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Abstract

The mouse PERIOD1 (mPER1) plays an important role in the maintenance of circadian rhythm. Translation of mPer1 is
directed by both a cap-dependent process and cap-independent translation mediated by an internal ribosomal entry site
(IRES) in the 59 untranslated region (UTR). Here, we compared mPer1 IRES activity with other cellular IRESs. We also found
critical region in mPer1 59UTR for heterogeneous nuclear ribonucleoprotein Q (HNRNPQ) binding. Deletion of HNRNPQ
binding region markedly decreased IRES activity and disrupted rhythmicity. A mathematical model also suggests that
rhythmic IRES-dependent translation is a key process in mPER1 oscillation. The IRES-mediated translation of mPer1 will help
define the post-transcriptional regulation of the core clock genes.
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Introduction

A circadian rhythm, defined as an endogenously generated 24-

hour-periodic oscillation, is found in most of living organisms from

bacteria to human [1,2]. Since all living things on the earth are

influenced by the cycle of the sun, the robustness and the

modulation of the self-sustained rhythm are important for

efficiency of physiological processes and a quality of the life. The

generation mechanism of the circadian rhythm has been mainly

studied at the transcriptional and the post-translational level.

Transcriptional activation of BMAL1/CLOCK heterodimer

induces a synthesis of transcriptional repressors, such as Period

(Per) [3,4] and Cryptochrome (Cry) [5,6] that have E-box motif at their

promoter region, and PERIOD and CRYPTOCHROME protein

form PER/CRY heterodimer at cytoplasm, then PER/CRY

heterodimer translocates into the nucleus and represses BMAL1/

CLOCK activation [5,7]. In addition to the basic transcriptional

feedback loop, several factors such as DEC1, 2 [8,9], DBP [10],

E4BP4 [11,12] and NPAS2 [13,14] are also identified as clock

elements; moreover, a variety of kinases, phosphatase, acteylase,

and ubiquitin ligases such as CK1d/e [15–17], PP1 [18,19],

SIRT1 [20,21], b-TRCP [22], and FBXL3 [23–25] are partici-

pated at the post-translational level. Combining all these factors,

the circadian rhythm is able to sustain a 24-hour periodicity from

the interlocked transcriptional and post-translational feedback

loops.

Recent studies have been reported that post-transcriptional

regulation is important for fine-tuning of the circadian rhythm. A

few studies identified internal ribosomal entry site (IRES)-

mediated translation modulated by RNA-binding proteins that

play a role as IRES trans-acting factors (ITAFs) with binding to

IRES-containing 59-UTR of clock gene mRNA[26–28]. Several

other studies showed mRNA degradation by RNA-binding

proteins with their binding to 39-UTR of clock gene mRNA[29–

32]; therefore, these studies suggested that post-transcriptional

regulation can modulate the amplitude and the phase of the

circadian oscillation. Although relatively mild alteration might be

derived by post-transcriptional regulation, it is important to

understand how the rhythm is controlled in response to various

external conditions.

Period1 is one of the well-known clock genes in the mammalian

circadian system. In accordance with the previous reports that Per1

knockout mice show an altered period [33], the circadian

expression of Per1 is important in generation and maintenance

of the rhythmicity. It was reported that rhythmic cap-independent

translation mediated by HNRNPQ is taken place on the IRES in

mPer1 59UTR, and knock-down of HNRNPQ decreases the

amplitude of PER1 protein oscillation without alteration of mPer1

mRNA oscillation [28], suggested the evidence that post-

transcriptional regulation is important for circadian mPer1

expression. However, cellular IRES activity is typically lower than

viral IRESs [34]. Indeed, the portion of IRES-mediated transla-

tion could be very low in overall translation of each gene [35].

Here, we compared IRES activity of mPer1 with other genes.

