
GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS
FOR CHEMOSENSITIVE MOVEMENT∗

HYUNG JU HWANG†‡ , KYUNGKEUN KANG†§ , AND ANGELA STEVENS†

SIAM J. MATH. ANAL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 1177–1199

Abstract. A widespread phenomenon in moving microorganisms and cells is their ability to
reorient themselves depending on changes of concentrations of certain chemical signals. In this paper
we discuss kinetic models for chemosensitive movement, which also takes into account evaluations of
gradient fields of chemical stimuli which subsequently influence the motion of the respective microbi-
ological species. The basic type of model was discussed by Alt [J. Math. Biol., 9 (1980), pp. 147–177],
[J. Reine Angew. Math., 322 (1981), pp. 15–41] and by Othmer, Dunbar, and Alt [J. Math. Biol., 26
(1988), pp. 263–298]. Chalub et al. rigorously proved that, in three dimensions, these kinds of kinetic
models lead to the classical Keller–Segel model as its drift-diffusion limit when the equation for the
chemo-attractant is of elliptic type [Monatsh. Math., 142 (2004), pp. 123–141], [On the Derivation
of Drift-Diffusion Model for Chemotaxis from Kinetic Equations, ANUM preprint 14/02, Vienna
Technical University, 2002]. In [H. Hwang, K. Kang, and A. Stevens, Drift-diffusion limits of kinetic
models for chemotaxis: A generalization, Discrete Contin. Dyn. Syst. Ser. B., to appear] it was
proved that the macroscopic diffusion limit exists in both two and three dimensions also when the
equation of the chemo-attractant is of parabolic type. So far in the rigorous derivations, only the
density of the chemo-attractant was supposed to influence the motion of the chemosensitive species.
Here we show that in the macroscopic limit some types of evaluations of gradient fields of the chem-
ical stimulus result in a change of the classical parabolic Keller–Segel model for chemotaxis. Under
suitable structure conditions, global solutions for the kinetic models can be shown.
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global solutions, drift-diffusion limit, Keller–Segel model
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1. Introduction. The starting point of our considerations is the classical chemo-
taxis model as discussed by Keller and Segel (see [14] and [15]). This system is of
advection-diffusion type and consists of two coupled parabolic equations:

∂ρ

∂t
= ∇ · (D(ρ, S)∇ρ− χ(ρ, S)ρ∇S),(1.1)

τ
∂S

∂t
= D0∆S + αρ− βS, α, β, τ ≥ 0.(1.2)

Here ρ = ρ(x, t) denotes the density of chemotactic cells and S = S(x, t) is the
density of the chemo-attractant. The cells are attracted by the chemical, and χ
denotes their chemotactic sensitivity. The first rigorous derivation of the macroscopic
chemotaxis equations from microscopic models, namely, interacting stochastic many
particle systems, was given in [21]. In [11] a survey about known results on existence
of global solutions and finite time blowup for this type of model was given.
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1178 H. J. HWANG, K. KANG, AND A. STEVENS

In [3] a kinetic model for (1.1) was discussed coupled with the Poisson equation
without decay term

−∆S = αρ.(1.3)

In [3, p. 3] the following kinetic equation for the oriented cell density f = f(x, v, t) ≥ 0
was considered:

∂f

∂t
+ v · ∇xf =

∫
V

(T [S]f ′ − T ∗[S]f)dv′,(1.4)

where x, v, and t indicate position, velocity, and time, respectively. Here the abbre-
viations f ′ = f(x, v′, t), T [S] = T [S](x, v, v′, t), and T ∗[S] = T [S](x, v′, v, t) are used.
The first term on the right-hand side of (1.4) describes the turning into direction v,
and the second term the turning away from v. The cell density ρ fulfills

ρ(x, t) =

∫
V

f(x, v, t)dv,

where V is the set of admissible velocities which is assumed to be compact.
Using stochastic models for the motion of bacteria and leukocytes, Alt derived

(1.1) from a transport equation similar to (1.4) [1, section 8], [2, section 3]. Later a
general formulation of this velocity-jump process was presented and studied in [18,
section 3]. In [10] and [19] Othmer and Hillen studied the formal diffusion limit of
a transport equation of (1.4) by moment expansions, which generalizes parts of Alt’s
earlier works [1], [2]. A hyperbolic scaling and its formal limit were discussed in [6].

Based on [19] a rigorous proof of the macroscopic limit was given in [3]. After
using diffusive scaling of time and space, the nondimensional form of (1.4) leads to
[3, p. 4]

ε2
∂fε
∂t

+ εv · ∇xfε = −Tε[Sε](fε), x ∈ R
n, v ∈ V, t > 0,(1.5)

where

Tε[Z](g) =

∫
V

(T ∗
ε [Z]g − Tε[Z]g′)dv′.

The diffusion limit ε → 0 was studied for initial conditions

fε(x, v, 0) ≡ f0(x, v), x ∈ R
n, v ∈ V,(1.6)

with (1.5) coupled to (1.3) for the chemo-attractant. In [3] it was shown that the
coupled nonlinear system (1.5), (1.6), and (1.3) resulted in Keller–Segel-type equations
for chemotaxis as its macroscopic drift-diffusion limit under suitable conditions on the
turning kernel in three dimensions (compare, e.g., [3, Theorem 5] and [4, Theorem
2]). In [3] and [4] also global solutions were proved for suitable turning kernels for
fixed ε > 0.

In [12], as an extension of [3], the authors proved that such kinetic models have a
macroscopic diffusion limit in both two and three dimensions also when the equation
of the chemo-attractant is of parabolic type, i.e., τ > 0, which is the original version
of the chemotaxis model. An independent related result was given in [5].
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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS 1179

In this article, we consider turning kernels depending not only on S but also on
∇S, as formally discussed, among others, in [22] and [19], i.e.,

ε2
∂fε
∂t

+ εv · ∇xfε = −Tε[Sε,∇Sε](fε), x ∈ R
n, v ∈ V, t > 0,(1.7)

with initial condition (1.6) coupled to

τ
∂Sε

∂t
= ∆Sε + αρε − βSε, τ ≥ 0, α > 0, β ≥ 0,(1.8)

where

ρε =

∫
V

fεdv.(1.9)

In what follows, for notational convenience, we write Tε[Sε] instead of Tε[Sε,∇Sε],
unless any confusion is to be expected. Here we emphasize that the conditions on the
turning kernel include also detection of spatial gradients of the chemo-attractant by
the chemotactic cells. This behavior results under certain conditions in a macroscopic
model which varies from the classical Keller–Segel system by additional higher order
terms.

Our main result is that for suitable turning kernels which take into account the
effects of gradient measurements of the chemical, global solutions exist also in two
dimensions, and thus blowup of the solutions does not happen in finite time (compare
Theorems 3.6 and 3.12 for the elliptic and parabolic cases, respectively).

The result is extended to three dimensions under some restrictions on the turning
kernels. We also show the existence of a macroscopic diffusion limit of the kinetic
model in two and three dimensions. More precisely, under similar assumptions on
the turning kernel T [S] as given in [3], we prove that the coupled nonlinear system
(1.6), (1.7), and (1.8) converges to Keller–Segel-type equations and their variants for
ε → 0 (compare Theorem 4.4). Our main tool is the potential estimate for S. In
particular, in case the chemo-attractant equation is of elliptic type, i.e., τ = 0 and
in two dimensions, log-type estimates for the chemical S are used to obtain global
existence for the kinetic model (similar techniques were used in [13, Lemma 4]).

The plan of this paper is as follows: In section 2, we introduce some notation used
and briefly review the derivation of the macroscopic equation as presented in [3] and
[12]. In section 3, we prove that the kinetic model (1.7)–(1.9) has a global solution for
“suitable” turning kernels. In section 4, we prove the existence of the diffusion limit
for a short time interval. In section 5 we give concrete examples on how the specific
dependencies of the turning kernel result in different types of macroscopic equations.

2. Preliminaries. We first introduce some notation which will be used through-
out this article and recall some of the observations presented in [3].

