 119, and 41 years from the CRU, GPCC,
and GPCP precipitation-based drought index, respectively (Fig. 1g). The expected
return period of identified droughts ranges from 2.7 (119 years/43 events or 41/15) to
2.9 years (119/41). CRU and GPCC share longest droughts over 1925-28, 1944-48, and
2015-19 but with different ranks. The 2015-19 drought duration is the longest (CRU) or
third longest (GPCC) longest since 1901, with small differences (<4 months) among the
observational data (63, 59, and 61 months from CRU, GPCC, and GPCP, respectively).
GPCC and GPCP show no significant trend in the short-term (herein, <2 yr) and long-
term (22 yr) drought frequencies. CRU shows that four out of seven long-term droughts
occurred after 1995, but this might be partly due to station base changes identified by
Wolski et al. (2020). The disparity between datasets warrants further investigation of
uncertainty sources in gridded data.

The frequencies of long-term droughts in the GHG simulations show an upward
trend since 2000 (consistent with the CRU data) while the ALL and NAT simulations
show no trend over time (Fig. 2a). Over 1970s-1990s, high frequencies of long-term
droughts in GPCC are consistent with those in the ALL and GHG simulations. The mul-
timodel estimated gamma distribution (a red line in Fig. 2b) for GHG has a longer tail
than that for the ALL or NAT simulations, with little difference found between ALL and
NAT. This implies that the likelihood to have long sustained drought is significantly in-
creased by GHG increases while other external forcing such as anthropogenic aerosols
may offset the GHG-induced increase in long-term drought frequency.

The PR value from ALL and NAT simulations for 5-yr duration or longer is 0.8 (90%
CI of 0.3-2.3; Fig. 2c). The PR estimates for the duration of two, three, and four years or
longer are similar: 0.99 (0.8-1.3), 0.94 (0.6-1.6), and 0.9 (0.4-1.9), respectively. Little
difference in PR between ALL and NAT suggests a lack of significant anthropogenic
influence on multiyear drought frequencies over the WC region. In contrast, the PR es-
timates from GHG and NAT simulations show that greenhouse gas—-induced warming
increases the likelihood of droughts >5 years in duration (like the 2015-19 drought) by
a factor of 4.7 (the 90% CI of 1.9 to 11.6). The PR estimates for the drought with dura-
tion of 2, 3, and 4 years or longer are also larger than unity: 1.6 (1.2-2.0), 2.2 (1.4-3.4),
and 3.2 (1.7-6.1), respectively, supporting the important role of GHG forcing in driving
long-lasting droughts.

In summary, the 2015-19 WC drought is the longest (either the longest or third lon-
gest) drought on record since 1901, and still continues as of the end of 2019. Based on
the five CMIP6 simulations, which can reproduce the observed precipitation seasonal-
ity, GHG forcing has likely contributed to the increased probability of such long-lasting
drought, at least by a factor of 2, compared to conditions without human influences
(NAT). Results remain unaffected when including the two models that have lower per-
formance in precipitation seasonality, suggesting weak sensitivity of our attribution
results to model skills. Although some previous studies suggested Hadley cell expan-
sion as a possible mechanism for increased duration of short-term droughts (Ukkola
et al. 2020), historical simulations (ALL), including non-GHG anthropogenic forcings,
do not show clear increases in the frequency of long-term droughts. It suggests possi-
ble offsetting effects by anthropogenic aerosols (cf. Rowell et al. 2015). Quantifying the
relative contribution of GHG and other anthropogenic effects and exploring the asso-
ciated physical mechanisms including Hadley expansion influence (Garfinkel et al.
2015; Nguyen et al. 2015; Zhao et al. 2020) as well as El Nifio (Yuan et al. 2013; Otto et al.
2018) is an important task for the future risk assessment of the WC droughts.
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