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We report on the direct epitaxial growth of submicron-patterned SiC structures on Si~001! substrates
using supersonic molecular jet epitaxy and resistless e-beam lithography. Prior to SiC film growth,
an electron beam was scanned on hydrogen-passivated Si substrates in order to produce silicon
oxide lines with widths>60 nm. The SiC nucleation and growth rates were significantly reduced on
the oxidized regions during the subsequent supersonic jet epitaxial growth of SiC, which yielded
epitaxial, submicron-patterned SiC films. The effects of the growth temperature and e-beam dose on
the SiC growth and pattern linewidth are discussed. ©1999 American Vacuum Society.
@S0734-211X~99!00906-3#

I. INTRODUCTION

There is much interest in the growth and processing of
wide-band-gap semiconductors for high-temperature elec-
tronic device applications.1–4 For device fabrication, submi-
cron patterning of materials is increasingly needed. How-
ever, the high chemical stability of the wide-band-gap
semiconductors such as SiC and GaN makes it difficult to
use conventional etching techniques.5 Alternative microfab-
rication techniques have been developed using plasma-based
reactive ion etching~RIE! to overcome the high chemical
stability.5,6 However, RIE for SiC often results in surface
damage as well as contamination from the cathode material
through a micromasking effect.6

The residual contamination and material degradation
caused by RIE can be eliminated by selective area epitaxial
growth.7 For selective area epitaxial growth of SiC, conven-
tional chemical vapor deposition has been employed using a
submicrometer-thick silicon oxide layer to impede
nucleation.8,9 However, high growth temperatures above
1000 °C are required, which resulted in significant degrada-
tion of the microstructures.9 The degradation is more severe
for a thinner silicon oxide mask layer, which results in dif-
ficulty in making submicron-scale structures. This article re-
ports on the direct fabrication of SiC microstructures with
resolution>130 nm using supersonic molecular jet~SMJ!
epitaxy and resistless e-beam lithography.

The resistless patterning of semiconductor surfaces is of
particular interest for developing all-dry fabrication methods
for thin-film structures.10–12 For the resistless patterning,
scanning electron-beam lithography of a surface hydride
layer adsorbed on silicon has been developed.13 The combi-
nation of hydride patterning and SMJ growth prevents expo-
sure of the substrate to atmospheric and process-related con-
taminants and degradation of the microstructures due to the
contaminants or attempts at surface cleaning.

SMJ epitaxy has been employed as a hyperthermal growth
technique to reduce the SiC growth temperature.14,15 During
supersonic free-jet expansion into a vacuum chamber, indi-

vidual gas molecules undergo a large number of collisions
and in this process the enthalpy of the gas decreases while
the kinetic energy of the molecules increases. Higher kinetic
energies of film-growth molecules can be obtained by seed-
ing a heavy reactant methylsilane gas (SiH3CH3) in a light
carrier gas~He!. In the expansion, both components of the
gas mixture are accelerated to nearly the same velocity and
the kinetic energy of the heavy reactant molecules increases.
For the 10% SiH3CH3 in the He mixture used in this re-
search, the average translational kinetic energy of SiH3CH3

molecules is calculated to be 0.36 eV. Due to the hyperther-
mal kinetic energy and high central flux of the SiH3CH3

molecules, the growth temperature for SiC films could be
reduced as low as 700 °C.16

II. EXPERIMENTAL PROCEDURE

The hydrogen-passivated Si substrates were prepared us-
ing the following procedure. The Si substrates were de-
greased using trichloroethylene, acetone, and isopropylalco-
hol. After rinsing with deioinized water, the substrates were
oxidized in an ultraviolet ozone reactor and then were etched
in 4% dilute HF for 30 s to produce a hydride-passivated
surface immediately prior to loading them in the scanning
electron microscope~SEM! chamber.