• By G we denote the Bessel potential, which is the fundamental solution of
the differential operator 1 − ∆ in R

n (see [20, pp. 130–132]):

G(x) =
1

4π

∫ ∞

0

e−π
|x|2
4s − s

4π s
−n+2

2
ds

s
.(2.1)

• By Γ we denote the fundamental solution of the differential operator ∂t −
∆x + β in R

n × R+:

Γ (x, t) =
1

(4πt)
n
2

exp

(
−|x|2

4t
− βt

)
.(2.2)
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1180 H. J. HWANG, K. KANG, AND A. STEVENS

• By C = C(α, β, . . . ) we denote a constant depending on the prescribed quan-
tities α, β, . . . . The domain Ω considered in this article is R

n, n = 2, 3.
To make this note self-contained, we review the formal derivation of the macroscopic
equation from the kinetic model presented in [3] (compare the details in [3, pp. 5–7]).
For simplicity we assume for a moment that τ = 1, α = 1, and β = 1 (other cases
can be formally derived in a similar way without any difficulty). Since the integral of
Tε[S](f) with respect to the velocity vanishes, we obtain the macroscopic conservation
equation

∂ρε
∂t

+ ∇ · Jε = 0,(2.3)

where Jε(x, t) = ε−1
∫
V
vfε(x, v, t)dv is the flux density. The turning kernel is assumed

to have the following asymptotic expansion: Tε[S] = T0[S]+ εT1[S]+O(ε2). Then the
turning operator can be expanded in a similar way and

Tε[S](f) =

∫
V

(T ∗
ε [S]f − Tε[S]f ′)dv′.

By asymptotic expansion of fε = f0 + εf1 + O(ε2) and Sε = S0 + εS1 + O(ε2), the
equation for the leading order terms can be obtained from (1.7):

T0[S0](f0) = 0, S0 = ρ0 ∗ Γ, ρ0 =

∫
V

f0dv.(2.4)

Comparing coefficients in (1.7) results in

v · ∇xf0 = −T0[S0](f1) − T1[S0](f0) − T0S [S0, S1](f0),

where T0S [S0, S1] is part of the turning operator T and its kernel is the Fréchet
derivative of T0 with respect to S, evaluated at S0 in the direction S1. Here, we recall
the assumptions on the leading order terms of the turning operator and two useful
lemmas presented in [3, (A0), Lemma 1, Lemma 2, pp. 6–7].

Assumption 2.1. There exists a bounded velocity distribution F (v) > 0, such
that T ∗

0 [S]F = T0[S]F ′ and∫
V

vF (v)dv = 0,

∫
V

F (v)dv = 1.

The turning rate T0[S] is bounded, and there exists a constant γ = γ[S] > 0 such
that T0[S]/F ≥ γ for all (v, v′) ∈ V × V , x ∈ R

n, and t > 0.
Lemma 2.2. Let ζ : R→R, g : V→R, and let

φS
ε [S] =

Tε[S]F ′ + T ∗
ε [S]F

2
, φA

ε [S] =
Tε[S]F ′ − T ∗

ε [S]F

2

denote, respectively, the symmetric and antisymmetric parts of Tε[S]F ′. Then∫
V

∫
V

Tε(Fg)ζ(g)dv =
1

2

∫
V

∫
V

φS
ε [S](g − g′)(ζ(g) − ζ(g′))dv′dv

+
1

2

∫
V

∫
V

φA
ε [S](g + g′)(ζ(g) − ζ(g′))dv′dv.

The same holds for Tε[S] with analogous definitions of φS
ε [S] and φA

ε [S].
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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS 1181

Proof. See Lemma 1 in [3] for the proof.
With g = f/F and ζ = id one obtains the following.
Lemma 2.3. Let Assumption 2.1 hold. Then the entropy equality

∫
V

T0[S](f)
f

F
dv =

1

2

∫
V

∫
V

φS
0 [S]

(
f

F
− f ′

F ′

)2

dv′dv ≥ 0

holds. For g ∈ L2(V ; dv/F ), the equation T0[S](f) = g has a unique solution f ∈
L2(V ; dv/F ) satisfying

∫
V
fdv = 0 if and only if

∫
V
gdv = 0.

Proof. See Lemma 2 in [3] for the proof.
From the entropy equality, we deduce that

f0(x, v, t) = ρ0(x, t)F (v).

Since T0S [S0, S1](f0) = 0, we obtain

T0[S](f1) = −vF · ∇ρ0 − ρ0T1[S0](F ).

The right-hand side satisfies the solvability condition from Lemma 2.3, and therefore
the solution can be written as

f1 = −κ(x, v, t) · ∇ρ0(x, t) − Θ(x, v, t)ρ0(x, t) + ρ1(x, t)F (v),

where κ = κ[S0] and Θ = Θ[S0] are the solutions of

T0[S0](κ) = vF, T0[S0](Θ) = T1[S0](F ),

and ρ1 is the macroscopic density of f1, which is a new unknown. By passing to the
limit ε→0 in (2.3), the convection-diffusion equation reads

∂tρ0 −∇ · (D[S0]∇ρ0 − ρ0H[S0]) = 0,

where

D[S0](x, t) =

∫
V

v ⊗ κ[S0](x, v, t)dv, H[S0] = −
∫
V

vΘ[S0](x, v, t)dv,

together with

∂S0

∂t
= ∆S0 + ρ0 − S0.

The specific form of D[S0] and H[S0] will depend on the choice of the turning kernels
and will be discussed later.

3. Global solution of the kinetic model. In this section we show that solu-
tions of the coupled system (1.6)–(1.9) in two and three dimensions do not blow up in
finite time for fixed ε > 0 if the turning kernel satisfies a certain structure condition.
Without loss of generality we set ε = 1 in (1.6) and α = 1 in (1.8). We consider two
problems, namely, the elliptic and the parabolic equations for the chemo-attractant.

We start with an inequality of Gronwall type in the next lemma. Since it is of
the nonstandard form among the Gronwall-type inequalities, we present its proof for
clarity, although the proof is similar to that of the usual one.
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1182 H. J. HWANG, K. KANG, AND A. STEVENS

Lemma 3.1. Let a and b be positive constants. Let y(t) and y′(t) be positive and
differentiable in t and satisfy

y′ ≤ ay ln y′ + by.(3.1)

Then

y(t) ≤
[
y(0) exp

(
2b

∫ t

0

e−2asds

)]exp(2at)

.

Proof. We subtract and add ln y from the right-hand side of (3.1) to get y′ ≤
ay ln y + ay ln (ln y)

′
+ by. Dividing both sides of the above inequality by y, we get

(ln y)
′ ≤ a ln y + a ln (ln y)

′
+ b. Set z = ln y to get z′ ≤ az + a ln z′ + b. Since we may

assume ln z′ ≤ (1/2a)z′ (otherwise, ln z′ ≤ C and the above inequality reduces to a
standard Gronwall inequality), we have z′ ≤ az+ 1

2z
′ + b. We get z′ ≤ 2az+2b, where

z = ln y. Using a standard Gronwall argument, we deduce the lemma.
The structure condition on the turning kernel T [S] is assumed to be as follows.
Assumption 3.2 (structure condition). There exist nonnegative constants Ci ≥ 0,

i = 1, 2, . . . , 5, such that for all x ∈ R
n, n = 2, 3, v, v′ ∈ V , t ∈ R

+, and S ∈
W 1,∞(Rn), the turning kernel T satisfies

0 ≤ Tε[S](x, v, v′, t) ≤ C1 + C2S(x + εv, t) + C3S(x− εv′, t)

+C4|∇S(x + εv, t)| + C5|∇S(x− εv′, t)|,(3.2)

|∇Tε[S](x, v, v′, t)| ≤ C2|∇S(x + εv, t)| + C3|∇S(x− εv′, t)|
+C4|∇2S(x + εv, t)| + C5|∇2S(x− εv′, t)|.(3.3)

This means that the cells can measure the concentration and the spatial gradient
of the chemo-attractant up to a distance ε from their position, and this may affect
the movement of the cells.

Remark 3.3. The turning kernel, as given above, describes the turning from
direction v′ into direction v. This means that the actual or “old” direction is evaluated
by checking backwards, whereas the evaluation of possible new directions are checked
forwards (e.g., by lamelliopodial protrusion). Checking the possible new directions
backwards if compared to the actual direction of motion is also possible and could have
been taken into account in the following considerations. Nevertheless, it is important
to note that a forward evaluation of the actual direction v′ causes a technical problem
in our approach so far.

We first consider the case that the chemo-attractant equation is of elliptic type.

3.1. Elliptic case: τ = 0. In this part, we consider the elliptic equation for
the chemo-attractant S for two cases: β > 0 and β = 0. When β > 0 we may set
β = 1 without loss of generality. So

−∆S = ρ− βS, β ∈ {0, 1}, n = 2, 3.(3.4)

For n = 2 we need some preliminaries and start with elementary properties of the
Bessel potential G in two dimensions.

