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A comparative study of the dynamics of the electron beam-plasma system in two spatial dimensions
is carried out by means of particle-in-cell �PIC� simulation and quasilinear theory. In the literature,
the beam-plasma instability is usually studied with one-dimensional assumption. Among the few
works that include higher-dimensional effects are two- and three-dimensional quasilinear theory and
two-dimensional PIC simulations. However, no efforts were made to compare the theory and
simulation side by side. The present paper carries out a detailed comparative study of
two-dimensional simulation and quasilinear theory. It is found that the quasilinear theory quite
adequately accounts for most important features associated with the simulation result. For instance,
the particle diffusion time scale, the maximum wave intensity, dynamical development of the
electron distribution function, and the change in the wave spectrum all agree quantitatively.
However, certain nonlinear effects such as the Langmuir condensation phenomenon are not
reproduced by the quasilinear theory. Nevertheless, the present paper verifies that the simple
quasilinear theory is quite effective for the study of beam-plasma instability for the present choice
of parameters. © 2010 American Institute of Physics. �doi:10.1063/1.3529359�

I. INTRODUCTION

The electron beam-plasma �or bump-on-tail� instability
is a fundamental problem with a wide range of applications.
For instance, it is at the core of solar type II and type III
radio bursts. The beam-plasma interaction also characterizes
the laboratory discharge experiments. The simplest nonlinear
theory that may be employed to investigate the dynamical
evolution of the beam-plasma system is the well-known qua-
silinear theory.1–5 Quasilinear theory is applicable to rela-
tively early phase of nonlinear dynamics before mode-mode
coupling takes place. Beyond quasilinear saturation phase
the fully nonlinear dynamics can be further discussed by
more sophisticated theories such as the weak turbulence
theory.6–10

Quasilinear and weak turbulence theories are incoherent
theories based upon phase averages. Consequently, these
theories preclude coherent nonlinear processes such as the
particle trapping at the outset.11–13 One-dimensional �1D� ap-
proximation for the beam-plasma interaction is often satis-
factory when a strong magnetic field is present. In such a
case, the electron beam streaming along the ambient mag-
netic field predominantly excites Langmuir waves propagat-
ing along B field. However, for plasmas characterized by a
weak magnetic field such as the solar wind near 1 AU, 1D
assumption for the wave excitation is not appropriate. More-
over, in the context of the solar type II and/or type III burst
problem, the plasma emission rate depends on the angle be-
tween the wave vectors associated with the primary and
backscattered Langmuir waves.14,15 As a matter of fact,

strictly parallel and antiparallel Langmuir wave pairs do not
lead to the plasma emission. This makes the problem inher-
ently two-dimensional �2D� or even three-dimensional �3D�.

To investigate this problem with 1D approximation, Li
et al.14 projected the 2D �or 3D with cylindrical symmetry�
Langmuir wave spectrum onto one-dimension by assuming
that the 2D Langmuir wave spectrum occupies an arc-shape
domain in 2D wave number space. Their model is based
upon numerical solutions of the Zakharov equations.15,16

Broadening of the Langmuir wave spectrum in the perpen-
dicular direction to the beam is found by numerically inte-
grating the Zakharov equations in two-dimension,16 which
was attributed to three-wave decay processes.

In the literature, most analyses of the electron beam-
plasma interaction are performed under the simplifying 1D
assumption. However, some theoretical and numerical works
employ higher-dimensional effects.17–21 Bernstein and
Engelmann18 examined asymptotic solution of 3D quasilin-
ear equation. By employing the energy conservation prin-
ciple, they found that 3D plasma is qualitatively different
from a 1D plasma in that the Langmuir wave energy asymp-
totically decays away. Appert et al.19 numerically solved 2D
quasilinear equation and confirmed Bernstein and Engel-
mann’s conclusion.