We present that mPer1 IRES activity is critical to maintain the

circadian rhythmicity of mPER1 protein through binding of

HNRNPQ to specific region of mPer1 59UTR. We also propose a

mathematical modeling to explain molecular mechanisms of

circadian rhythm-dependent mPer1 translation.
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Results

Cap-independent Translation of mPer1
Rapamycin induces hypophosphorylation of eIF4E-binding

proteins (4E-BPs) and p70-S6 kinase (S6K1), causing inhibition

of canonical cap-dependent translation [36,37]. Phosphorylated

active S6K1 can stimulate the initiation of protein synthesis

through activation of S6 ribosomal protein (S6RP) and other

components of the translational machinery [38]. When cells were

treated with rapamycin to inhibit the cap-dependent translation,

the levels of both phospho-S6 ribosomal protein (pS6RP) and

phospho 4E-BPs were decreased, with no change in the level of

mPER1 protein (Figure 1A and Figure S1). However, the general

protein biosynthesis inhibitor, cycloheximide (CHX), induced a

dramatic decrease in mPER1 protein. We also checked mRNA

levels. Vehicle and cycloheximide did not change mPer1 mRNA

levels (Figure 1B). Rapamycin actually slightly increased mPer1

mRNA levels. Nevertheless, rapamycin did not decrease mPER1

protein levels. Rapamycin and cycloheximide also did not change

other housekeeping mRNA levels of mouse actin beta (mActb),

mouse glyceraldehyde-3-phosphate dehydrogenase (mGapdh) and

mouse ribosomal protein L32 (mRpl32) (Figure 1C, D, E). We also

checked real-time PCR results whether the PCR signals were in

the linear range by showing amplification plot (Figure S2). These

results suggest that an alternative translational system which is cap-

independent translation can be involved in maintaining mPER1

protein levels.

IRES Activity of mPer1 59UTRs
mPer1 has two forms of 59UTRs (e1A:183 bp; e1B:194 bp) by

alternative promoter usage. Two 59UTRs are consisted of the

first exon which is different from each other and the common

second exon which has the start codon. Although the IRES

activity of mPer1 is reported previously, the extent of mPer1

IRES activity was not known, and IRES activity of mPer1 could

be weak [28]. To know the strength of IRES activity of mPer1,

we compared the IRES activity with other 59UTRs which are

well-known to have cellular IRES, heat shock 70 kDa protein 5

(HSPA5, also known as Bip) and v-myc myelocytomatosis viral

oncogene homolog (c-Myc)[39–41] by using bicistronic reporter

system. The bicistronic reporter plasmids produce bicistronic

mRNA consisting of Renilla luciferase (Rluc), which is translated

in a cap-dependent manner, followed by Firefly luciferase (Fluc)

under the translational control of intergenic 59UTR sequences

(Figure 2A). FLUC activity reflects the IRES activity of the

inserted intergenic sequences. The IRES activities of the mPer1

59UTRs were stronger than those of the Bip 59UTR and slightly

weaker than those of the c-Myc 59UTR (Figure 2B). The

integrity of bicistronic mRNAs was also checked by Northern

blotting, which confirmed that the induction of Fluc translation

was not caused by altered mRNA stability, transcription, or the

presence of cryptic promoter activity or splice acceptors that

produce monocistronic products (Figure 2C). 59UTRs of mPer1

also did not change mRNA stability (Figure S3). These results

suggest that IRES activity of mPer1 is not weak but quite strong

to modulate overall mPER1 protein levels.

HNRNPQ Binding Site and mPer1 IRES Activity
HNRNPQ was identified as an important ITAF for mPer1

translation [28]. It was also reported that 144 mPer1 59UTR

reporter exhibited IRES activity similar extent to the full length

59UTR of mPer1, but 63 reporter showed ,70% decreased

IRES activity compared to the full length. The truncated 63

reporter could not bind to HNRNPQ. The previous study

concluded the region between 144 and 63 of the mPer1 59UTR

is important for IRES function (Figure 3A). Knockdown of

HNRNPQ decreased immunoprecipitated HNRNPQ (Figure

S4A). The samples immunoprecipitated by anti-HNRNPQ

antibody in panel A were subjected to total RNA preparation,

and mPer1 mRNA levels were checked by real-time PCR.

Knockdown of HNRNPQ dramatically reduced co-immunopre-

cipitated mPer1 mRNA levels (Figure S4B). These results

confirmed that the interaction between HNRNPQ and mPer1

mRNA is specific. To identify important regions in the mPer1

IRES for HNRNPQ binding more clearly, we designed and

prepared oligonucleotides with specific sequences in the 59UTR

of mPer1 (Figure 3A). The positions of competitive oligonucle-

otides were depicted as the asterisk on the top of nucleotides

which are starting points of competitive oligonucleotides (Figure

S5). UV cross-linking of HNRNPQ and mPer1 59UTR was

performed in the presence of competitive oligonucleotides.