Lemma 3.4. Let G be the Bessel potential in R
2. Then G ∈ Lp(R2) for any p

with 1 ≤ p < ∞ and ∇G ∈ Lp(R2) for any p with 1 ≤ p < 2. Furthermore,

‖G‖Lp(R2) ≤ Cp, 1 ≤ p < ∞,(3.5)

‖∇G‖Lp(R2) ≤ C
2p

2 − p
, 1 ≤ p < 2.(3.6)
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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS 1183

Proof. For n = 2, the Bessel potential is (cf. (2.1))

G(x) =
1

4π

∫ ∞

0

e−π
|x|2
4s − s

4π
ds

s
.

Using a change of variables, we have

‖G‖Lp(R2) ≤ C

∫ ∞

0

e−s

s

∥∥e− |x|2
4s

∥∥
Lp(R2)

ds ≤ C

∫ ∞

0

e−ss−1+1/pds ≤ Cp.

We thus obtain (3.5). In a similar way we get

‖∇G‖pLp(R2) ≤ C

∫ ∞

0

e−s

s2

∥∥xe− |x|2
4s

∥∥
Lp(R2)

ds ≤ C

∫ ∞

0

e−ss−
3
2+ 1

p ds ≤ C
2p

2 − p
,

as long as 1 ≤ p < 2. Therefore we deduce (3.6).
The next lemma shows various estimates for the chemo-attractant S.
Lemma 3.5. Let S be a solution of (3.4) in R

2. Then S satisfies the following
estimates:

‖S(t)‖Lp(R2) + ‖∇S(t)‖Lq(R2) ≤ C(p, q)‖ρ0‖L1(R2), 1 ≤ p < ∞, 1 ≤ q < 2,(3.7)

‖∇S(t)‖L2(R2) ≤ C‖ρ0‖L1(R2)

[
ln
(
‖ρ(t)‖2

L2(R2) + 1
)]1/2

.(3.8)

Proof. The first estimate (3.7) is an easy consequence of mass conservation,
Lemma 3.4, and Young’s inequality (see, e.g., [7, pp. 624–625]). Thus it suffices to
show the estimate (3.8).

From (3.4) we obtain the Fourier transform Ŝ(ξ) = ρ̂(ξ)/(|ξ|2 + 1), and thus

‖∇S(t)‖L2(R2) = ‖ξŜ(t)‖L2(R2) =

∥∥∥∥ |ξ|ρ̂(t)
|ξ|2 + 1

∥∥∥∥
L2(R2)

,

where Plancherel’s equality is used. The above integral can be estimated by splitting
R

2 of the ξ-space into two parts:∫
R2

|ξρ̂(t)|2
(|ξ|2 + 1)2

dξ =

∫
|ξ|<R

+ · · · +
∫
|ξ|>R

+ · · · = I1 + I2,

where R > 0 will be chosen later. Using Hölder’s inequality and Plancherel’s equality
we have

I1 ≤ ‖ρ̂(t)‖2
L∞(R2)

∫
|ξ|<R

|ξ|2
(|ξ|2 + 1)2

dξ ≤ C‖ρ(t)‖2
L1(R2) ln(R2 + 1),

I2 ≤
∥∥∥∥ |ξ|
|ξ|2 + 1

∥∥∥∥
2

L∞(|ξ|>R)

‖ρ̂(t)‖2
L2(R2) ≤ CR−2‖ρ(t)‖2

L2(R2).

Therefore, by choosing R = ‖ρ(t)‖L2(R2), we obtain

‖∇S(t)‖L2(R2) ≤ C‖ρ(t)‖L1(R2){ln(R2 + 1)}1/2 + CR−1‖ρ(t)‖L2(R2)

≤ C
[
1 + ‖ρ(t)‖L1(R2)

{
ln
(
‖ρ(t)‖2

L2(R2) + 1
)}1/2

]
.

Since ‖ρ‖L1(R2) = ‖f0‖L1(R2×V ), we deduce (3.8) and our lemma.
The next theorem shows global existence of solutions for system (1.6)–(1.9) with

τ = 0, namely, blowup does not happen in finite time.
Theorem 3.6. Suppose the chemo-attractant equation is of elliptic type (τ = 0).

Assume that f0,∇f0 ∈ (L1 ∩ L∞)(Rn × V ), with n = 2, 3.
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1184 H. J. HWANG, K. KANG, AND A. STEVENS

1. Case n = 2, β > 0: Let Assumption 3.2 hold. Then there exist global solutions
f,∇f ∈ L∞

loc((0,∞);L1 ∩ L∞(R2 × V )) and S ∈ L∞
loc((0,∞);W 1,p(R2)) for all 1 ≤

p ≤ +∞ of the system (1.6)–(1.9) with ε > 0 fixed but arbitrary.
2. Case n = 2, β = 0: Let Assumption 3.2 hold with C2 = C3 = C5 = 0.

Then there exist global solutions f,∇f ∈ L∞
loc((0,∞);L1 ∩ L∞(R2 × V )) and ∇S ∈

L∞
loc((0,∞);Lp(R2)) for all 2 < p ≤ ∞ of the system (1.6)–(1.9) with ε > 0 fixed but

arbitrary.
3. Case n = 3, β > 0: Let Assumption 3.2 hold with C3 = C5 = 0. Then there

exist global solutions f,∇f ∈ L∞
loc((0,∞);L1 ∩ L∞(R3 × V )) and S ∈ L∞

loc((0,∞);
W 1,p(R3)) for all 1 ≤ p ≤ +∞ of the system (1.6)–(1.9) with ε > 0 fixed but arbitrary.

4. Case n = 3, β = 0: Let Assumption 3.2 hold with C3 = C5 = 0. Then there
exist global solutions f,∇f ∈ L∞

loc((0,∞);L1 ∩ L∞(R3 × V )) and S ∈ L∞
loc((0,∞);

Lp(R3)) for any 3 < p ≤ ∞ and ∇S ∈ L∞
loc((0,∞);Lp(R3)) for any 3/2 < p ≤ ∞ of

the system (1.6)–(1.9) with ε > 0 fixed but arbitrary.
Proof. (a) We first consider the case n = 2 and β > 0. Without loss of generality,

we assume ε = 1. Mass is conserved for ρ, and thus ‖ρ(·, t)‖L1(R2) = ‖f0‖L1(R2×V ).

∂tf(x, v, t) + v · ∇xf(x, v, t) =

∫
V

T [S](x, v, v′, t)f(x, v′, t)dv′

−
∫
V

T [S](x, v′, v, t)f(x, v, t)dv′.

Using Assumption 3.2, we get

f(x, v, t) ≤ f0(x− vt, v) + C

∫ t

0

ρ(x− vs, t− s)ds + Cf1(x, v, t) + Cf2(x, v, t),

where f1 and f2 satisfy

∂tf1(x, v, t) + v · ∇xf1(x, v, t) =

∫
V

[S(x + v, t) + |∇S(x + v, t)|]f(x, v′, t)dv′,

∂tf2(x, v, t) + v · ∇xf2(x, v, t) =

∫
V

[S(x− v′, t) + |∇S(x− v′, t)|]f(x, v′, t)dv′,

with initial conditions fi(x, v, 0) = 0 for i = 1, 2. We first consider f1. One can easily
see that

f1(x, v, t) =

∫ t

0

[S(x− vs + v, t− s) + |∇S(x− vs + v, t− s)|]ρ(x− vs, t− s)ds.

After simple calculations, we obtain the following estimates:

‖f1(·, ·, t)‖Lp(R2×V ) ≤ C sup
0≤s≤t

‖S(·, s)‖W 1,p(R2)

∫ t

0

‖ρ(·, t− s)‖Lp(R2)ds.

For the term f2, we have

f2(x, v, t) =

∫ t

0

∫
V

[S(x− vs− v′, t− s)+|∇S(x− vs− v′, t− s)|f(x− vs, v′, t− s)dv′ds.

Applying Young’s inequality, we get

‖(S(·, t− s) + |∇S(·, t− s)|) ∗ f(x− vs, ·, t− s)‖L∞(V )

≤ sup
0<s<t

‖S(·, s)‖W 1,p(R2)‖f(x− vs, ·, t− s)‖Lp′ (V ),
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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS 1185

where p and p′ are conjugate exponents. If p ≥ 2, then p′ ≤ p, and so we have, by
interpolation between p and 1,

‖f(x− vs, ·, t− s)‖Lp′ (V ) ≤ C(V )‖f(x− vs, ·, t− s)‖Lp(V ).

Hence,

‖f2(·, ·, t)‖Lp(R2×V ) ≤ sup
0<s<t

‖S(·, s)‖W 1,p(R2)

∫ t

0

‖f(·, ·, t− s)‖Lp(R2×V )ds.