The 2D particle-in-cell �PIC� simulations of the electron
beam-plasma instability were carried out by Dum and
Nishikawa20 and by Kasaba et al.21 Dum and Nishikawa20

presented time evolution of the Langmuir wave spectrum
and showed that the wave propagation and diffusion in the
perpendicular direction are quite significant. Kasaba et al.21

investigated the generation of electrostatic and electromag-
netic second harmonic emissions. These PIC simulations also
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demonstrated that the Langmuir wave energy dissipation in
2D is much more pronounced than in 1D simulations.

In spite of all these studies, there still remains a neces-
sity for further study of 2D Langmuir turbulence. For in-
stance, theoretical works in Refs. 18 and 19 were largely
concerned with asymptotic behavior. Simulation studies in
Refs. 20 and 21 focused on either the second harmonic emis-
sions or general Langmuir wave dynamics.

The purpose of this paper is to compare the predictions
of the quasilinear theory and the PIC simulation result in 2D
space. It should be noted, however, that in a recent series of
works, 2D quasilinear particle equation as well as the weak
turbulence wave kinetic equation for the Langmuir and ion-
acoustic turbulence were numerically solved.22–27 The wave
kinetic equations considered in these references not only
contain quasilinear �that is, linear wave-particle resonance�
effects but also nonlinear wave-wave as well as nonlinear
wave-particle interaction terms. In the present paper, only
quasilinear theory is taken into account for the benchmark
against the 2D PIC simulation. In this regard, the present
study and Refs. 22–27 are mutually complementary. The PIC
code includes not only quasilinear but fully nonlinear effects.
In order to compare the PIC simulation results with quasilin-
ear theory we shall limit our simulation to relatively short
runs.

The organization of this paper is as follows: In Sec. II
we present the quasilinear equations. Then in Sec. III we
explain our PIC simulation scheme and setup. The simula-
tion results are presented and interpreted in the light of qua-
silinear theory in Sec. IV. Subsequent two sections are de-
voted to the numerical analysis of quasilinear equations: The
numerical algorithm is discussed in Sec. V, and Sec. VI pre-
sents the numerical solutions of the 2D quasilinear equations.
Quantitative comparison to the PIC simulation results and
differences thereof are also discussed. Finally, Sec. VII con-
cludes the paper.

II. EQUATIONS OF QUASILINEAR THEORY

The equations of the quasilinear theory consist of the
electron kinetic equation and the Langmuir wave kinetic
equation.3–5,19,28,29 The particle kinetic equation for the elec-
trons is given by

�Fe

�t
=

�

�vi
�AiFe + Dij

�Fe

�v j
� , �1�

where Ai represents the drag term that arises from discrete-
particle effects, and Dij is the velocity-space diffusion coef-
ficient. They are defined by

Ai =
e2

4�me
� dk

ki

k2�k
L���k

L − k · v� ,

�2�

Dij =
�e2

me
2 � dk

kikj

k2 ���k
L − k · v�Ik

L.

Here, Fe is the electron distribution function normalized to
unity �	dvFe�v�=1�, Ik

L is the Langmuir spectral wave inten-
sity, �k

L and k are the Langmuir wave angular frequency and

wave vector, respectively, e is the unit electron charge, and
me is the electron mass. In the present discussion we ignore
nonresonant interactions, as the distribution of nonresonant
particles hardly change in the early phase of the beam-
plasma dynamics.4,5

Quasilinear Langmuir wave kinetic equation is given by

�Ik
L

�t
= Sk + 2�kIk

L, �3�

where the spontaneous emission term, Sk, and the linear
growth/damping rate associated with the induced emission,
�k, are given, respectively, by

Sk =
n0e2�pe

2

k2 � dv���k
L − k · v�Fe,

�4�

�k =
�

2
�k

L�pe
2

k2 � dv���k
L − k · v�k ·

�Fe

�v
.

In the above, �pe is the electron plasma angular frequency
defined by �pe= �4�n0e2 /me�1/2, where n0 is the average
plasma density.

