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A recent experiment using fluorescence microscopy showed that double-stranded DNA fragments
shorter than 100 base pairs loop with the probabilities higher by the factor of 102–106 than pre-
dicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)].
Furthermore, the looping probabilities were found to be nearly independent of the loop size. The
results signify a breakdown of the WLC model for DNA mechanics which works well on long length
scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop
an analytical, statistical mechanical model to investigate what emerges to the short DNA under a
tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble,
which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent
DNAs, which are either transient or unstable. The trapped bubble is none other than the previously
hypothesized kink, which releases the bending energy more easily as the contour length decreases.
It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with
experiment. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916379]

I. INTRODUCTION

The DNA molecule is a double helix of two single-
stranded (ss) chains paired by hydrogen bondings and stacking
interactions along complementary base-pairs (bp).1 Mechan-
ically, double-stranded (ds) DNA is a stiff chain molecule
having the persistence length of about 50 nm or 150 bp. In
a living cell, it is often tightly bent on nanometer scales for
biological functions;2–4 for example, in a nucleosome, a pivotal
element for DNA packing in a nucleus is wrapped around
proteins of about 10 nm size called histones; it can loop over
a length of 10 nm mediated by transcription factors for gene
regulation.5

According to the worm-like chain (WLC) model,6 in
which the dsDNA is treated as an elastic rod, it is energetically
improbable for the DNA to bend over the length scales much
shorter than the persistence length. Cloutier and Widom7

reported the cyclization probability (called j-factor) of bare
DNA fragments with the lengths less than 100 bp to be many
orders of magnitude higher than those predicted by the WLC
model.8,9 Subsequent work by Du et al.,10 however, claimed
that this finding was an artifact of the high ligase concen-
tration used to assay the j-factor. Nevertheless, controversy
related to the j-factor and the associated flexibility of short
DNA fragments persisted.11–13 Recently, Vafabakhsh and Ha14

vindicated the finding of Cloutier and Widom, using single
molecule fluorescence resonance energy transfer (FRET).

The high flexibility of dsDNA is thought to be due to
local denaturation. As widely have been studied,15–19 thermal
excitation can induce global denaturation above the melting
temperature of about 350 K as well as local opening of the
duplex structure, called a thermal bubble, at the physiological
temperature. Because an energy of about 10 kBT is required

to initiate a bp opening, the bubbles rarely occur at physi-
ological temperature.20,21 Bubbles form preferentially in AT-
rich regions where hydrogen bonding is weaker, but decay
quickly,22 with little effect on DNA stability. Yan and Marko23

and Ranjith et al.39 hypothesized that a kink consisting of a
ssDNA bubble can release the bending energy of highly bent
ds part and can greatly enhance the cyclization probability.
Similarly, Wiggins et al.24,25 introduced a generalized WLC
model that predicted a higher j-factor and other mechanical
properties. These studies, however, did not explain how the
kinks spontaneously evolved from the seemingly ignorable
thermal bubbles and are characterized by the involved physical
parameters systematically without fitting. In particular, in these
studies, the initiation energy of bubble was not considered, so
that the cooperativity of bubbles was missed.

Experimentally, Du et al.26 found structural disruptions in
circular DNAs of the length shorter than 65 bp,
but not in longer one. Later, MD simulations27 have shown that
the defect is none other than a single kink with an open bp.
Qu et al.28,29 studied the bending energy of a short dsDNA
fragment with the ends linked by ss fragment so that the hybrid
is considered to be in a D-shape. It was found that below
a critical ssDNA length, the dsDNA develops a kink, with
their nature unexplained, and the bending energy increases
linearly with the bending angle instead of quadratically. A
recent simulation has shown that in a short DNA fragment
constrained to be a circle, a bubble tends to form more easily
than in free one.30

Despite extensive studies of the elasticity of short DNA,
the origin of the high flexibility and the associated kinks is
not fully understood (for recent reviews, see Refs. 3 and 4).
To elucidate this point along with a variety of the related
phenomena in tightly bent, short DNA fragment (called as

0021-9606/2015/142(15)/155101/7/$30.00 142, 155101-1 © 2015 AIP Publishing LLC
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“short DNA” from now on), we start with an Ising model
without fitting parameters. We focus on the number of unbound
bp, or the bubble size, as the primary degree of freedom and
study how it is coupled to the bending mode by developing an
effective Hamiltonian for a short DNA. We find that bending
stress reduces the bp interaction strengths (Ising parameters)
so as to enhance local denaturation of the DNA. While in a
short DNA fragment uniformly bent above a critical angle,
the bubble is unstable and evolves into global denaturation, in
the DNA allowed to bend non-uniformly, it grows to a finite
portion and is trapped for long time, which forms a flexible
hinge, a kink. We assess the nature and condition of emergence
of the kink, which can significantly lower the free energy of
cyclization.