Therefore, summing up the estimates above, we obtain for p ≥ 2

‖f(·, ·, t)‖Lp(R2×V ) ≤ ‖f0(·, ·)‖Lp(R2×V )

+C

(
1 + sup

0≤s≤t
‖S(·, s)‖W 1,p(R2)

)∫ t

0

‖f(·, ·, s)‖Lp(R2×V ).(3.9)

By Lemma 3.5, we have for p = 2

‖f(·, ·, t)‖L2(R2×V )≤‖f0(·, ·)‖L2(R2×V )

+C

(
1+ sup

0≤s≤t

[
ln
(
‖f‖2

L2(R2×V )+1
)]1/2)∫ t

0

‖f(·, ·, s)‖L2(R2×V ).

Then, applying Gronwall’s inequality as in Lemma 3.1, we obtain f ∈ L2(R2 × V ).
Now, using bootstrap arguments we obtain the L∞-estimate by applying repeat-
edly Lemma 3.4, Young’s inequality, and Gronwall’s inequality. Next we show L∞-
estimates for the derivatives of f . For convenience let j = 1, 2 be arbitrary but fixed,
and we denote by f̃ and T̃ [S] the partial derivatives ∂xjf and ∂xj

T [S], respectively.

∂tf̃(x, v, t) + v · ∇xf̃(x, v, t) =

∫
V

T̃ [S](x, v, v′, t)f(x, v′, t)dv′

+

∫
V

T [S](x, v, v′, t)f̃(x, v′, t)dv′

−
∫
V

T̃ [S](x, v′, v, t)f(x, v, t)dv′

−
∫
V

T [S](x, v′, v, t)f̃(x, v, t)dv′.

Then, in the same manner as before, we obtain

f̃(x, v, t) ≤ f̃0(x− vt, v) + Cf̃1(x, v, t) + Cf̃2(x, v, t) + Cf̃3(x, v, t) + Cf̃4(x, v, t),

where

f̃1(x, v, t) =

∫ t

0

∫
V

T̃ [S](x− vs, v, v′, t− s)f(x− vs, v′, t− s)dv′ds,

f̃2(x, v, t) =

∫ t

0

∫
V

T [S](x− vs, v, v′, t− s)f̃(x− vs, v′, t− s)dv′ds,

f̃3(x, v, t) = −
∫ t

0

∫
V

T̃ [S](x− vs, v′, v, t− s)f(x− vs, v, t− s)dv′ds,

f̃4(x, v, t) = −
∫ t

0

∫
V

T [S](x− vs, v′, v, t− s)f̃(x− vs, v, t− s)dv′ds.
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1186 H. J. HWANG, K. KANG, AND A. STEVENS

We consider first f̃1(x, v, t). Here we use the fact that the L∞- and Lp-norms of f ,
depending on t, are bounded, which was shown above. Therefore we have

|f̃1(x, v, t)| ≤ sup
0<s<t

‖f(·, s)‖L∞(R2×V )

∫ t

0

∫
V

|T̃ [S](x− vs, v, v′, t− s)|dv′ds.

Using Assumption 3.2, one can easily see

‖f̃1(·, ·, t)‖Lp(R2×V ) ≤ C sup
0<s<t

‖f(·, s)‖L∞(R2×V ) sup
0<s<t

‖S(·, s)‖W 2,p(R2)

≤ C sup
0<s<t

‖f(·, s)‖L∞(R2×V ) sup
0<s<t

‖ρ(·, s)‖Lp(R2) ≤ C = C(t, |V |),

where we used a standard estimate for the chemo-attractant equation. Since f̃3 has
the same structure as f̃1, f̃3 satisfies the estimates above. On the other hand, f̃2 is
estimated, due to Assumption 3.2, as follows:

|f̃2(x, v, t)| ≤ sup
0<s<t

‖S(·, s)‖W 1,∞(R2)

∫ t

0

∫
V

f̃(x− vs, v′, t− s)dv′ds.

Again, due to a standard estimate for the chemo-attractant equation, we get

|f̃2(x, v, t)| ≤ sup
0<s<t

‖f̃‖Lq(R2)

∫ t

0

∫
V

f̃(x− vs, v′, t− s)dv′ds,

where q is sufficiently large (i.e., q > 2). Integration over R
2 × V yields

‖f̃2(·, ·, t)‖Lp(R2×V ) ≤ C

∫ t

0

‖f̃(·, ·, t− s)‖Lp(R2)ds,

where we again used the boundedness of the Lp-norm of f and C = C(|V |, t). f̃4 can
be treated in the same manner, so we omit the details. To sum up, we obtain

‖∇f(·, ·, t)‖Lp(R2×V ) ≤ C(|V |, t) + C(|V |, t)
∫ t

0

‖∇f(·, ·, t− s)‖Lp(R2×V )ds.

Gronwall’s inequality justifies our claim. Repeating this process for higher regularity
of f and S, we can easily see that this estimate is valid also in case p = ∞. This
completes the proof of the case β > 0.

(b) Next we consider the case n = 2, β = 0. Again, for simplicity, we assume
ε = 1. We first decompose ∇S into two parts,

∇S = ∇SL + ∇SS = ρ ∗
(
− x

2π|x|2 I|x|≥1

)
+ ρ ∗

(
− x

2π|x|2 I|x|≤1

)
,

where IA denotes the characteristic function of a set A. By mass conservation and
Young’s inequality, we have

‖∇SL(t)‖L∞(R2) ≤ 1

2π
‖f0‖L1(R2×V ).

Hence the estimate reduces to considering ∇SS only, and we may replace ∇S by
∇SS in the assumption on the turning kernel. Following similar procedures to those
described in the case β > 0, we obtain for p ≥ 1

f(x, v, t) ≤ f0(x− vt, v) + C

∫ t

0

ρ(x− vs, t− s)ds + Cf1(x, v, t),
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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS 1187

where

f1(x, v, t) =

∫ t

0

|∇SS(x− vs + v, t− s)|ρ(x− vs, t− s)ds.

Simple calculations show

‖f1(·, ·, t)‖Lp(R2×V ) ≤ C sup
0≤s≤t

‖∇SS(·, s)‖Lp(R2)

∫ t

0

‖ρ(·, t− s)‖Lp(R2)ds.

To sum up, we obtain

‖f(·, ·, t)‖Lp(R2×V ) ≤ C + C

(
1 + sup

0≤s≤t
‖∇SS(·, s)‖Lp(R2)

)

×
∫ t

0

‖f(·, ·, t− s)‖Lp(R2×V )ds.(3.10)

Here we note that the above a priori estimate (3.10) holds for all p ≥ 1. First we
choose a specific p with 1 < p < 2, which ensures, due to Young’s inequality, that

‖∇SS(·, t)‖Lp(R2) ≤ C‖f0‖L1(R2×V ).

Then by Gronwall’s inequality we get a bound, globally in time, for f in Lp(R2) for
such chosen p. By bootstrap arguments, we obtain f ∈ L∞

loc([0,∞);L∞(R2 × V )).
By similar procedures to those given in the proof of Theorem 3.6, an L∞-estimate

for ∇f can be obtained. ∇S ∈ L∞((0,∞);Lp(R2)), 2 < p ≤ ∞, is due to the Hardy–
Littlewood–Sobolev theorem (see [20, pp. 119–120]). Since this is also verified by
embedding arguments for general elliptic equations, we skip the details.

Remark 3.7. Although similar results, in the theorem above, are expected for
nonzero C2, C3, C5 also in case β = 0, there are some technical difficulties in prov-
ing global existence when the chemo-attractant equation is of elliptic type. Indeed,
the chemo-attractant equation becomes the Poisson equation without decay term
−∆S = ρ, and thus S has the Newtonian potential representation, i.e., S = Γ ∗ ρ,
where Γ(x) = 1/2π log |x|. Due to the behavior of Γ at infinity, we cannot, in general,
control S in terms of ρ. (We do not have these kind of estimates in Lemma 3.5 if
β = 0.) Thus we leave the global existence as an open question for nonzero C2, C3,
and C5 in case β = 0 and τ = 0.

(c) The three-dimensional case: In this situation, unlike the two-dimensional case
in Theorem 3.6, it is not necessary to distinguish proofs for β = 0 and β �= 0. We
briefly explain why C3, C5 are assumed to be zero in three dimensions. Indeed, as
seen in the previous calculations, we end up with the following estimate:

‖f(·, ·, t)‖Lp(R3×V ) ≤ C + C

(
1 + sup

0≤s≤t
‖SS(·, s)‖W 1,p(R3)

)

×
∫ t

0

‖f(·, ·, t− s)‖Lp(R3×V )ds.(3.11)

On the other hand, in three dimensions, due to behavior of the potential, we have

‖SS(·, s)‖W 1,p(R3) ≤ C‖ρ0‖L1(R3) for 1 ≤ p <
3

2
.(3.12)
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1188 H. J. HWANG, K. KANG, AND A. STEVENS

However, in case C3 or C5 are nonzero, one can easily show that estimate (3.11) is
still valid provided that p ≥ 2 (compare the estimates for f2 and f4 before), but this
does not enable us to use bootstrap arguments to get higher regularity for f because
of (3.12). Therefore we assume C3 = C5 = 0. With this assumption the proof for the
case n = 3 is similar to the case n = 2.