Competitive oligonucleotide 51 and 89 decreased the interaction

between mPer1 59UTR and HNRNPQ (Figure 3B). Although

the sequence of oligonucleotide 51 partially overlaps sequences

of competitor 41A and 48B, only 51 could compete with mPer1

59UTR for HNRNPQ binding (Figure 3C). It is likely that both

specific sequences in the mPer1 59UTR and the secondary

structure of the mRNA are important. From these results, we

could narrow down the HNRNPQ binding region.

We deleted the competitor 51 or 89 region in the mPer1

59UTR (e1AD51, e1AD89, e1BD51 and e1BD89) and UV cross-

linking studies with these deletion mutant constructs revealed

that the competitive oligonucleotide 51 region (e1AD51 and

e1BD51) is important for HNRNPQ binding (Figure 3D). The

IRES activities of mPer1 59UTRs were monitored via transfec-

tion with bicistronic reporter mRNAs containing full length,

e1AD51, and 63 of mPer1 59UTR in the intercistronic regions

(Figure 3E). The RNA transfection method was used to

eliminate the possibility of aberrant mRNA production through

a putative cryptic promoter or cryptic splicing acceptor in mPer1

IRES that might be occurred when bicistronic mRNAs are

generated by DNA transfection. When we transfected reporter

mRNAs, IRES activity of the e1AD51 mutant was decreased

similar to construct 63 reporter which does not have HNRNPQ

binding region (Figure 3F). To verify the function of the mPer1

IRES under physiological conditions with circadian rhythm, we

transfected dexamethasone-treated synchronized cells with e1A

or e1AD51 reporter mRNAs as a time course and then studied

IRES activity. Wild-type mPer1 59UTR e1A showed a rhythmic

translation profile, but e1AD51 exhibited low IRES activity with

dampened rhythmicity (Figure 3G). From these results we could

find the HNRNPQ binding region in the mPer1 59UTR, and

demonstrate that HNRNPQ is important for rhythmic IRES

activity.

Rhythmic Phosphorylation of HNRNPQ
HNRNPQ is important RNA binding protein for the

translational regulation of Nr1d1, Per1 and Per3 [27,28,42].

Rather than the HNRNPQ protein itself exhibiting circadian

rhythm, it was the interaction between HNRNPQ and mRNA

that was rhythmic, and their binding was strongest at the

protein peak time. Posttranslational modification of HNRNPQ,

such as phosphorylation, may have an effect on the rhythmic

interaction. HNRNPQ may be phosphorylated on tyrosine

residue. It has been shown that the binding of RNA to

HNRNPQ specifically inhibited HNRNPQ phosphorylation

[43]. Based on this, we thought that phosphorylation of

HNRNPQ might affect its binding affinity to mRNA. There-

HNRNPQ Modulates Rhythmic IRES Activity of mPer1
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fore, we tested whether phosphorylation of HNRNPQ was time

dependent; we found that tyrosine phosphorylation of

HNRNPQ was rhythmic and showed a reciprocal profile to

mPER1 (Figure 4A). We also confirmed by immunoprecipita-

tion that the band detected with anti-pTy antibody was

HNRNPQ. Co-immunoprecipitated mPer1 mRNA by

HNRNPQ antibody in Figure 4A showed higher level on 8 h

than 20 h (Figure 4B). We assume that rhythmic phosphoryla-

tion of HNRNPQ may be one of the mechanisms allowing a

time-dependent interaction between HNRNPQ and mPer1

mRNA, and phosphorylated HNRNPQ may associate with

mPer1 mRNA more weakly.

Mathematical Modeling
A mathematical model used in biology provides not only a

theoretical background and systemic understanding of various

biological phenomena but reasonable predictions without further

experiments. To clarify the role of HNRNPQ in the IRES-

mediated translation of mPer1 mRNA in our study, a mathemat-

ical model was generated to describe our experimental results (see

Figure 1. Cap-independent translation of mPer1. (A) Rapamycin (Rapa) or cycloheximide (CHX)-treated NIH 3T3 cells were harvested at
indicated time points; then the protein levels were checked by immunoblotting. (B, C, D and E) Vehicle (DMSO)-, rapamycin (Rapa)-, or cycloheximide
(CHX)-treated NIH 3T3 cells were harvested at the indicated time points; then mRNA levels were checked by real-time PCR with specific primers, (B)
mPer1, (C) mActb, (D) mGapdh and (E) mRpl32. mRNA levels were shown as cycle threshold (Ct) value.
doi:10.1371/journal.pone.0037936.g001