III. PIC SIMULATION SETUP

The simulation is performed by using a 2D electrostatic
PIC code with a periodic boundary condition.30 The simula-
tion system is taken in the x-y plane. The number of spatial
grids is 512�512 and the total time steps are 10 240. The
grid size, �x, is equal to the electron Debye length �De, and
the time step, �t, is 0.1�pe

−1. Here, �De is defined by �De

= �	0Te /n0e2�1/2 and Te is the electron temperature. The simu-
lation is run till t=1024�pe

−1. The length and time are normal-
ized by x0=�De and t0=1 /�pe, respectively. The unit is cho-
sen such that 	0 is unity.

The plasma consists of three species: the background
electrons, ions, and the electron beam. The ratio of ion-to-
electron mass, mi /me, is set close to the real value, namely,
1600. The velocity distributions for the background electrons
and ions are Maxwellian in all directions with thermal speed
vts= �2Ts /ms�1/2 �s=e , i denote the background electrons and
ions, respectively�. The ion temperature is Ti=Te /10. The
beam electrons drift along x axis with velocity vb=5vte. To
reduce the numerical instability by the beam charge fluctua-
tion, we used fractional charges and masses for the beam
particles, yet keeping q /m to be the same as that of the
electron. Splitting beam electrons to fractional ones enhances
the statistical accuracy. The number of beam electrons ini-
tially allocated is 10% of n0, but because 1/5 of the mass and
charge are assigned for the beam electrons, the total beam
charge density in fact becomes 2%. In the simulation, the
additional charge introduced by the beam violates the charge
neutrality and thus the extra charge is artificially removed.

The initial velocity distribution for the electron beam is a
drifting Maxwellian with the beam thermal speed equal to
the background thermal speed, vtb= �2Tb /mb�1/2=vte. In our
simulation, 1080 background electrons, 108 beam electrons,
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and 1080 ions are used in each cell. Initially, background
electrons, the beam, and the ions are uniformly distributed in
space.

In order to identify the Langmuir wave, we take the
Fourier transformation of the electric field in both space and
time and obtain the power spectrum associated with longitu-
dinal electric field component by computing


Es
2 =
�k · E�k,���2

k2 .

Fourier transformation in time is then taken for the normal-
ized time interval ranging from, 
=0–102, 
=102–204, and

=614–716, where 
 is the normalized time defined by 

= t�pe. The resolution in angular frequency is 0.06�pe.

Theoretical Langmuir wave intensity is defined by


Es�k,��
2 = Ik
L��� − �k

L� . �5�

However, the above definition ignores the contribution from
fluctuations other than the plasma normal modes. The elec-
tric field intensity in the simulation contains contributions
from both the plasma normal modes, satisfying 	�k ,��=0,
and thermal fluctuations characterized by 	�k ,���0. Since
it is not possible to single out only the normal mode contri-
bution in the simulation, we define the Langmuir wave in-
tensity as follows

��k� = C�
�min

�max

d�
Es�k,��
2. �6�

The integral range is limited to the vicinity of the plasma
frequency, �min�0.8�pe and �max�1.2�pe. This ensures
that the contribution comes mainly from the plasma normal
mode, i.e., the Langmuir wave. The coefficient, C, is deter-
mined by matching the initial thermal fluctuation levels for
Langmuir waves obtained from the PIC simulation and
theory. The electron distribution function in 2D velocity
space, Fe�vx ,vy�, is obtained by dividing the number of elec-
trons in 2D velocity cell by the total number of electrons.