Remark 3.8. It is worth mentioning that Theorem 3.6 also holds in case n = 3
when the turning kernel satisfies Assumption 3.2 with C2 = C4 = 0 instead of C3 =
C5 = 0, namely,

0 ≤ T [S](x, v, v′, t) ≤ C (1 + S(x− εv′, t) + |∇S(x− εv′, t)|) ,
|∇T [S](x, v, v′, t)| ≤ C(|∇S(x− εv′, t)| + |∇2S(x− εv′, t)|).

This can be seen by changing the roles of p and p′ in the estimate of f2 and by
following a similar procedure to the one given for the proof of Theorem 3.6.

We do not know if the theorem above is also valid if the turning kernel fulfills the
structure conditions (3.2) and (3.3) as in the two-dimensional case.

3.2. Parabolic case: τ > 0. In this part, the parabolic equation for the chemo-
attractant in (1.8) is considered. From now on we let τ = 1 without loss of generality
and, for simplicity, we set here α = 1. Then (1.8) for S reads

∂tS − ∆S = ρ− βS, S(x, 0) = S0(x), β ≥ 0.(3.13)

To make our arguments simpler, from now on we assume S0 = 0 (compare Remark 3.11
in the following for the case S0 �= 0).

In the next lemma we recall some basic properties of Γ in two dimensions.
Lemma 3.9. Let Γ be the fundamental solution for the operator ∂t − ∆x + β in

R
2. Then Γ ∈ Lp(R2) for any p with 1 ≤ p < ∞, and ∇Γ ∈ Lp(R2) for any q with

1 ≤ p < 2, satisfying∫ t

0

‖Γ(·, s)‖Lp(R2)ds ≤ C(β)p, 1 ≤ p < ∞,∫ t

0

‖∇Γ(·, s)‖Lp(R2)ds ≤ C(β)
2p

2 − p
, 1 ≤ p < 2.

Proof. The proof is similar to that of Lemma 3.4, so we omit details.
In the next lemma, we show Lp- and L2-estimates for S and ∇S, respectively.
Lemma 3.10. Let S be a solution of (3.13) in R

2 and S0 = 0. Then S satisfies
the estimates

‖S(t)‖Lp(R2) + ‖∇S(t)‖Lq(R2) ≤ C(β, p, q)‖ρ0‖L1(R2),(3.14)

where 1 ≤ p < ∞, 1 ≤ q < 2, and

‖∇S(t)‖2
L2(R2) ≤ C

(
1 + ‖ρ0‖L1(R2)

(
1 + (ln t)+ + sup

0≤τ≤t

∣∣ ln ‖ρ(τ)‖2
L2(R2)

∣∣)) ,

(3.15)

where (f)+ indicates the positive part of f .
Proof. By Duhamel’s principle and using the fundamental solution Γ in (2.2), we

have

S(x, t) =

∫ t

0

Γ(·, s) ∗ ρ(·, t− s)ds.(3.16)
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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS 1189

By using Lemma 3.9, mass conservation, and Young’s inequality, we easily get (3.14).
To estimate ‖∇S‖L2(R2), we take the Fourier transform of (3.16) and use Plancherel’s
equality to get

‖∇S(t)‖L2(R2) = ‖ξŜ(t)‖L2(R2)≤
∫ t

0

‖|ξ|Γ̂(·, s)ρ̂(·, t− s)‖L2(R2)ds =

∫ r

0

+ · · · +
∫ t

r

+ · · · ,

where r > 0 will be chosen appropriately later. Note that the Fourier transform of
Γ is Γ̂(ξ, s) = exp(−s(4ξ2 + β)). For 0 < s < r, due to the Hölder’s inequality and
Plancherel’s equality, we have∫ r

0

· · · ≤
∫ r

0

‖|ξ| exp(−s(4ξ2 + β))‖L∞(R2)‖ρ̂(s)‖L2(R2)ds

≤ C sup
0≤s≤t

‖ρ‖L2(R2)

∫ r

0

s−1/2ds ≤ Cr1/2 sup
0≤s≤t

‖ρ‖L2(R2).

For r < s < t, due to mass conservation and Hölder’s inequality, now applied in the
opposite way, we have∫ t

r

· · · ≤
∫ t

r

‖|ξ| exp(−s(4ξ2 + β))‖L2(R2)‖ρ̂(s)‖L∞(R2)ds

≤ C‖ρ0‖L1(R2)

∫ t

r

1

s
ds ≤ C‖ρ0‖L1(R2)| ln t− ln r|,

where we used ‖ρ̂‖L∞(R2) ≤ ‖ρ‖L1(R2). Therefore we obtain

‖∇S(t)‖L2(R2) ≤ C

(
r1/2 sup

0≤s≤t
‖ρ‖L2(R2) + ‖ρ0‖L1(R2)| ln t− ln r|

)
.

By choosing r = min{(sup0≤s≤t ‖ρ‖L2(R2))
−2, t} in the above inequality, we deduce

our lemma.
Remark 3.11. For the case S0 �= 0, which is assumed to be sufficiently smooth,

one has

S(x, t) =

∫ t

0

Γ(·, s) ∗ ρ(·, t− s)ds +

∫
R2

Γ(x− y, t)S0(y)dy.

This gives the following variants of the estimates in the above lemma:

‖S(t)‖Lp(R2) + ‖∇S(t)‖Lq(R2) ≤ C
(
‖S0‖Lp(R2) + ‖∇S0‖Lq(R2) + ‖ρ0‖L1(R2)

)
,

where 1 ≤ p < ∞, 1 ≤ q < 2 and

‖∇S(t)‖2
L2(R2) ≤ C

(
1 + ‖∇S0‖L2(R2)

+ ‖ρ0‖L1(R2)

(
1 + (ln t)+ + sup

0≤τ≤t

∣∣ ln (
‖ρ(τ)‖2

L2(R2)

)∣∣)) .

Since computations are straightforward, we omit the details.
As in the previous elliptic case, we can establish global existence for the system

(1.6)–(1.9) with τ = 1. To be more precise, once we have the essential estimate (3.15)
for ‖∇S‖L2(R2), its proof is more or less the same as that for the elliptic case with
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1190 H. J. HWANG, K. KANG, AND A. STEVENS

τ = 0. Regularity of S is due to standard theory of general parabolic equations. For
dimension three, under the weaker assumptions of the turning kernel (Assumption 3.2
with C3 = C5 = 0) than those in the elliptic case, we can also show global existence
of solutions. Since the arguments are straightforward if compared to the elliptic case,
we just state the results and skip its proof.

Theorem 3.12. Suppose the chemo-attractant equation is of parabolic type. As-
sume that f0,∇f0 ∈ (L1 ∩ L∞)(Rn × V ).

1. (Case n = 2.) Let β ≥ 0 and Assumption 3.2 hold. Then there exist global
solutions f,∇f ∈ L∞

loc((0,∞); (L1 ∩ L∞)(R2 × V )) and S,∇S ∈ L∞
loc((0,∞);Lp(R2))

for all 1 ≤ p ≤ +∞ of system (1.6)–(1.9).
2. (Case n = 3.) Let β ≥ 0 and Assumption 3.2 with C3 = C5 = 0. Then

there exist global solutions f,∇f ∈ L∞
loc((0,∞); (L1 ∩ L∞)(R3 × V )) and S,∇S ∈

L∞
loc((0,∞);Lp(R3)) for all 1 ≤ p ≤ +∞ of system (1.6)–(1.9).

4. Diffusion limits of the kinetic model. In this section, the diffusion limit
for kinetic models of type (1.6)–(1.9) is presented. First, in a lemma, we review
estimates for S which satisfies an equation of elliptic type, i.e.,

−∆S = ρ− βS, β ≥ 0, in R
n, n = 2, 3.

We use standard arguments, which are known as potential theory. Proofs are straight-
forward (compare, e.g., [9, Chapters 2 and 8] and [20, Chapter V] for the two-
dimensional case, and [16, Chapter 4] and [17, Chapters 4 and 6] for the three-
dimensional case).