HNRNPQ Modulates Rhythmic IRES Activity of mPer1

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e37936



Methods). We fitted circadian mPer1 mRNA and mPer1 mRNA-

bound HNRNPQ levels into the mathematical functions of the

cosine with a period of 24 hours. The equation for mPER1 protein

expression contained the processes of cap-dependent translation,

cap-independent translation, and degradation. We assumed here

that the mPer1 mRNA-bound HNRNPQ level is proportional to

the total HNRNPQ level, and HNRNPQ knockdown reduces

both the mPer1 mRNA-bound HNRNPQ level and the IRES-

mediated translation of mPer1 mRNA because the rate of IRES-

mediated translation is proportional to the amount of HNRNPQ-

bound mPer1 mRNA. We also verified our assumption that

knockdown of HNRNPQ decreases HNRNPQ associated mPer1

mRNA (Figure S4A, S4B). Additionally, we assumed that mPER1

protein degradation is determined as the product of the coefficient

for degradation rate and the amount of mPER1 protein. In our

assumption, the coefficient for protein degradation was equal to

ln2/tK (mPER1 protein half-life), with tK determined experi-

mentally (data not shown). The simulation results showed the

temporal variations in the amount of mPER1 protein depended on

the HNRNPQ level. The results were consistent with the

experimental data, showing that the amount of mPER1 protein

was reduced as the HNRNPQ level decreased (Figure 5A);

moreover, the model suggests that the amount of mPER1 protein

is linearly proportional to the HNRNPQ level (Figure 5B). In such

a condition, however, we could not obtain the phase delay of

mPER1 protein according to the HNRNPQ knockdown. We

introduced a term for mPER1 protein stability correlated with

HNRNPQ level into the equation, since mPer1 mRNA was not

influenced by HNRNPQ.

We introduced into the equation a term for mPER1 protein

stability as a function of HNRNPQ; the phase of mPER1 protein

became delayed when the HNRNPQ level was decreased (mimcs

a knockdown condition) (Figure 5C), and the phase of mPER1

protein became advanced when the HNRNPQ level was increased

(mimics an over-expression condition) (Figure 5D). The amplitude

of mPER1 protein was also influenced by the HNRNPQ level as

expected, but the amplitude of mPER1 protein became saturated

with excess level of HNRNPQ (Figure 5E). These results suggest

that IRES-mediated translation of mPer1 mRNA by HNRNPQ is

important to determine the circadian oscillation of mPER1

protein.

Discussion

mPer1 is an important clock component that is part of the core

feedback loop in the circadian rhythm system [3,4]. mPer1 is

thought to be essential for maintaining biological rhythm and

phase resetting [33,44]. Recently, it was reported that expression

of mPer1 is mediated by IRES-dependent translation [28]. IRES

activity of mPer1 showed rhythmicity during circadian time and

rhythmic expression of mPER1 was mediated by time dependent

interaction between HNRNPQ and mPer1 mRNA.

In the present study, we compared IRES activity of mPer1 with

other genes which are well-established cellular IRESs. From these

results, we could find that the IRES activity of mPer1 was quite

potent that enough to modulate circadian rhythm. However,

cellular IRES activity is typically lower than viral IRESs [34].

Indeed, translation rate constants of each cellular genes are

Figure 2. IRES activity of mPer1 59UTRs. (A) Schematic diagram of bicistronic reporter plasmids. 59UTRs were inserted into intergenic region
between Rluc and Fluc. Bicistronic reporter plasmid (pRF), Renilla luciferase (Rluc), and firefly luciferase (Fluc). (B) NIH 3T3 cells were transiently
transfected with bicistronic reporters that harbor 59UTRs of Per1, Bip, and c-Myc. After 24 h incubation, cells were subjected to luciferase assay. The
results are expressed as the mean 6 SEM. (C) Bicistronic reporters that harbor 59UTRs were transfected to HEK 293A cells. After 24 h, cells were
harvested, and total RNAs were prepared and subjected to Northern blotting. Total RNA (2.5 mg) was hybridized with a specific probe for the Fluc
coding region. 18S and 28S RNAs are shown as controls. The data was quantified by measuring the ratio of Fluc/28S.
doi:10.1371/journal.pone.0037936.g002
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variable and not uniform [45]. IRES activity of some cellular

genes is weak, however it could be critical for the translation of

those genes [46–48]. To know the potency of mPer1 IRES more

clearly, checking the portion of IRES-mediated translation in

overall mPer1 translation is needed.