The outline of the paper is as follows. In Sec. II, we
consider short DNA uniformly bent, either into a circle or
with free ends. In Sec. III, we study the bubble behavior in
non-uniformly bent DNA and the emergent kink analytically.
We discuss the validity of our kink idea in view of recent
experiment on short DNA cyclization. We summarize the paper
in Sec. IV.

II. MODEL FOR UNIFORMLY BENT DNA FRAGMENTS

We start with an Ising type effective Hamiltonian for a
dsDNA fragment of N bases in the absence of external bend-
ing,31,32

H0 = −
N−1
i=1

[J0σiσi+1 +
K0

2
(σi + σi+1)] − µ

N
i=1

σi

= −
N−1
i=1

[J0σiσi+1 +
L0

2
(σi + σi+1)] − µ

2
(σ1 + σN),

(1)

where σi = 1 for bound bp and σi = −1 for unbound bp
(Fig. 1). 2J0 accounts for the domain wall energy and 2K0
is the difference in stacking energy between the bound bps
and unbound bps, while 2µ is the bp binding energy. In
Ref. 31, the local thermal undulation (orientational fluctua-
tion) that underlies the Hamiltonian is effectively incorporated
by the Ising parameters, J0, K0, and L0 ≡ µ + K0. In this
work, we adopt their values J0 = 2.83kBT , L0 = 0.184kBT , and
µ = 1.61kBT , at T = 310 K, obtained from thermal melting
of DNA fragments consisting of AT sequences (poly(dA)-
poly(dT)). In the limit N → ∞, the standard Ising model

FIG. 1. A DNA fragment with a bubble of size n bent by a local angle θi, i+1.

calculation33 yields the fraction of bound bp as

c = sinh(βL0)/


sinh2(βL0) + exp(−4βJ0),
signifying the melting condition L0 = 0. Incorporating the ef-
fect of entropy from the thermal undulation, we put

L0 = µ(1 − T/T∞m ), (2)

where T∞m ≈ 350 K is the melting temperature for an infinitely
long DNA.

Under an applied bending stress, the net Hamiltonian is
given by H = H0 + Hb, where

Hb =
1
2

N−1
i=1

κ(σi,σi+1)θ2
i, i+1 (3)

is the bending energy. Here, θi, i+1 is the bending angle of
the center line (dotted line in Fig. 1) adjoining the i and
i + 1 bases with respect to the foregoing segment, κ(σi,σi+1)
accounts for the associated bending rigidity: κ(1,1) = κd,
κ(−1,−1) = κs, where κd and κs are the bending rigidities in
the ds chain and twice that of ss chain, respectively. Finally,
κ(1,−1) = κ(−1,1) = κds. The bending rigidities are given
by κ = kBT Lp/l, where Lp is the persistence length and l is
the inter-base distance of about 0.34 nm. Therefore, we use
κd/kBT = 147 and κs/kBT = 8.45, corresponding to experi-
mental values of ds and ss persistence lengths, 50 nm and 3 nm,
respectively, at a temperature T = 310 K. Due to very large
difference between κd and κs, κds is well approximated by κs
(see Appendix A).

We investigate how the bending couples with emergence
of open base pairs to induce changes in elastic properties.
We first consider the total bending, made by an angle Φ, is
constrained to be uniform in a two dimensional plane, which
is appropriate to the linear DNA fragment bent into a circular
arc. The effect of local angle fluctuation (undulation) about the
average bending angle is incorporated by the Ising parameters
as in the absence of external bending. The Hamiltonian can be
written as

H = −
N−1
i=1

[Jσiσi+1 +
L
2
(σi + σi+1)]

− µ

2
(σ1 + σN) + (N − 1)Γ. (4)

Here,

J = J0 −
1
8
∆κθ2, (5a)

L = L0 −
1
4
∆κθ2, (5b)