Lemma 4.1. Let I = [0, T ) ⊂ R and 0 < T < ∞. Suppose ρ ∈ L∞(I; (W 1,1(Rn)∩
W 1,q(Rn))), where q > n. Let S satisfy the chemo-attractant equation of either elliptic
or parabolic type with β ≥ 0.

(i) In the case either n = 2, β > 0 or n = 3, β ≥ 0, and S fullfils the chemo-
attractant equation of either elliptic or parabolic type,

S ∈ L∞(I;W 2,p(Rn)) ∩ L∞(I; C2+α(Rn)), 1 ≤ p < ∞, 0 < α ≤ q − n

q
,

and S satisfies the estimate

‖S‖L∞(I;W 2,p(Rn)) + ‖S‖L∞(I;C2+α(Rn)) ≤ C
(
‖ρ‖L∞(I;W 1,1(Rn)) + ‖ρ‖L∞(I;W 1,q(Rn))

)
.

(ii) The result of (i) is true also for n = 2, β = 0, when S fullfils the chemo-
attractant equation of parabolic type.

(iii) In the case n = 2 and β = 0 and S fullfils the chemo-attractant equation of
elliptic type,

∇S ∈ L∞(I;W 1,p(R2)) ∩ L∞(I; C1+α(R2)), 1 ≤ p < ∞, 0 < α ≤ q − 2

q
,

and S satisfies the estimate

‖∇S‖L∞(I;W 1,p(R2)) + ‖∇S‖L∞(I;C1+α(R2)) ≤ C
(
‖ρ‖L∞(I;W 1,1(R2)) + ‖ρ‖L∞(I;W 1,q(R2))

)
.

As in [3] we need similar assumptions on φS
ε [S] and φA

ε [S], which are the symmetric
and antisymmetric parts of Tε[S] (see Lemma 2.2).
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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS 1191

Assumption 4.2. There exist γ > 0 and a nondecreasing function Λ ∈ L∞
loc, such

that

φS
ε [S] ≥ γ

(
1 − εΛ

(
‖∇S‖W 1,∞(Rn)

))
FF ′,∫

V

φA
ε [S]2

FφS
ε [S]

dv′ ≤ ε2Λ
(
‖∇S‖W 1,∞(Rn)

)
,

where F ∈ L∞(V ) is a positive velocity distribution satisfying Assumption 2.1.
Theorem 4.3. Let Assumptions 2.1 and 4.2 hold and let q > n with n = 2, 3.

Suppose that the equation for the chemo-attractant S is either of elliptic (τ = 0) or
parabolic type (τ �= 0). Let one of following conditions hold:

(i) If τ = 0, n = 2, β > 0 or if τ > 0, n = 2, β ≥ 0, the turning kernel satisfies
Assumption 3.2.

(ii) If τ = 0, n = 2, β = 0, the turning kernel satisfies Assumption 3.2 with
C2 = C3 = C5 = 0.

(iii) If τ ≥ 0, n = 3, β ≥ 0, the turning kernel satisfies Assumption 3.2 with
C3 = C5 = 0.
Assume further that

f0 ∈ Υq ≡ W 1,1(Rn × V ) ∩W 1,q

(
R

n × V ;
dxdv

F q−1

)
.

Then there exists t∗ > 0, independent of ε, such that the solutions fε, Sε satisfy

fε ∈ L∞((0, t∗); Υq),

∇Sε ∈ L∞((0, t∗);W 1,p(Rn) ∩ C1+α(Rn)), 1 ≤ p < ∞, α =
q − 2

q

if τ = 0, n = 2, β = 0.

Sε ∈ L∞((0, t∗);W 2,p(Rn) ∩ C2+α(Rn)), 1 ≤ p < ∞, α =
q − n

q
in all other cases,

rε =
fε − ρεF

ε
∈ L2

(
(0, t∗); Rn × V :

dxdvdt

F

)
.(4.1)

Proof. This can be shown by following the same procedure as that given in the
proof of Theorem 4 in [3], and therefore we present only a brief sketch of this proof.
Simple calculations show

d

dt

∫
Rn

∫
V

fq
ε

F q−1
dvdx ≤ CΛ

(
‖∇S‖W 1,∞(Rn)

) ∫
Rn

∫
V

fq
ε

F q−1
dvdx.

The next step is to estimate Sε:

‖∇Sε(·, t)‖C1,α(Rn) ≤ C
(
1 + ‖∇ρε(·, t)‖Lq(Rn)

)
≤ C̃

(
1 + ‖ρε(·, t)‖Lq(Rn)

)
.

Here we used the estimates in Lemma 4.1.

d

dt

∫
Rn

∫
V

fq
ε

F q−1
dvdx ≤ C

[
1 +

(∫
Rn

∫
V

fq
ε

F q−1
dvdx

) 1
q

]∫
Rn

∫
V

fq
ε

F q−1
dvdx.

This shows the first two statements. The rest can be done by using the same method
as that given in the proof of Theorem 4 in [3], and thus we omit the details.
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1192 H. J. HWANG, K. KANG, AND A. STEVENS

Now we are ready to prove the existence of the diffusion limit in a short time
interval.

Theorem 4.4. Let the assumption of Theorem 4.3 hold. Suppose that the equa-
tion for the chemo-attractant S is of elliptic (τ = 0) or parabolic (τ �= 0) type. Assume
further that for families (Sε), which are uniformly bounded in L∞

loc([0,∞); C2+α(Rn))
for some α with 0 < α ≤ 1, such that Sε, ∇Sε, and ∇2Sε converge to S0,∇S0, and
∇2S0 as ε → 0, respectively, in Lp

loc([0,∞); Rn) for some p > n/(n− 1) with n = 2, 3,
we have the convergence

Tε[Sε] → T0[S0] in Lp
loc([0,∞); Rn × V̄ × V̄ ),

Tε[Sε](F )

ε
=

2

ε

∫
V

φA
ε [Sε]dv

′ → T1[S0](F ) in Lp
loc([0,∞); Rn × V̄ ).(4.2)

Then the solutions fε and Sε of (1.6)–(1.9) satisfy

fε → ρ0F in L∞((0, t∗); Υq) weak ∗,

and for τ = 0

∇Sε → ∇S0 in W 1,q
loc ((0, t∗); Rn), 1 ≤ q < ∞ if n = 2, β = 0,

Sε → S0 in W 2,q
loc ((0, t∗); Rn), 1 ≤ q < ∞ otherwise,

whereas for τ �= 0

Sε → S0 in Lq
loc((0, t

∗);W 2,q(Rn)), 1 ≤ q < ∞.

Proof. Since the proof is similar to that of Theorem 5 in [3], we again present
only a brief sketch of the procedure. First we note, due to (4.1), that

Jε =
1

ε

∫
V

vfεdv =

∫
V

vrεdv ∈ L2((0, t∗);L2(Rn))

uniformly in ε. From the cell conservation equation ∂tρε + div Jε = 0, one can easily
see that

∂t(∇Sε) ∈ L2((0, t∗);L2
loc(R

n))

by considering the gradient of the convolution of (1.8). The strong convergence fol-
lows combining the above estimate and the parabolic regularity for the convolutions
defining Sε and ∇Sε from ρε. Therefore, the kinetic equation (1.7) leads to

ε
∂fε
∂t

+ v · ∇xfε = −ρε
T [Sε](F )

ε
− Tε[Sε](rε).

By assumption (4.2) and passing to the limit, we obtain

T0[S0](r0) = −vF · ∇ρ0 − ρ0T1[S0](F ).

This equation can be solved due to Lemma 2.3. The limit of the cell conservation
equation is ∂tρ0 + ∇ · J0 = 0 with J0 =

∫
V
vr0dv. This completes the proof.
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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS 1193

5. Examples. When dealing with chemosensitive movement of biological spe-
cies, questions of major interest are, How do the individuals “measure” the chemical
signal? How is this information processed, and what kind of behavior results? The
model we have introduced before and its macroscopic limit give a partial answer to
this problem.

First we give a short summary of possible evaluations of the chemical signal by
the cells as suggested by Tranquillo and Alt [22] and later discuss related examples.
The individuals might evaluate the chemical signal

spatially - the signal is evaluated at (at least) two distinct locations around the
individual, which are related to its direction (cf. Examples 5.1, 5.3, and 5.4);

temporal(ly) differential - the signal is evaluated at (at least) two different times
(cf. Example 5.1);

positionally - the signal is evaluated momentarily (cf. Example 5.4);

directionally - the signal is evaluated along the individual direction or its relation
to a directional signal field, e.g., a spatial gradient at its position (cf. Examples 5.1,
5.3, 5.4, 5.5, and 5.6).