We could also determine quite selective HNRNPQ binding

region in the mPer1 59UTR. Deletion of HNRNPQ binding

region (e1AD51 construct) showed marked decrease in IRES

activity with dampened rhythmicity. But HNRNPQ binding was

not completely disappeared in e1AD51 (Figure 3D). We think that

the deleted region of e1AD51 is important for HNRNPQ binding,

but other region also contributes to the binding.

There were rhythmic changes in the level of phospho-

HNRNPQ during circadian time (Figure 4). Our results suggest

that differential phosphorylation of HNRNPQ during circadian

time could occur and result differential binding of HNRNPQ to

mPer1 59UTR. HNRNPQ can be phosphorylated by several

kinases, including protein kinase C [49], insulin receptor tyrosine

kinase [43], and probably by ATM or ATR [50,51]. Among them,

only insulin receptor phosphorylated the tyrosine residue of

HNRNPQ [43]. A few reports have suggested a role for tyrosine

kinases in circadian regulatory mechanisms. In the mammalian

suprachiasmatic nucleus, the Src-family tyrosine kinase Fyn proto-

oncogene (Fyn) appears to be involved in the regulation of the

circadian core oscillator, as Fyn2/2 mutant mice shows a

significantly longer circadian period than that of wild-type mice

[52]. It has been shown that Src-family members, including c-Src,

Lck and c-Yes, were expressed in the retina[53–56], and Src-

family tyrosine kinases have been shown to be activated in the

retina on photic stimulation [57]. At present, it is not clear which

circadian regulated tyrosine kinases and phosphatases are involved

in HNRNPQ phosphorylation. To further clarify the relationship

between mPer1 mRNA and HNRNPQ with overall circadian

system, it would be valuable to find the protein kinase and

phosphatase responsible for HNRNPQ phosphorylation.

The possibility that HNRNPQ modulates other clock genes also

should be considered. The results indicated that HNRNPQ could

directly bind to the 39UTR of mCry1 (Figure S6). As HNRNPQ

binds to mRNA of mPer1 and other clock genes, the knockdown of

HNRNPQ or mPer1 can lead to a different outcome. To

understand the function of HNRNPQ in the overall clock system,

further studies of the core clock protein levels should be done.

We have defined the role of HNRNPQ in IRES-mediated

mPER1 protein translation and interpreted the regulatory

processes with a mathematical equation. From our observations,

mPer1 mRNA oscillated over a period of 24 h was not significantly

influenced by HNRNPQ knockdown. In addition, with the level of

HNRNPQ constant, the level of HNRNPQ-bound mPer1 mRNA

oscillated. To generate a mathematical model describing mPER1

protein expression as a function of HNRNPQ, we assumed that

Figure 3. HNRNPQ binding site and mPer1 IRES activity. (A) Schematic diagram of serially deleted mutation strategy and design of competitive
oligonucleotides to perform UV cross-linking with oligonucleotide competition. (B and C) Radiolabeled in vitro transcribed RNAs were incubated with
cytoplasmic extracts and competitive oligonucleotide for in vitro binding. Then UV cross-linking was performed. (D) Radiolabeled deletion mutants
RNAs, e1BD51 and e1BD89, were subjected to UV cross-linking. (E) Schematic diagram of bicistronic mRNA reporter of mPer1 59UTRs; 7-methyl-
guanosine (m7G) and 20-nt-long poly(A) tail [poly(A)20]. (F) In vitro transcribed reporter mRNAs of 59UTRs were transfected, then a luciferase assay
was performed. The activity of the mock was set to 1 (n = 3). (G) Bicistronic mRNA reporters, e1A and e1AD51, were transfected into synchronized
cells. After 6 h, cells were harvested at indicated time points; and then luciferase activity was checked. The activity of e1A at ,20–26 time point was
set to 1 (n = 3).
doi:10.1371/journal.pone.0037936.g003