Submicron selectivity for the growth of SiC was created
by resistless electron-beam lithography. The e-beam lithog-
raphy system consists of a commercial SEM configured for
external scanning mode. The typical beam currents used
were on the order of 40–60 pA. The electron dose was in the
range of 0.8–1.3mC/cm. The pressure in the chamber was
about 531027 Torr. The electron beam was scanned over
the hydrogen-passivated Si~100! substrates, resulting in local
desorption of hydrogen and subsequent formation of a thin
silicon oxide layer due to the presence of residual water va-
por in the chamber.13

After patterning, the samples were immediately loaded
into the SMJ growth chamber. The hydrogen on the Si sur-
face was desorbed by thermal annealing above 500 °C. The
SiC films were grown on the patterned Si~001! substrates in
an ultra-high-vacuum chamber with a typical base pressure
of mid-1029 Torr. The supersonic molecular jet of SiH3CH3

was generated via a nozzle with its orifice diameter of 200
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mm and normally incident on the substrate. During the depo-
sition, the main chamber pressure was monitored using a
capacitance manometer. A constant beam flux was main-
tained at the chamber pressure of 0.5–1.0 mTorr using a
needle valve. The substrates were radiatively heated using a
BN-coated ceramic heater supported on a Ta holder. The
growth temperatures investigated in this research ranged
from 680 to 900 °C as monitored by an optical pyrometer.

III. RESULTS AND DISCUSSION

The surface topography of submicron SiC structures was
investigated using atomic force microscopy~AFM!. After
the thin silicon oxide mask pattern was fabricated using an
e-beam line dose of 0.9mC/cm on the H-passivated Si sub-
strate, the SiC film~Yi056! was grown on the patterned
Si~100! at 750 °C for 15 min at a pressure of 0.5 mTorr. As
shown in Fig. 1, well-fabricated grid SiC microstructures
were obtained using the resistless electron-beam lithography
and SMJ. The typical thickness~height! of the structures is
10–20 nm and the average surface roughness is 3–4 nm. The
AFM image structure with continuous lines is as narrow as
200 nm, as Fig. 1 shows. The growth selectivity results from
the lower nucleation and growth rate of SiC on the silicon
oxide layer than on Si. Similar behavior was previously ob-
served in the Ge/Si system.7

The linewidths of the SiC microstructures were controlled
by the e-beam dose. Figure 2 shows AFM images of the SiC
microstructures fabricated with doses of 0.8~Yi052! and 1.3
~Yi055! mC/cm. For the higher dose, the linewidth broad-
ened to 350 nm, which may be due to increased hydrogen

desorption caused by increased heating. The variation of the
linewidth results presumably from the65% instability of the
patterned e-beam current.

The crystallinity of the as-grown patterned films was
characterized using x-ray diffraction~XRD! measurements.
Figure 3 shows typical XRD results for the films grown at
750 and 800 °C. The only XRD peak observed was at 41.4°,
corresponding to 3C–SiC~002!. This shows that the
submicron-patterned SiC has crystallized at 750 °C, with the
low-temperature crystallization presumably assisted by the
hyperthermal kinetic energy of the supersonic jet.16

The submicron patterns of 3C–SiC on Si~100! depended
significantly on the growth temperature. At temperatures be-
low 700 °C, the patterns were difficult to find because the
films were very thin everywhere. Increasing the growth tem-
perature to 750–780 °C produced thicker films with easily
observable patterns. This suggests that the silicon oxide pat-
terns generated by resistless lithography maintain their integ-
rity up to nearly 800 °C. However, SiC films grown above
800 °C did not show any pattern. The degradation of the
patterns at temperatures above 800 °C occurs presumably by
decomposition of silicon oxide and formation of volatile
SiO. According to Edgaret al.,9 a 284-nm-thick silicon ox-
ide layer was degraded at 950 °C. In our experiments, the
degradation of the much thinner~;few nm! oxide layers
started at the relatively low temperature of 800 °C.

IV. CONCLUSIONS

In conclusion, direct epitaxial growth of submicron-
patterned SiC was carried out on Si~001! using supersonic
molecular jet epitaxy and resistless electron-beam lithogra-
phy. The optimum growth temperature range was from 730
to 780 °C. For temperatures above 800 °C, the microstruc-
tures could not be fabricated due to degradation of the silicon
oxide mask. SiC microstructures with linewidths of 130–350
nm were achieved using scanned e-beam doses of 0.8–1.3
mC/cm.

FIG. 1. AFM image of patterned SiC structures grown on Si~100!. The
microstructures were grown at 750 °C for 15 min at a pressure of 0.5 mTorr.

FIG. 2. AFM image of SiC microstructures grown on Si~100! ~figure
dimension58.538.5 mm2!. Patterning using electron line doses of~a! 0.8
and ~b! 1.5 mC/cm resulted in linewidths of 130 and 350 nm, respectively.

FIG. 3. Typical XRD data of SiC films grown at temperatures (Tg) of
750 °C and 800 °C. Only an XRD peak of 3C–SiC~200! is shown.
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