IV. SIMULATION RESULT

Figure 1 plots the electron distribution function,
Fe�vx ,vy�, in 2D velocity space �left-hand panels� and the
Langmuir wave intensity, ��qx ,qy�, in 2D wave vector space
�right-hand panels�, at several times. Here, qj =kjvte /�pe

=�2kj�De corresponds to the normalized wave number. The
temporal variable is normalized as 
= t�pe. 2D wave spec-
trum is shown on the right-hand panels from top to bottom in
Fig. 1, for the time intervals ranging from 
=0–102, 

=102–204, and 
=614–716. The left panels show the
change of electron distribution at 
=0, 102, and 614. For
early times, 
�200, the 2D evolution of the beam-plasma
instability follows the well-known pattern largely described
by 1D quasilinear scenario. That is, the beam distribution
develops a velocity-space plateau by the time the system has
evolved to 
�200 or so, and concomitantly, the Langmuir
wave initially grows over the wave number space satisfying
the resonance condition, �
k ·vb, namely, 0.2�qx�0.3
and 
qy
�0.3. The Langmuir wave intensity reaches the satu-
ration level around 
�200.

For later times �

102–204�, it can be seen that the 2D
spectrum of Langmuir waves begins to evolve into a D-shape
pattern. This is consistent with Refs. 22 and 23 where it is
reported that the nonlinear development of the beam-excited
Langmuir waves should evolve into a ringlike pattern in 2D
wave number space. Of course, the complete ring spectrum
is not achieved in our run since the total simulation time is
not sufficiently long. References 22 and 23 report that the
quasiring spectrum fully develops on time scale of the order
of 103–104�pe

−1.
The present result also justifies the arc-spectrum mod-

eled in Refs. 15 and 16. These references model the arc-
spectrum on the basis of Zakharov theory but the present PIC
simulation provides an independent verification of their
model.

The excitation of long wavelength �qx
0� Langmuir
modes is observed for 

614–716. The linear wave-particle
interaction is not responsible for the excitation of these
modes. These condensate modes seem to grow as a result of
nonlinear processes.31–33 According to the 2D weak turbu-
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FIG. 1. �Color online� Electron distribution function, Fe�v ,
�, in 2D veloc-
ity space �left� and Langmuir wave intensity, ��q ,
�, in 2D wave number
space �right� obtained from PIC simulation at �a� 
=0–102, �b� 

=102–204, and �c� 
=614–716.
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lence theory of Refs. 22 and 23, however, unlike 1D, the
condensate mode does get excited, but the present simulation
shows a condensate mode excitation. The exact reason for
the discrepancy between 2D nonlinear theory and the present
2D simulation is not known at this time.

We also observe that the total Langmuir wave intensity
decreases after it reaches the maximum value around the
quasilinear plateau stage. The result is not shown, however.
In the 1D case, the Langmuir wave saturates after the plateau
formation in the electron distribution function, since the lin-
ear growth rate, �k
�Fe /�v=0, becomes zero. In the 2D
case, on the other hand, the Langmuir wave experiences fur-
ther damping beyond the plateau formation. This is because
the wave damping in the 2D case is determined not only by
the parallel derivative, �Fe /�vx, but also the perpendicular
derivative of the electron distribution function, �Fe /�vy �see
Eq. �4��. Although the parallel derivative become zero after
the plateau formation, the linear damping rate does not di-
minish owing to the contribution from the nonzero perpen-
dicular derivative. This is consistent with the asymptotic
analysis of 2D and 3D quasilinear theory in Refs. 18 and 19
who reported gradual decrease in the Langmuir wave inten-
sity for multidimensional system.

According to Fig. 1, it can be seen that Langmuir waves
that are initially in the nongrowing short-wavelength portion
of the parallel wave number space �0.35�qx�0.5� begin to
grow for later times �

102 and beyond�. It turns out that,
coincident with the wave excitation, the electron distribution
develops new positive gradients in small vx and finite vy

range. The two phenomena, namely, the excitation of short-

wavelength modes and the formation of the new population
inversion, are related as we shall discuss more fully.

In Fig. 2, the cross sections of the 3D plots are presented
to illustrate more detailed features of the evolution. In Fig. 2,
we display the parallel �left panels� and perpendicular �right
panels� electron distribution functions shown in Fig. 1. The
parallel cross sections are taken at three different perpendicu-
lar velocities: �a� vy =0.28vte, �c� vy =1.98vte, and �e� vy

=3.11vte, while the perpendicular cross sections are taken at
parallel velocities given by �b� vx=1.98vte, �d� vx=3.11vte,
and �f� vx=4.81vte. For each panel we superposed the distri-
butions at three different times, 
=0, 102, and 614.