Γ =
1
8
(κd + 3κs)θ2, (5c)

given in terms of uniform segmental bending angle θ ≡ Φ/(N
− 1), and ∆κ ≡ κd − κs. The partition function is given by

Z =

{σi}

exp(−βH), (6)

where the summation is over all possible bp states σi = ±1 and
β = 1/(kBT). From this, the thermodynamic free energy F and
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the fraction of open bp f are obtained as

F = −kBT log Z (7)

and

f =
1
2
(1 − c), (8)

where

c =
1
N
⟨


σi⟩ = − kBT
N

∂F
∂L

. (9)

We consider two different kinds of boundary conditions, peri-
odic boundary (σ1 = σN) for circular DNA and the closed ends
(σ1 = σN = 1) for linear DNA. The partition function is evalu-
ated by the transfer matrix method as sketched in Appendix B.

A. Circular DNA

First, we consider a uniformly bent circular DNA, which
is relevant for the DNA of wrapped around histone protein in
eukaryotic cells and also can be made artificially.26 In this case,
the end effect is absent (σi = σN) and under the approximation
that the N is sufficiently large to allow Z ≈ λN−1

+ (see Appen-
dix B), the fraction of closed base pairs, c, is given by33

c = sinh(βL)/


sinh2(βL) + exp(−4βJ). (10)

The equation implies that the melting condition c = 0 is simply
L = 0, rewritten in view of Eqs. (2) and (5b) with Φ = 2π,

µ(1 − T/T∞m ) − ∆κ4 (2π
N

)2 = 0. (11)

It predicts the critical chain length

Nc = π[∆κ/µ(1 − T/T∞m )]1/2 (12)

below which a circular DNA melts. With the parameters, we
adopt Nc ≃ 86 at T = 310 K. This value is comparable to the
critical length of circular DNA in the experiment, at which
disruptions of helical structure are detected for N = 64 − 65
but not for N > 85–86.26 The left hand side of Eq. (11) can be
written as µ(1 − T

Tm
), where Tm is the melting temperature of

the circular DNA of finite length, so that by putting T = Tm, it
yields

Tm = T∞m [1 − ∆κ4µ
(2π

N
)2]. (13)

It predicts the melting temperature depression induced by
bending. In Fig. 2, we show thermal melting curve of cir-
cular DNA of different lengths N . As the chain gets shorter
(higher bending), the melting temperature (marked by crosses)
decreases. This finding is consistent with a recent simulation
study on circular DNA30 which shows that as the chain size
decreases, the bubble more easily occurs and the melting
temperature decreases.

B. End-bound uniformly bent DNA

In the following, we consider the condition of closed
boundary, σ1 = σN = 1, which is relevant for the DNA loop
formation in cell having the ends bound by proteins. For a

FIG. 2. The fraction of bubble f as a function of temperature T for circular
DNA. From right to left, the chain lengths are N = 360 (blue), N = 240
(violet), and N = 120 (yellow). Marked as crosses are the melting points.

linear short DNA with N = 60 bent into a circular arc by an
angle Φ, we numerically obtain the free energy as a function
of Φ (incorporating two eigenvalues of the transfer matrix,
Appendix B), as depicted by Figure 3(a). For small bending,
the free energy (solids lines) increases quadratically with Φ

FIG. 3. (a) Free energy of uniformly bent DNA (F1 solid lines) and non-
uniformly bent DNA (F2 dashed line) as a function of bending angle Φ, for
N = 60. Deviation from the WLC model (dotted line) occurs at a smaller
bending angle in the latter case. Insets are schematic diagrams of uniformly
bent (left) and looped DNA via kink-induced non-uniform bending (right).
(b) The bubble fraction f or the bubble size ⟨n⟩= N f for uniformly bent
DNA ( f1 solid lines) and kink-induced non-uniformly bent DNA ( f2 dashed
line). We used T = 310 K, J0= 2.83kBT , L0= 0.184kBT , and the persistence
lengths for ds and ss are 50 nm and 3 nm, respectively.
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with virtually no deviation from the bubble-free circular WLC
bending energy,

FWLC(Φ) = 1
2
κd
Φ2

N − 1
(14)

(indicated by the dotted line). As the bending increases above
a critical angle Φ1 ≈ 260◦, however, it increases linearly with
Φ, below the WLC result. As for the unbound bp, f (solid line
in Fig. 3(b)) is less than 10−5 below the Φ1, but for bending
above this critical angle, it increases abruptly to the melting
point defined by c = 0 or f = 1/2 and global denaturation
f = 1, reminiscent of sharp melting transition.15 It evidently
demonstrates how the uniform bending triggers ambient, but
seemingly invisible open bp to evolve into denaturation bub-
bles, thereby release the bending energy.