Figure 4. Rhythmic phosphorylation of HNRNPQ. (A) Dexamethasone-treated NIH 3T3 cells were harvested at the indicated time points, and
then proteins were prepared under a phosphatase-free condition. Extracts were used for immunoprecipitation with HNRNPQ-specific antibody or
IgG; then immonoblotting was performed with pTy- or HNRNPQ- specific antibodies. The blot for detection of HNRNPQ was stripped, and pTy bands
were detected by pTy-specific antibody. (B) The one to fifth of the samples immunoprecipitated by HNRNPQ in panel A were subjected to total RNA
preparation, then real-time PCR was performed.
doi:10.1371/journal.pone.0037936.g004
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Figure 5. Mathematical modeling and summary. (A) Numerical simulation of the model describing the circadian PER1 protein expression. The
solid and dotted curves indicate the level of mPER1 protein treated with Con_si and hnQ_si for HNRNPQ knockdown, respectively. (B) The relation
between the amplitude of mPER1 protein and the level of HNRNPQ was obtained by numerical simulation using the model. (C) Numerical simulation
of the model describing the circadian mPER1 protein expression with the assumption that mPER1 protein stability was influenced by the level of
HNRNPQ. The solid and dotted curves indicate the level of mPER1 protein treated with Con_si and HNRNPQ-specific hnQ_si, respectively. (D) The
model described mPER1 protein stability as a function of HNRNPQ and predicted the effect of HNRNPQ on both the amplitude and phase of the
mPER1 protein oscillation. (E) The amplitude of mPER1 protein was described as a function of HNRNPQ levels. However, the relationship was not
linear; mPER1 protein became saturated when HNRNPQ was abundant. (F) The proposed model for rhythmic translation of mPer1 as a key regulatory
mechanism of circadian mPER1 expression.
doi:10.1371/journal.pone.0037936.g005
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the synthesis and degradation of HNRNPQ determined the level

of mPER1 protein and wrote the mathematical terms according to

the law of mass action. HNRNPQ participates in cap-independent

translation as an ITAF. Therefore, HNRNPQ knockdown

influences cap-independent translation. With the additional

assumption that protein degradation is proportional to the amount

of mPER1, we numerically simulated the model and confirmed

the role of HNRNPQ on mPER1 protein expression. This result

was consistent with findings, showing that the amplitude of

mPER1 protein was a function of the level of HNRNPQ, but it did

not show the phase delay in mPER1 protein after HNRNPQ

knockdown. When we introduced mPER1 protein degradation

rate as a function of the amount of HNRNPQ, we were able to

demonstrate the phase delay in mPER1 protein oscillation. The

relationship between HNRNP Q and mPER1 protein needs to be

explored in further studies.

Material and Methods

Cell Culture, and Drug Treatment
NIH 3T3 cells were obtained from Korean Cell Line Bank

(KCLB No. 21658). NIH 3T3 cells were cultured in DMEM

(HyClone) with 10% fetal bovine serum (HyClone) and 1%

antibiotics (WelGENE) and maintained in a humidified 95% air/

5% CO2 incubator. The circadian oscillation of NIH 3T3 cells

was synchronized by treatment with 100 nM dexamethasone.

After 2 h, the medium was replaced with complete medium

[31,32]. To block the translation system, NIH 3T3 cells were

treated with 20 nM rapamycin or 100 mg/ml cycloheximide, and

then harvested at the indicated times.

Plasmid Constructions
mPer1 59UTRs (e1A, e1B) were amplified from mPer1 cDNA

using Pfu polymerase (Solgent). The resulting products were

cloned into the SalI/SmaI site of the intercistronic region of a pRF

bicistronic vector containing Renilla luciferase (Rluc) in the first

cistron and firefly luciferase (Fluc) in the second cistron [26].

For the in vitro binding assay/UV cross-linking, fragments of

mPer1 59UTR were amplified, and the PCR products were

digested and subcloned into the EcoRI/XbaI site of the pSK9

vector [29] to generate pSK9-e1A, pSK9-e1B, pSK9-144, and

pSK9-63. To perform UV cross-linking with oligonucleotides

competition, pSK9-e1AD51, pSK9-e1AD89, pSK9-e1BD51 and

pSK9-e1BD89 were generated.