Figure 2�a� shows that the parallel cut in the distribution
taken at small vy resembles the 1D quasilinear picture in that
the initial core-plus-beam distribution can be seen to evolve
into a flattened plateau distribution at later times. However,
the parallel cross sections taken at increasingly higher values
of vy, especially Fig. 2�e�, show the formation of population
inversion at late times, 
=614. The new positive gradient
that develops late in time occurs near the parallel velocity
range 0�vx /vte�2. This newly developed positive gradi-
ents in small parallel velocities lead to the excitation of the
Langmuir waves in relatively higher parallel wave numbers.

The parallel velocity satisfying the 2D wave-particle
resonance condition, �k−kxvx−kyvy =0, is given by

�vx�res =
�k − kyvy

kx
.

In 1D or for small vy, the resonant parallel velocity, �vx�res

=�k /kx�vb, is restricted to the vicinity of the beam speed.
However, in 2D electrons having small vx but finite vy can
satisfy the wave-particle resonance condition.

The perpendicular cross sections of the distributions
shown in Figs. 2�b�, 2�d�, and 2�f� show that both the bulk
and beam electrons undergo slight perpendicular heating.
The broadening of the electron distribution functions in both
perpendicular and parallel direction was observed in previ-
ously 2D quasilinear analysis.19,22,23

We now discuss the details associated with the Langmuir
wave spectrum by considering parallel and perpendicular
cuts along qx and qy, respectively. Plotted in Fig. 3 are par-
allel �left-hand panels� and perpendicular �right-hand panels�
Langmuir wave spectral distributions. For the parallel cross
sections, fixed perpendicular wave numbers �a� qy =0, �c�
qy =0.052, and �e� qy =0.156, are considered, and for the per-
pendicular cross sections, �b� qx=0.208, �d� qx=0.295, and
�f� qx=0.399, are chosen. Initially, Langmuir waves in the
range 0.2�qx�0.3 for all qy begin to grow, as the left panels
show, and reach maximum intensity at 
=100–200. After the
saturation, part of the Langmuir wave spectrum damps while
other parts continue to grow. We associate this shift in the
Langmuir wave spectrum with the formation of positive gra-
dients at late times, as already been discussed in Fig. 2�e�.
Parallel wave number qx associated with the waves at later
times move to higher value owing to damping for small qx

and growth for high qx. The shift and broadening of the
Langmuir wave spectrum was also found in previous 2D
quasilinear studies.19,22,23
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FIG. 2. Cross sections of the electron distribution function shown in Fig. 1
taken along vx for fixed vy� �left panels� and along vy for fixed vx�s �right
panels�. The left-hand panels show to cross sections taken at �a� vy

=0.28vte, �c� vy =1.98vte, and �e� vy =3.11vte. The right-hand panels shows
perpendicular cross sections at �b� vx=1.98vte, �d� vx=3.11vte, and �f� vx

=4.81vte. For each panel we superposed the distributions at three different
times, 
=0, 102, and 614.
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Note the excitation of the long-wavelength modes in the
range qx�0.2 for time steps beyond 
�200. This is the
Langmuir condensate formation, which is usually discussed
in the framework of 1D weak turbulence theory.31–33 How-
ever, the recent 2D weak turbulence theory suggests that
such a condensate formation might be prohibited in 2D.22,23

Nonetheless, the present PIC simulation shows that the
Langmuir condensation is permitted after all. As noted pre-
viously the exact reason for the discrepancy is not known at
this time, but this calls for further theoretical investigation of
this phenomenon in higher dimensions.