More direct, analytical modeling for the bending energy
release mechanism is given below in terms of the nature of the
bubble that emerges. An energy 4J0 is required to initiate a bp
opening, whereas the bp pairing energy is 2L0. Because the
former is much larger than the latter at T = 310 K, an open
bp, once formed, tends to grow rather than multiple open bp
emerge separately. For short DNAs, therefore, it is reasonable
that the open bps can exists only within a domain, called
as a bubble, as also shown in Refs. 30 and 34. The size of
bubble, n, defined by the number of the open bp, is a new
degree of freedom that replaces σi’s in the Ising Hamiltonian.
The Hamiltonian, with σi = 1 assigned to the ds part and
σi = −1 to the bubble domain of size n, becomes, apart from
an irrelevant constant term,

F1(n;Φ) = FWLC(Φ), n = 0 (15a)
= FB(n) + Fb(n;Φ), n ≥ 1. (15b)

Here,

Fb =
1
2
κd( ΦN − 1

)2(N − n − 2) + 1
2
κs( ΦN − 1

)2(n + 1)
(16)

is identified precisely as the bending energy and

FB = 4J0 + 2L0n (17)

is the free energy of bubble formation. Then, we obtain the
partition function

Z1 =

N−2
n=0

e−βF1(n;Φ) (18)

and, there from the net free energy,

F1(Φ) = −kBT ln[
N−2
n=0

e−βF1(n;Φ)] (19a)

= FWLC(Φ) − kBT ln[1 +
N−2
n=1

e−β∆F1(n;Φ)],
(19b)

where

∆F1(n;Φ) = F1(n;Φ) − FWLC(Φ). (20)

From Eq. (16), we rewrite the above as

∆F1(n;Φ) = 4J + 2Ln, (21)

where

4J = 4J0 −
∆κ

2
( Φ

N − 1
)2, (22a)

2L = 2L0 −
∆κ

2
( Φ

N − 1
)2 (22b)

are none other than the effective bubble initiation energy and
bp unbinding energy which we already encountered in Eq. (5).
Indeed Eq. (19b), which can be evaluated exactly as

F1(Φ) = FWLC(Φ)
− kBT ln[1 + e−4βJ · e−2βL − e−2βL(N−1)

1 − e−2βL ],
(23)

numerically overlaps with and indistinguishable from the free
energy calculated from the Ising model (F1(Φ) ≈ F(Φ)) as
shown in Figure 3(a), validating the single bubble approxima-
tion for this short fragment. The critical angle for the deviation
of F1(Φ) from FWLC(Φ) is now identified as Φ1 ≃ Φm, where

Φm = (N − 1)(4L0

∆κ
)1/2 (24)

is the angle at which the melting occurs, L = 0. For an angleΦ
smaller thanΦm, ∆F1(n) increases linearly with n and thus has
a local minimum at n = 0, meaning that a bubble, although can
be initiated and grow due to thermal fluctuation, decays very
quickly. In contrast, for Φ > Φm, the free energy landscape
∆F1(n) is downhill, indicating that the bubble is unstable with
respect to growth toward a global denaturation, consistent
with the solid line in Figure 3(b). Also, the bubble growth is
responsible for the negative deviation of the net free energy
F(φ) from FWLC(φ) as indicated in Fig. 3(a).

III. NON-UNIFORMLY BENT SHORT DNA FRAGMENTS

Although the uniform bending assumption is valid for
certain situations such as DNA wound around histones and
DNA collapsed into a toroid,35 it is not generally true for
linear fragment under high bending conditions. To incorporate
non-uniform bending in strong coupling with the bubble in a
simplest way, we assume that the DNA is bent within the ss
and ds regions, respectively, with different segmental bending
angles, θs and θd. This means that two ds parts between the
bubble and ends are uniformly bent, which is a quite reasonable
approximation for short DNA fragments we consider here.
With the backbone bending energy replaced by

Fb =
1
2
κsθ

2
s(n + 1) + 1

2
κdθ

2
d(N − n − 2), (25)

the effective Hamiltonian is written as

F2(n,Θ;Φ) = FWLC(Φ), n = 0 (26a)
= FB(n) + Fb(n,Θ;Φ)
= 4J0 + 2L0n + AΘ2 − 2BΘΦ + CΦ2, n ≥ 1,