Discussions of possible turning rates of the cells which depend on the given chem-
ical signal in this context are also given in [1], [2], [18] and [10], [19].

In [10], [19] the macroscopic limit is formal. It is assumed that the turning kernel
has an expansion in ε which is supposed to be given. Here the ε-expansion is directly
related to possible evaluations of the chemo-attractant by the cells, and thus the
connection between the micro- and macroparameters can be derived.

To understand the different influences of the evaluations of the chemical signal,
our first example is very general and allows also dependencies on time derivatives of
the chemo-attractant. Since we did not prove regularity for St so far, the macroscopic
limit in this case has to be considered only formal. Nevertheless, from this example
the other rigorous examples can be extracted later. Below we only consider the two-
dimensional case, to keep the computations simple and since this case is the most
interesting one biologically.

Example 5.1 (formal for α > 0, rigorous for α = 0). Let the turning kernel be of
general type:

Tε[s] = φ(S(x + εv, t), S(x− εv′, t), S(x, t− ε),∇S(x + εv, t),∇S(x− εv′, t),

∂tS(x + εv, t), ∂tS(x− εv′, t), ∂tS(x, t− ε), v) + εψ

(
v · v′
|v||v′|

)
,(5.1)

where φ : R
12→R and ψ : R→R are smooth and φ + εψ is strictly positive (∇S con-

tributes two entries, ∂x1S and ∂x2S). Here S satisfies the chemo-attractant equation
either of elliptic type or of parabolic type with α ≥ 0 and β > 0 in two dimensions. For
α = 0 the S-equation is completely decoupled. In this case the derivation given below
is rigorous. We do not include direct dependencies such as S(x, t), St(x, t),∇S(x, t)
at this point. These will be discussed later.

We use the following notational abbreviations:

φ[S,∇S, ∂tS, v] := φ(S(x, t), S(x, t), S(x, t),∇S(x, t),

∇S(x, t), ∂tS(x, t), ∂tS(x, t), ∂tS(x, t), v),

φi[S,∇S, ∂tS, v] := φi(S(x, t), S(x, t), S(x, t),∇S(x, t),∇S(x, t),

∂tS(x, t), ∂tS(x, t), ∂tS(x, t), v),
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1194 H. J. HWANG, K. KANG, AND A. STEVENS

where φi(· · ·) indicates the partial derivative of φ with respect to the ith argument
for i = 1, 2, . . . , 12. By the asymptotic expansion of Tε = T0 + εT1 + O(ε2), one can
easily see that T0 = T0[S, v] = φ[S,∇S, ∂tS, v] and

T1 = T1[S, v, v
′]

= (φ1[S,∇S, ∂tS, v]v − φ2[S,∇S, ∂tS, v]v
′) · ∇S + φ3[S,∇S, ∂tS, v]∂tS

+ (φ3+i[S,∇S, ∂tS, v]v − φ5+i[S,∇S, ∂tS, v]v
′) · ∇Sxi

+ (φ8[S,∇S, ∂tS, v]v − φ9[S,∇S, ∂tS, v]v
′) · ∇St

−φ10[S,∇S, ∂tS, v]∂
2
t S + ψ

(
v · v′
|v||v′|

)
,

where we used the summation convention, which is understood over repeated indices
running from 1 to 2. Furthermore, we define Φ, Φ̃, Φ̂, and Φ̄ as follows:

Φ[S0,∇S0, ∂tS0] :=

∫
V

T0[S0, v
′]dv′, Φ̃[S0,∇S0, ∂tS0, v] :=

∫
V

T1[S0, v
′, v]dv′,

Φ̂[S0,∇S0, ∂tS0, v] :=

∫
V

T1[S0, v, v
′]f0(v

′, x, t)dv′,

Φ̄[S0,∇S0, ∂tS0, v] :=
1

Φ[S0,∇S0, ∂tS0]

∫
V

T0[S0, v
′]T1[S0, v, v

′]dv′.

From T0[S0](f0) = 0, we have

f0(v, x, t) =
φ[S0,∇S0, ∂tS0, v]ρ0(x, t)

Φ[S0,∇S0, ∂tS0]
,

and therefore it is easy to see Φ̂(v) = Φ̄(v)ρ0.

Due to T0[S0](f1) = −T1[S0](f0) − v · ∇f0, we have

f1(v, x, t) =
1

Φ[S0,∇S0, ∂tS0]
(− v · ∇f0(v, x, t) − Φ̃[S0,∇S0, ∂tS0, v]f0(v, x, t)

+ Φ̂[S0,∇S0, ∂tS0, v]).

Computing Jε =
∫
V
vf1(v, x, t)dv, we obtain

Jε = −
∫
V

vivj∂xjf0

Φ[S0,∇S0, ∂tS0]
dv −

∫
V

viΦ̃[S0,∇S0, ∂tS0, v]f0

Φ[S0,∇S0, ∂tS0]
dv

+

∫
V

viΦ̂[S0,∇S0, ∂tS0, v]ρ0

Φ[S0,∇S0, ∂tS0]
dv.(5.2)

The first integral in (5.2) becomes

∫
V

vivj∂xjf0

Φ[S0,∇S0, ∂tS0]
dv =

ρ0

Φ[S0,∇S0, ∂tS0]

∫
V

(
vivj∂xj

(
φ[S0,∇S0, ∂tS0, v]

Φ[S0,∇S0, ∂tS0]

))
dv

+
∂xjρ0

Φ2[S0,∇S0, ∂tS0]

∫
V

vivjφ[S0,∇S0, ∂tS0, v]dv

=
Ai

Φ
ρ0 +

Bij

Φ2
∂xj

ρ0,
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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS 1195

where

Ai = Ai[S0,∇S0, ∂tS0] =

∫
V

vivj∂xj

(
φ[S0,∇S0, ∂tS0, v]

Φ[S0,∇S0, ∂tS0]

)
dv,(5.3)

Bij = Bij [S0,∇S0, ∂tS0] =

∫
V

vivjφ[S0,∇S0, ∂tS0, v]dv.(5.4)

The second integral in (5.2) leads to∫
V

viΦ̃[S0,∇S0, ∂tS0, v]f0(v)

Φ[S0,∇S0, ∂tS0]
dv =

Ci

Φ2(S0,∇S0, ∂tS0)
ρ0,

where

Ci = Ci[S0,∇S0, ∂tS0] =

∫
V

viΦ̃[S0,∇S0, ∂tS0, v]φ[S0,∇S0, ∂tS0, v]dv.(5.5)

The last integral in (5.2) becomes∫
V

viΦ̂[S0,∇S0, ∂tS0, v]

Φ[S0,∇S0, ∂tS0]
dv =

∫
V

viΦ̄[S0,∇S0, ∂tS0, v]ρ0

Φ[S0,∇S0, ∂tS0]
dv =

Di

Φ
ρ0,

where

Di = Di[S0,∇S0, ∂tS0] =

∫
V

viΦ̄[S0,∇S0, ∂tS0, v]dv.(5.6)

Summing up, we obtain the macroscopic equation

∂tρ0 = ∂xi

(
Ai

Φ
ρ0 +

Bij

Φ2
∂xjρ0 +

Ci

Φ2
ρ0 −

Di

Φ
ρ0

)
, Φ = Φ[S0,∇S0, ∂tS0],

where Ai, Bij , Ci, and Di are defined in (5.3)–(5.6).
Remark 5.2. If we drop out the explicit dependence of the last argument v in the

functional φ in (5.1), then the term ψ(v · v′/|v||v′|) does not influence the resulting
macroscopic equation anymore. This is due to the fact that only Ci and Di depend
on ψ (Ai, Bi do not), and Ci = Di = 0 when φ is independent of v. This is to be
expected from a biological point of view since reorientations without any bias cannot
have a macroscopic effect.

In the following we will see how to evaluate Ai, Bij , Ci, and Di more specifically.
Example 5.3 (rigorous for α ≥ 0). Let

Tε[S] = φ(S(x + εv, t), S(x− εv′, t),∇S(x + εv, t),∇S(x− εv′, t)),(5.7)

where S satisfies chemo-attractant equation of elliptic type with β > 0 in two dimen-
sions. Note that φ : R

2 ×R
2 ×R

2→R is an even function with respect to the variable
∇S, and increasing and decreasing for the first and second argument, respectively.
Also assume the structure condition of Assumptions 2.1 and 3.2, i.e.,

|Tε[S](x, v, v′, t)| ≤ C(1+S(x+εv, t)+S(x−εv′, t)+ |∇S(x+εv, t)|+ |∇S(x−εv′, t)|).