To generate the bicistronic mRNA reporter for mRNA

transfection, pCY2-RFe1A, pCY2-RFe1B, and pCY2-RF63 were

constructed as follows: The 59UTRs of mPer1 were cut from

pRFe1A and pRFe1B and pRF63 using SalI/BamHI and inserted

into the SalI/BamHI site of pCY2-RF [26]. pCY2-RFe1AD51,

pCY2-RFe1AD89, pCY2-RFe1BD51, and pCY2-RFe1BD89 were

constructed by deletion mutagenesis with Dpn I digestion.

Transient Transfection
For expression of the reporter constructs in NIH 3T3 cells, the

NeonH Transfection System (Invitrogen) was used as recom-

mended by the manufacturer. The reporter mRNA transfection

was performed as follows: NIH 3T3 cells were transiently

transfected with 2 mg of the capped bicistronic reporter mRNA

using lipofectamine2000 (Invitrogen) and incubated for 6 h. In the

case of time-dependent transfection, NIH 3T3 cells were treated

with dexamethasone and transiently transfected with 2 mg of the

capped bicistronic reporter mRNA at intervals and incubated for

6 h for harvest.

In vitro RNA Synthesis, in vitro Binding, UV Cross-linking
For in vitro binding assays, [32P]UTP-labeled RNA was

transcribed from XbaI-linearized recombinant pSK9 vectors with

T7 RNA polymerase (Promega). For mRNA transfection, the

bicistronic pCY2 plasmids were linearized with EcoRI. This

plasmid contains a 20-nt-long poly(A) tract between XhoI and

EcoRI restriction sites. Reporter mRNA was generated in vitro

from the linearized plasmid with SP6 RNA polymerase (Promega)

in the presence of the ribo m7G cap analog (Promega).

In vitro binding and UV cross-linking were performed as

previously described [26]. Briefly, equal amount of labeled RNAs

were incubated with 30 mg cytoplasmic extracts from NIH 3T3

cells for 20 min. After incubation, the samples were UV-irradiated

on ice for 15 min with a CL-1000 UV-crosslinker (UVP).

Unbound RNA was digested with 5 ml RNase cocktail (RNase A

and RNase T1). The reaction mixtures were analyzed by SDS-

PAGE and autoradiography. For UV cross-linking and oligonu-

cleotides competition, oligonucleotides were added at 1 mM to the

RNA-protein binding reaction mixtures and UV cross-linking was

performed. The sequences of competitive oligonucleotides are

provided in Table S1.

RNA Quantification, Immunoprecipitation-RT-PCR
mRNA levels were detected by quantitative real-time PCR

using StepOnePlus real-time PCR system (Applied Biosystems) as

previously described [28]. Immunoprecipitation-RT-PCR was

performed as previously reported [28]. In briefly, immunoprecip-

itation was performed under RNase-free condition. RNA was

extracted from the one fifth volume of washed agarose bead with

an RNA isolation solution (Molecular Research Center). Then,

reverse transcription and quantitative real-time PCR were

performed.

Immunoblot Analysis
Immunoblot analyses were performed with polyclonal anti-

PER1, monoclonal anti-HNRNPQ (SIGMA), polyclonal anti-

phospho-S6 ribosomal protein (Ser 235/236; Cell signaling),

monoclonal anti-GAPDH (Millipore), monoclonal PY-20 (Trans-

duction Laboratories), polyclonal anti-phospho 4EBP (Cell

Signaling) and monoclonal anti-14-3-3f (Santa Cruz Biotechnol-

ogy) as primary antibodies. HRP-conjugated species-specific

secondary antibodies (KPL) were visualized using a SUPEX

ECL solution kit (Neuronex) and a LAS-4000 chemiluminescence

detection system (FUJI FILM). Acquired images were analyzed

using Image Gauge (FUJI FILM) according to the manufacturer’s

instructions.

Mathematical Modeling
Based on our observations, the total mPer1 mRNA and

HNRNPQ Q-bound mPer1 mRNA curves were fitted into the

cosine waves with a period of 24 h as

M~0:5| cos p| tz4ð Þ=12ð Þz1:01ð Þ

And

B~0:75| cos p|t=12ð Þz1:75

where M and B are the relative amounts of total mPer1 mRNA

and HNRNPQ -bound mPer1 mRNA, respectively, and t is

circadian time. Likewise, we described the level of HNRNPQ as

constant and ineffective in mPer1 mRNA oscillation. We assumed
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that the level of HNRNPQ does not influence the rate of cap-