(26b)

in terms of an order parameter

Θ ≡ (θs − θd)(n + 1) (27)
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characteristic of non-uniform bending emergence, and the total
bending angle

Φ = (n + 1)θs + (N − n − 2)θd. (28)

Here,

A =
N − n − 2
2(N − 1)2 (κd +

N − n − 2
n + 1

κs), (29a)

B =
N − n − 2
2(N − 1)2∆κ, (29b)

and

C =
N − n − 2
2(N − 1)2 (κd +

n + 1
N − n − 2

κs). (29c)

The partition function and net free energy are given by

Z2(Φ) =
N−2
n=1

1
Φ

 Φ

0
dΘ e−βF2(n,Θ;Φ), (30a)

F2(Φ) = −kBT ln[Z2(Φ)]
= FWLC(Φ) − kBT ln[1 +

N−2
n=1

e−β∆F2(n;Φ)],
(30b)

where

∆F2(n,Φ) = −kBT ln[ 1
Φ

 Φ

0
dΘe−βF2(n,Θ;Φ)]

− FWLC(Φ). (31)

The net free energy F2(Φ) for N = 60 as a function of Φ is
depicted by the dashed line in Fig. 3(a). It is virtually identical
to the result from the WLC model for angles below a critical
value Φ2; above this value, it grows linearly with Φ, similar to
uniformly bent case. This behavior is consistent with an obser-
vation for dsDNA bent into the D form that a “kink” developed
above a critical regime.28,29 AboveΦ2 ≃ 190◦, which is smaller
than Φ1, F2(Φ) is much lower than F1(Φ), indicating that the
non-uniform bending is the equilibrium conformation. In asso-
ciation with this, the fraction of bubbles f2 =

⟨n⟩
N

is shown as
a function of Φ by the dashed line in Fig. 3(b), where

⟨n⟩ =
N−2
n=1

n · e−β∆F2(n;Φ)/(1 +
N−2
n=1

e−β∆F2(n)) (32)

is the average bubble size. f2 appears to be close to zero for
Φ belowΦ2 and increases gradually with higher bending. This
indicates that the reduction of F2(Φ) below FWLC is due to the
emergence of a bubble, similar to the case of uniformly bent
DNA. However, there is a dramatic difference; the open bp here
nucleates into a bubble at a smaller bending angle Φ2, but it
undergoes a gradual increase in contrast with the sharp increase
for uniform bending case, culminating in much smaller bubble
size and no global melting ( f ≃ 0.2).

A. Emergence of a kink

In order to explore this remarkable nature of the bubble,
what we can call as the kink, we study Eq. (31), the effective
free energy of bubble formation.36 Figure 4 depicts ∆F2(n;Φ)

FIG. 4. Stability of a kink based on ∆F2(n), the free energy required to
form a bubble of size n in N = 60 bp non-uniformly bent DNA. From top
to bottom, bending angles are Φ= 100◦, Φ=Φ2 (= 200◦), Φ=Φ0 (=236◦),
where ∆F2(n) has the minimum zero, and Φ=Φc (= 251◦) by which a loop
closure forms. We used the same physical parameters as in Figure 3.

for different bending angles Φ. For small Φ, ∆F2(n,Φ) in-
creases monotonically with n, similar to uniform bending.
Although a bubble can form by surmounting the initiation
energy barrier by thermal fluctuation, it will be transient. How-
ever, as Φ increases, ∆F2(n,Φ) develops a local minimum at a
non-zero bubble size m, which is about ⟨n⟩. In contrast to the
bubble formed in the case of uniformly bending, once a bubble
nucleates to this size, it can have a long life time because there
is an energy barrier to shrinkage (n → 0). As the bending angle
increases further, the minimum becomes negative, meaning
that the bubble with a finite size m is trapped for a long time
and does not lead to global denaturation unlike that in uniform
bending.