Using the asymptotic expansion of the turning kernel, i.e., Tε[S] = T0[S] + εT1[S] +
O(ε2), we can easily see that T0[S] = φ(S(x, t), S(x, t),∇S(x, t),∇S(x, t)), and

T1[S] = (φ1(S, S,∇S,∇S)v − φ2(S, S,∇S,∇S)v′) · ∇S

+

2∑
i=1

(φ2+i(S, S,∇S,∇S)v − φ4+i(S, S,∇S,∇S)v′) · ∇Sxi .
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1196 H. J. HWANG, K. KANG, AND A. STEVENS

Here φk, k = 1, 2, . . . , 6, indicates differentiation of φ with respect to the kth argument.
The symmetric φA

ε [S] and antisymmetric part φS
ε [S] of the turning kernel satisfy

φS
ε [S] ≥ γ

(
1 − εΛ

(
‖∇S‖W 1,∞(Rn)

))
FF ′,

∫
V

φA
ε [S]2

FφS
ε [S]

dv′ ≤ ε2Λ
(
‖∇S‖W 1,∞(Rn)

)
,

where γ > 0 and Λ ∈ L∞
loc is a nondecreasing function. By asymptotic expansion of

fε and Sε, the leading order equation becomes f0(x, v, t) = ρ0(x, t)/|V |. Here f0 is
independent of v. Since the ε-order equation is

T0[S0](f1) = −(v · ∇ρ0)/|V | − T1[S0](f0),

we have to calculate

T1[S0](f0) = −ρ0(φ1 + φ2)∇S0 · v −
2∑

i=1

ρ0(φ2+i + φ4+i)∇S0,xi · v.

Therefore,

T0[S0](f1) = −v · ∇ρ0

|V | + ρ0(φ1 + φ2)∇S0 · v +

2∑
i=1

ρ0(φ2+i + φ4+i)∇S0,xi · v,

due to the solvability condition, and thus we get

f1 = −v · ∇ρ0

|V |2φ +
ρ0(φ1 + φ2)∇S0 · v

|V |φ +
ρ0(φ2+i + φ4+i)∇S0,xi · v

|V |φ .

Let µ =
∫
V
|v|2dv. Using the above results, we obtain the flux density Jε =

∫
V
vf1dv+

O(ε), where

Jε = − µ

2|V |2
∇ρ0

φ
+

µ

2|V |
(φ1 + φ2)ρ0∇S0

φ
+

2∑
i=0

µ

2|V |
(φ2+i + φ4+i)ρ0∇S0,xi

φ
.

Hence the diffusion limit is

∂

∂t
ρ0 = ∇ ·

(
D∇ρ0 − χρ0∇S0 −

2∑
i=1

χ̃iρ0∇S0,xi

)
(5.8)

with

D =
µ

2|V |2φ, χ =
µ(φ1 + φ2)

2|V |φ , χ̃i =
µ(φ2+i + φ4+i)

2|V |φ , i = 1, 2,

coupled to −∆S0 = ρ0 − βS0. It is not known whether solutions for the macroscopic
equation (5.8) blow up in finite time or not.

Example 5.4. If we choose an appropriate turning kernel, then the classical
Keller–Segel model with constant coefficients can also be obtained. Indeed, if the
turning kernel (5.7) is replaced by Tε[s] = φ(S(x, t), S(x+εv, t),∇S(x+εv, t),∇S(x−
εv′, t)), then, by following similar computations to those given above, we have

∂

∂t
ρ0 = ∇ ·

(
µ

2|V |2φ∇ρ0 −
µφ2

2|V |φρ0∇S0 −
2∑

i=1

µ(φ2+i + φ4+i)

2|V |φ ρ0∇S0,xi

)
.(5.9)
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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS 1197

Now let

φ(x1, x2, x3, x4, x5, x6) = ϕ(x2 − x1) + ϕ(x5 − x3) + ϕ(x6 − x4),(5.10)

where ϕ(x) = C1

√
1 + x2 + C2x, C1 > C2 > 0.

Concerning the gradient terms, this example seems a bit artificial, but it shows
how higher order terms might cancel out. Since ϕ(0) = C1, ϕ′(0) = C2, we have
φ = C1, φ2 = C2, φ3 = φ4 = −C2, and φ5 = φ6 = C2. Therefore (5.9) leads to

∂

∂t
ρ0 = ∇ ·

(
µ

2|V |2C1
∇ρ0 −

µC2

2|V |C1
ρ0∇S0

)
,

which is the classical version of the Keller–Segel model. The diffusion coefficient
and chemotactic sensitivity, respectively, are D = µ/(2|V |2C1), χ = (µC2)/(2|V |C1),
which are both constants in this case.

Example 5.5 (rigorous, α ≥ 0, β > 0). The next example considers time varia-
tions of the chemical S.

Tε = σS(x + εv, t) + h(∂tS(x, t),∇S(x, t), v) + C2,(5.11)

where σ ≥ 0 is a fixed constant and h : R × R
n × R

n→R, n = 2, 3, is smooth and
bounded, say −C1 ≤ h ≤ C1 with 0 < C1 < C2. Note that the turning kernel satisfies
the structure condition in Assumption 3.2. Skipping the details of the calculations,
the macroscopic equation reads

∂tρ0 = ∇ ·
(

1

σS0|V | + H[S0]

[
∇
(

µ(σS0 + C2)

σS0|V | + H[S0]
ρ0

)
+ (Aij [S0]ρ0)xj

]

− σµ

σS0|V | + H[S0]
ρ0∇S0

)
.(5.12)

This equation is rigorously derived with related turning kernel (5.11) since it satisfies
Assumption 4.2.

As a specific example, we consider the case

h(∂tS,∇S, v) = C1
γ∂tS + v · ∇S

N (S)
, N (S) =

√
1 + γ2|∂tS|2 + |∇S|2,

where γ is a fixed constant. Then one can easily see

H[S0] =
C1γ∂tS0|V |

N (S0)
+ C2|V |, Aij [S0] =

C1µγ∂tS0

(σS0|B1| + H[S0])N (S0)
.

Therefore, the macroscopic equation (5.12) can be explicitly calculated, namely, for
γ = 0 (H[S0] = C2|V | and Aij [S0] = 0),

∂tρ0 = ∇ ·
(

µ

(σS0 + C2)|V |2∇ρ0 −
σµ

(σS0 + C2)|V |ρ0∇S0

)
.(5.13)

On the other hand, if σ = 0, then the last term in (5.12) vanishes and (5.12) reads

∂tρ0 = ∇ ·
(

1

H[S0]
∇
(

µC2

H[S0]
ρ0

)
+ (Aij [S0]ρ0)xj

)
,
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1198 H. J. HWANG, K. KANG, AND A. STEVENS

where Aij [S0] =
∫
V
vivjh(∂tS,∇S, v)/H[S0]dv. In case h is odd with respect to v,

then Aij = 0 in (5.12).
In the next example we discuss the influence of nonlocal terms in h.
Example 5.6 (formal for α > 0, rigorous for α = 0). Consider Tε = σS(x +

εv, t)+h(∂tS(x+εv, t), v ·∇S(x+εv, t))+C2, where h : R×R→R, n = 2, 3, is smooth
and bounded, say −C1 ≤ h ≤ C1 with 0 < C1 < C2. The structure condition in
Assumption 3.2 is satisfied.

Again, skipping the detailed calculations, the macroscopic equation reads

∂tρ0 = −∇ · Jε = ∇ ·
(

1

σS0|V | + H[S0]

(∫
V

vivj∂xj
f0dv + K[S0]

∫
V

vif0dv

− ρ0

∫
V

viT1[S0, v]dv

))
.

Next we consider a specific example of the turning kernel above. Let

h = h(∂tS(x + εv, t− ε), v · ∇S(x + εv, t)) =
C1v · ∇S(x + εv, t)√

1 + (v · ∇S(x + εv, t))2
.

Therefore, the macroscopic equation reads

∂tρ0 = ∇ ·
(

µ

(σS0 + C)|V |2∇ρ0 −
σµ

(σS0 + C)|V |ρ0∇S0

+
L[S0](L[S0]∆S0 −M [S0]|∇S0|2∆S0)

(σS0 + C)2|V |2 ρ0∇S0

)
,

where

L[S0] =
1

n

∫
V

|v|2√
1 + (v · ∇S0)2

dv, M [S0] =
1

n2

∫
V

|v|4

(1 + (v · ∇S0)2)
3
2

dv.(5.14)

The third term in the macroscopic equation is completely due to the nonlocal
dependencies of h. Compare (5.13) for the local formulation.
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