dependent translation but does influence the rate of cap-

independent translation. Based on the law of mass action, the

equation for the time derivative of mPER1 protein was generated

from our assumptions that the rate of cap-dependent translation is

directly proportional to the level of mPer1 mRNA, the rate of cap-

independent translation is proportional to the level of HNRNPQ-

bound mPer1 mRNA, and the rate of protein degradation is

linearly proportional to its own level. Thus,

dP=dt~k tc|Mzk ti|B{kd|P

where M, B, and P are the relative amounts of total mPer1 mRNA,

HNRNPQ-bound mPer1 mRNA, and mPER1 protein, respec-

tively. The parameters k_tc, k_ti, and kd in the equation indicate

the coefficients for cap-dependent translation, cap-independent

translation, and protein degradation, respectively. The coefficient

for protein degradation is equal to ln2/tK, where tK is the

protein half-life, and other parameters in the equation are chosen,

as the numerically integrated protein curve is well-fitted into the

experimental observation. The values of the parameters in our

study are: k_tc = 0.01, k_ti = 5, and kd = 0.462. The effect of

HNRNPQ knockdown is shown in our equation as proportional to

the rate of cap-independent translation. In other words, the rate of

cap-independent translation is equal to the product of the relative

level of mPer1 mRNA-bound HNRNPQ and the basal rate of cap-

independent translation.

Supporting Information

Figure S1 Cap-independent translation of mPer1. NIH

3T3 cells were treated with vehicle (DMSO), rapamycin (Rapa), or

cycloheximide (CHX), and cells were harvested at indicated time

points. Harvested cells were subjected to immunoblotting with

PER1, p4EBP, or GAPDH specific antibodies.

(TIFF)

Figure S2 Amplification plots of real-time PCR. Vehicle

(DMSO)-, rapamycin (Rapa)-, or cycloheximide (CHX)-treated

NIH 3T3 cells were harvested at the indicated time points; then

mRNA levels were checked by quantitative RT-PCR with specific

primers (Figure 1B–E). To indicate whether the PCR signals were

in the linear range, amplification plots are shown. (A) mPer1, (B)

mActb, (C) mGapdh, (D) mRpl32.

(TIF)

Figure S3 mRNA stability of mPer1 59UTRs. NIH 3T3

cells were transiently transfected with monocistronic reporter

plasmids that 59UTR is followed by Firefly luciferase. Transfected

cells were incubated for 24 h before treatment with 5 mg/ml

actinomycin D. Total RNA (1 mg) was reverse transcribed using

oligo-dT primer then quantified by real-time PCR. Closed square

indicates mRNA levels of Fluc which harbor no 59UTR. Open

circle (e1A) and X (e1B) represent mRNA levels of Fluc which is

linked to mPer1 59UTR. The results are expressed as the mean 6

SEM.

(TIF)

Figure S4 Binding specificity between HNRNPQ and
mPer1 mRNA. (A) Cytosolic fraction of NIH 3T3 transfected

with Control siRNA (Con_si) or HNRNPQ specific siRNA

(hnQ_si) were subjected to IP-RT using HNRNPQ specific

antibody followed by immunoblotting. (B) Total RNA was

prepared from the one fifth volume of the samples immunopre-

cipitated with anti-HNRNPQ antibody in panel A, and mPer1

mRNA was detected by real-time PCR. The level of Con_si was

set to 100. Error bars represent 6SEM.

(TIF)

Figure S5 mRNA sequence of the mPer1 59UTR and the
positions of competitive oligonucleotides. 59UTRs of

mPer1, e1A and e1B, were presented. Blue colored sequence is

the exon1 of e1A mPer1 59UTR, green colored sequence indicates

the exon1 of e1B. mPer1 59UTRs e1A and e1B commonly have

exon2, which was showed by red color. The starting points of

competitive oligonucleotides were depicted as asterisk on the top of

nucleotide.

(TIF)

Figure S6 HNRNPQ specifically binds to the mCry1
39UTR. 39UTRs of mCry1 transcribed in vitro were subjected to

in vitro binding and UV cross-linking with a cytoplasmic extract.

Cytoplasmic extracts labeled by UV cross-linking were subjected

to immunoprecipitation with antibodies against HNRNPQ or pre-

immune serum as a control.

(TIF)

Table S1 Sequences of competitive oligonucleotides.

(TIF)
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