To understand analytically the role the kink plays, we note
that the integral in Eq. (31) is dominated by the contribution of
Θ = Θm, where F2(n,Θ;Φ) is the minimum. This leads to

∆F2(n;Φ) ≈ ∆Fb(n;Φ) + FB(n). (33)

Here,

− ∆Fb =
Φ2

2(N − 1) [(n + 1)∆κ + (N − n − 2)(∆κ)2
∆κ + κs( N−1

n+1 )
]

(34)

is the bending energy release facilitated by the kink, which
is enhanced for short DNA beyond that of uniform bending
(the first term in [. . . ]). The critical angle Φ0, above which
∆F2 is negative and the kink becomes stable, decreases as N
decreases. We rewrite the effective energy of a kink formation
as

∆F2(n;Φ) = 4J + 2Ln. (35)

The effective bubble initiation energy is given by

4J = 4J0 −
∆κ

2
Φ2

N − 1
[1 + ∆κ(N − 2)

∆κ + (N − 1)κs ], (36)

which, for a short DNA, tends to be increasingly lower than
4J0 for free DNA as well as

4J0 −
∆κ

2
( Φ

N − 1
)2 (37)
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for the uniformly bent case. These results explain how the
kink in shorter DNA more easily forms and stabilizes at
lower bending, by releasing more readily the bending energy.
Because θs = (κd/κs)θd for the free energy minimum, the
bending curvature is localized preferably on the kink rather
than distributed over the remaining ds region. In the right inset
of the Figure 3(a), we show the looped DNA conformations
calculated for the kink located in the middle. Because of the
high bending localized on the kink, a closure forms at the
angle Φc ≈ 251◦ less than 360◦, which additionally reduce
cyclization free energy to much less than that of uniformly bent
DNA.

B. Relevance to cyclization experiment

Finally, we discuss validity of the kink idea in view of
the recent FRET experiment on the cyclization of short DNA
with N = 67–106 bp.14 In the experiment, the cyclization prob-
ability ( j-factor) showed a weak dependence on the chain
length N and had magnitude 102–106 times higher than the
WLC model predictions. For a fixed N , it has shown that
depending on the bp sequence j-factor can vary over as large as
two orders of magnitude. The DNA ends have complementary
single-strand overhangs. Because of that the DNA can make a
loop once two ends are close enough, not necessarily aligned
parallel as in the “tear-drop” shape in the WLC model.23

Theoretically, the j-factor is given by j = Zc
Z0

,8,9 where
Zc and Z0 are the partition functions of the chain with the
ends closed and free, respectively.37 For short chain, Zc is
approximated by the chain with a single kink, so that the cycli-
zation probability can be approximated as j ≈ exp(−βF2(Φc)).
Here, F2(Φc) is the free energy of bending with a kink we
evaluated above for the angle of closure Φc which is less than
360◦ because of the non-uniformity of the bending. Though the
looping probability is strongly dependent on the position of the
bubble,39 for simplicity, we assumed that a kink is located in
the center of the fragment and numerically obtained the F2 from
Eq. (30b) for a number of different N using the aforementioned
physical parameter values. The j-factor obtained is depicted by
the solid curve in Fig. 5 and compared with the experimental
result (squares).

As the chain length becomes shorter than N = 100 bps,
j-factor appears to be quite insensitive to the chain length in a
way similar to the experiment14 but increased slightly as it is

FIG. 5. The cyclization probability j vs. DNA length from our model (solid
line) compared with experimental data of Ref. 14 shown by squares. We used
the same physical parameter as before. The dashed line is the WLC model
prediction.8

shortened from 110 bp to 60 bp. It is because F2 consists of two
parts; the WLC bending energy of duplex that decreases with
the chain length N and the part involving the kink formation
energy ∆F2 (see Eqs. (30b) and (33)). The kink formation
energy has a negative contribution that increases as N decrease
due to the bending energy release (Eq. (34)), which dominates
the WLC contribution in the N dependence of the j-factor.

Also, our results are about one order of magnitude higher
than the experimental data. A reason for the discrepancy can be
due to the fact that, while we used the bp interaction parame-
ters, J0 and L0, extracted from the homogeneous AT bps which
are smaller than those of GC bp, the experiments are done
with the DNA fragment of about 50% AT content. Indeed, in
a controlled experiment with the DNA fragment with homo-
geneous AT bps,14 the looping is faster, which results in an
increase of the j-factor, about 35 times compared to that of the
standard sample. On the other hand, since the bubble nucleates
preferably in an AT rich region in a real heterogeneous DNA,
the assumption of a single kink emergence precisely at the
middle may be too simple.