Consider the perpendicular cross sections for qx=0.208
�Fig. 3�b��. Note that the initially growing waves undergo
significant damping over time. The wave spectrum for qx

=0.295 �Fig. 3�d�� is an intermediate case, but for qx

=0.399 �Fig. 3�f��, the waves actually increase in magnitude
over time. Again, this is consistent with previous
studies19,22,23 that show broadening and shifting of the wave
spectrum in 2D wave number space. As a matter of fact,
Refs. 22 and 23 show that over even longer time than is
presently simulated, the Langmuir wave spectrum should
evolve into a quasiring structure in 2D wave number space.
On the other hand, Refs. 14 and 15 modeled the 2D Lang-
muir wave with an arc-shape spectrum. The previous works
are thus consistent with the present simulation.

V. NUMERICAL ANALYSIS OF QUASILINEAR THEORY

To solve the quasilinear equations numerically we nor-
malize Eqs. �1�–�4� as follows

w =
�

�pe
, q =

kvte

�pe
, 
 = �pet ,

�7�

u =
v

vte
, f�u� = vte

3 Fe�v� , I�q� =
�2��2ĝIk

L

�mevte
2 �

,

where vte= �2Te /me�1/2, Te being the electron temperature. In
the above, the quantity ĝ is an effective plasma parameter

ĝ =
1

n0�De
3

1

23/2�4��2 . �8�

According to the above definition, the total Langmuir wave
intensity is given by 	dqI�q�=	dkIk

L / �8n0Te�. The normal-
ized dispersion relation is given by

wq
L = � 1 + 3q2/4, qx � 0

− �1 + 3q2/4� , qx � 0
� . �9�

Normalized electron quasilinear diffusion equation, �1�
and �2�, in 2D velocity space is given by

� f

�

=

�

�ui
�Āif + D̄ij

� f

�uj
�, �i, j = x,y� ,
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Āy
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4ĝ

3
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3
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�
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qx

2 + qy
2 � qx

2

qxqy

qy
2 � . �10�

In the above, D̄xy = D̄yx, and qx=qr1 ,qr2 are normalized reso-
nant parallel wave numbers

qr1 =
2

3
ux − ��, and qr2 =

2

3
ux + ��

and the quantity � is defined by

� =
4

9
ux

2 − qy
2 +

4

3
uyqy −

4

3
.

Normalized Langmuir wave kinetic equation is given by

�I�q�
�


= sq + 2�qI�q� ,

sq = ĝ
�

q2� du��wq
L − q · u�f�u� , �11�

�q =
�

2

wq
L

q2� du��wq
L − q · u�q ·

� f�u�
�u

.

After evaluation of the velocity integral with the delta func-
tion, the spontaneous emission term and linear growth/
damping rate can be written as

sq =
�ĝ

q2 � 1
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duyf��x,uy� +
1


qy

�

−�

�

duxf�ux,�y�� ,

0.0 0.2 0.4 0.6q x10-7

10-5

10-3

10-1

101

ι(
q

x
)

0.0 0.2 0.4 0.6q x10-7

10-5

10-3

10-1

101

ι(
q

x
)

0.0 0.2 0.4 0.6
qx

10-7

10-5

10-3

10-1

101

ι(
q

x
)

-0.4 -0.2 0.0 0.2 0.4qy10-7

10-5

10-3

10-1

101

ι(
q

y
)

-0.4 -0.2 0.0 0.2 0.4qy10-7

10-5

10-3

10-1

101

ι(
q

y
)

-0.4 -0.2 0.0 0.2 0.4
qy

10-7

10-5

10-3

10-1

101

ι(
q

y
)

(a) qy=0.000

(c) qy=0.052

(e) qy=0.156

(b) qx=0.208

(d) qx=0.295

(f) qx=0.399τ=0~102
τ=102~204
τ=614~716

FIG. 3. �Color online� Parallel �left-hand panels� and perpendicular �right-
hand panels� cross sections of the 2D Langmuir wave intensity shown in
Fig. 1.
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�q =
�

2

wq
L

q2 � qx


qx

�

−�

�

duy� � f�ux,uy�
�ux

�
ux=�x

+
qy


qy

�

−�

�

dux� � f�ux,uy�
�uy

�
uy=�y

� , �12�

respectively. In the above equation �x,y are resonant parallel
velocities given by

�x =
wq

L − qyuy

qx
,�y =

wq
L − qxux

qy
.