Considering various complex factors in the experiment,
including the sequence dependent bubble opening probabil-
ities,7,9,19,38 and the relative simplicity of our theoretical model,
which do not include adjustable parameters, the fair agreement
is remarkable, attesting the emergent role of the single kink in
cyclization.

IV. SUMMARY

Double-stranded DNA is a fairly stiff molecule with a
persistence length of about 50 nm. Recent studies, however,
have surprisingly shown that it readily bends and loops over
shorter lengths for various biological functions. To elucidate
the mechanism of emerging high flexibility in such short DNA
fragments, we studied theoretical models. For uniformly bent
cases, an Ising-like model showed that as the bending in-
creases, the fraction of broken base pairs (bubble size) in-
creases and above a critical bending the DNA undergoes a
sharp denaturation transition far below the melting temperature
of the unbent DNA. In a circular DNA, which is a typical
uniformly bent case, denatures if its contour length is less than
a critical value.

We also developed a single-bubble DNA model equivalent
to the Ising-like model to study the interplay between the
bubble and non-uniform bending. The bending with an angle
lower than a critical value does not initiate the bubble and
remains to be uniform, but above the angle, the bending could
easily nucleate a bubble, where a relatively sharp bending
curvature is induced. As the bending increases further, the
bubble gradually grows to a finite size but trapped, unlike the
bubbles in uniformly bent DNA, which are either transient or
unstable to grow into global denaturation.

In short, we demonstrated how thermally induced open
base pairs in dsDNA, despite their rare and transient existence,
couple with an applied bending to spontaneously nucleate to
a kink. The kink is neither a transient thermal bubble nor a
permanent bend; it is a quasi-stable dynamic structure that self-
organizes to reduce the enormous bending energy barrier for
looping. This idea is consistent with the recent experiment on
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DNA cyclization and is further testable in quantitative details
for the predesigned sequences.
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APPENDIX A: BENDING STIFFNESS AT A JOINT

Let us consider the bending stiffness of a joint at the
boundary of open and closed base pairs. In continuum limit,
the correlation of tangential vector of the chain is ⟨⃗t(0)⃗t(s)⟩
= e−s/Lp, where Lp is a persistence length Lp = κl/(kBT), κ is
bending stiffness, and l is the segmental length. The center line
tangential correlation between two segments composed of a ds

and a ss bp segments is ⟨⃗t(0)⃗t(2l)⟩ ≡ e
− 2l

Lpeff = e−
l

Lps e−
l

Lpd .
The effective persistence length is Lpeff = 2( LpsLpd

Lps+Lpd
) ≃ 2Lps.

Therefore, the bending stiffness can be approximated as
κds ≃ κs.

APPENDIX B: TRANSFER MATRIX METHOD
FOR ISING-TYPE MODEL

The partition function of the Ising model Hamiltonian
(Eq. (4)) can be written as

Z =

σi=±

⟨V |σi⟩⟨σi |PI |σ2⟩ · · · ⟨σN−1|PI |σN⟩⟨σN |V ⟩,
(B1)

where

PI = e−βΓ *
,

eβL+βJ e−βJ

e−βJ e−βL+βJ
+
-

is the transfer matrix of the Hamiltonian, and the summation
is over all the possible bp states, σi = 1 or −1, and |V ⟩ is
the end state vector. For closed-end, |V ⟩ = | + 1⟩ = (1,0) and
for free-end boundary, |V ⟩ = (eµ/2,e−µ/2). The transfer matrix
can be expanded in terms of the eigenvectors of the transfer
matrix

PI =

τ=±
λτ |τ⟩⟨τ |, (B2)

where the eigenvalues are λ± = eβJ−βΓ[cosh(βL) ± (sinh2(βL)
+ e−4βJ)1/2] and the eigenvectors are

|+⟩ = 1
2γeβJ

(a0|U⟩ + a0
−1|B⟩) (B3)

and

|−⟩ = 1
2γeβJ

(a0
−1|U⟩ − a0|B⟩). (B4)

Here, γ = (sinh(βL)2 + e−4βJ)1/2 and a0 = eβJ(sinh(βL)
+ γ)1/2 and |U⟩ = | + 1⟩ and |B⟩ = | − 1⟩ are closed and open

state of base pair, respectively. Then, the partition function is

Z = ⟨V |PN−1
I |V ⟩ =


τ=±
λ
N−1
τ ⟨V |τ⟩2. (B5)

For example, with periodic boundary (σ1 = σN), Z = λN−1
+

+ λN−1
− .
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