Equations �10� and �11� are solved using the ADI method.34

We use 2D velocity and wave vector spaces corresponding to
−10�ux�10 and −10�uy �10, and 1�10−6�qx�0.8 and
−0.8�qy �0.8, respectively.35

In the initial equilibrium, the Langmuir waves are sta-
tionary, �I�q� /�
=0. The initial Langmuir wave spectrum is
determined by balancing the spontaneous and induced
emissions.36 Considering a thermal electron distribution,
f�u�=�−1 exp�−u2�, the initial wave spectrum is computed
from the wave kinetic Eq. �11�

0 =� du��wq
L − q · u��ĝ − 2�wq

L�2I�q��exp�− u2� �13�

from which we obtain

I�q,0� =
ĝ

2�wq
L�2 =

ĝ

2 + 3q2 . �14�

If one ignores the spontaneous emission term, as is typical in
many studies, then the initial spectrum becomes arbitrary.
For instance, in Ref. 19 the initial wave spectrum was arbi-
trarily taken as a constant in the range of 10−2–10−6 times
the saturated wave intensity. In contrast, the initial wave
spectrum is rigorously calculated in our study. In the PIC
simulation the plasma parameter, g=1 /n0�De

2 , is approxi-
mately equal to 10−3 since we use 1080 background electrons
and ions for each cell whose area is �De

2 . Consequently, we
choose the similar value of g in the numerical analysis of
quasilinear theory.

The initial electron distribution function is a combina-
tion of a Maxwellian core distribution and a drifting Max-
wellian beam distribution

f�u,0� = �1 −
nb

n0
� exp�− �ux

2 + uy
2��

�

+
nb/n0

��b
exp�−

�ux − ub�2 + uy
2

�b
2 � . �15�

The beam-to-background electron number density is nb /n0

=0.02. The normalized beam drift speed and the beam ther-
mal speed are chosen in accordance with the simulation
setup, namely, ub=5.0 and �b=1.0.

Figure 4 shows f�ux ,uy� and I�qx ,qy� computed on the
basis of theoretical equations. The format is the same as Fig.
1. Major features found in the PIC simulation are repro-
duced, namely, the evolution of the particle distribution, and
the formation of D-shaped wave spectrum, as well as the
shifting and broadening of the spectrum. The fact that the

D-shaped wave spectrum could be reproduced indicates that
the formation of this spectrum shape is attributed to the lin-
ear wave-particle interaction. Of course, the waves with
negative qx cannot be generated with linear process alone.
The quasi-isotropic ring spectrum discussed by Ziebell et
al.22,23 must therefore rely on nonlinear processes. Neverthe-
less, it is important to note that the primary feature, namely,
the D-shaped, or equivalently, an arc-shaped spectrum, can
be largely accounted for on the basis of quasilinear theory.

There are some discrepancies between the theory and
simulation. We find that the perpendicular diffusion of the
beam is less prominent than in the simulation. The shift of
the wave spectrum to higher qx and the broadening is smaller
in the theoretical computation. We also find that the late time
�
=650� wave spectrum deviates from the intermediate �

=150� D-shape spectrum. Finally, long-wavelength conden-
sate mode is not excited. Although there is a feature which
theory cannot explain, it is remarkable that the simple qua-
silinear theory can largely account for most of the important
features in the PIC simulation.

Plotted in Fig. 5 are parallel and perpendicular electron
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distributions. The format is the same as Fig. 2. As one can
see, major features discussed in Fig. 2 are reproduced. Of
course, there are minor discrepancies, but the differences are
mostly quantitative.

Parallel �left-hand panels� and perpendicular �right-hand
panels� cross sections of the theoretical 2D wave spectrum
are shown in Fig. 6 in the same format as in Fig. 3. For the

parallel cross section we chose �a� qy =0, �c� qy =0.048, and
�e� qy =0.160, while for the perpendicular cross section, we
fixed �b� qx=0.208, �d� qx=0.296, and �f� qx=0.400. Waves
with 0.2�qx�0.3 and 
qy
�0.3 initially satisfy the resonant
condition, ��wq

L−q ·u�, so, they start to grow and reach the
maximum level around 
=150. The saturated wave level
�I�q��1� quantitatively agree with the simulation results.
For later times, 

200, the waves generally decrease in in-
tensity and shift to shorter parallel wavelength regime. This
behavior is qualitatively consistent with the simulation.
Since quasilinear theory excludes nonlinear effects, the long-
wavelength condensate mode is absent. Overall, the perpen-
dicular cross sections of the wave intensity shown on the
right-hand panels are also qualitatively consistent with the
simulation.

VI. DISCUSSION

In previous sections, we associated the dynamical evo-
lution of the wave spectrum with the population inversion in
the distribution function that develops late in time. In order
to verify that such an association is indeed justified, we show
in Fig. 7, the parallel velocities �x for various wave numbers.
The growth/damping rate �q is computed by integrating
��f /�ux�ux=�x

along the paths defined by the resonance con-
dition wq

L−q ·u=0 �they are shown as straight lines in Fig.
7�. We also show regions with initial positive gradient and
those that develop later in time. A significant portion of the
integral path for a given wave number �qx ,qy� must overlap
with the regions with positive gradient in order for �q to be
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positive. Note that the perpendicular derivative,
��f /�uy�uy=�y

, always have negative value, so it only contrib-
utes to damping.

Figure 7 provides a graphic justification for the associa-
tion between the change in the wave spectra and the dynami-
cal evolution of the particle distribution function. For in-
stance, the growth/damping rate for �qx ,qy�= �0.3,0.05� is
initially positive since the integral path passes through the
initial positive gradient region. At the later times, however,
when the beam evolves into a plateau, the initial positive
gradient disappears and the growth at �qx ,qy�= �0.3,0.05�
turns to damping. In contrast, the wave number �qx ,qy�
= �0.4,0.05� corresponds to an initially damped mode. How-
ever, it changes to a growing mode later in time as a result of
the late-time development of the parallel positive gradients
with finite perpendicular velocities.

VII. CONCLUSIONS

In the present paper we performed 2D PIC simulation
for the beam-plasma instability, comparing with the 2D qua-
silinear theory. In the literature, the beam-plasma instability
is usually studied in 1D, although some investigated higher-
dimensional effects. Among these are 2D and 3D analysis of
quasilinear theory,17–19 2D weak turbulence theory,22,23 and
2D PIC simulations.20,21 However, theoretical works and
simulations were carried out separately and no efforts were
made to compare the two approaches side by side. In this
paper, we have carried out a detailed comparative study of
the 2D simulation and 2D quasilinear theory in order fully
assess the validity of the quasilinear theoretical approach, as
well as the limitation thereof.

We found that the quasilinear theory can account for
most relevant features in the PIC simulation result. For in-
stance, the particle diffusion time scale, the maximum level
of the excited waves, development of new positive gradients
in the electron distribution at the later times, and change in
the spectrum shape from an elliptical to D-shaped profile, all
agree in a quantitative sense. However, the condensation
phenomenon was not be able to be reproduced in the theory.
It is noteworthy that the 2D weak turbulence theory per-
formed by Ziebell et al.22,23 report that the 2D effects seem
to inhibit the condensation, but the present 2D PIC code
simulation shows that the Langmuir condensate is formed
nevertheless. References 22 and 23 also report that over long
time scale �on the order of several thousand plasma periods�,
the eventual Langmuir wave spectrum should be that of a
quasi-isotropic ring spectrum in 2D wave number space. Our
simulation was not carried out long enough to verify such a
prediction, whose proof is left out for future study.
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