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We study the dependence between prime numbers and the real and imaginary parts
of the nontrivial zeros of the Riemann zeta function. The Legendre polynomials
and the partial derivatives of the Riemann zeta function are used to investigate
the above dependence along with the Riemann hypothesis with physical interpreta-
tions. A modified zeta function with finite terms is defined as a new implement for
the study of the zeta function and its zeros. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4770050]

I. INTRODUCTION

The distribution of prime numbers has been considered as one of the darkest mysteries in
mathematics, despite its usefulness in various fields.1 Analogically, prime numbers can be thought as
the key for the number system or arithmetic.1 In 1859, Bernhard Riemann in his memoir2 extended
the Euler definition3 to a complex variable, proved its meromorphic continuation and functional
equation, and established a relation between its zeros and the distribution of prime numbers.4 In the
paper, an explicit formula for π (x), the number of primes less than a given number x, was derived,
which indicates that the zeros of the Riemann zeta function control the oscillations of primes around
their “expected” positions. According to Riemann, all of its nontrivial zeros must lie in the range
0 � Re(s) � 1, and furthermore the nontrivial zeros of the zeta function

ζ (s) = 1 + 1/2s + 1/3s + · · · (analytic for Re(s) > 1)

are symmetrically distributed around the critical line

s = 1/2 + i t.

Especially, he addressed that all nontrivial zeros of the zeta function have the real part equal to 1/2,
which is called the Riemann hypothesis.

Currently, it is widely believed that the distribution of the nontrivial zeros of the Riemann zeta
function must have the answer to the distribution of prime numbers. The Riemann hypothesis is
actually against the conventional idea that prime numbers should be randomly distributed because if
the Riemann hypothesis is right, this alludes that a sort of functional relation exists between prime
numbers and the imaginary parts of the nontrivial zeros of the Riemann zeta function.

a)Electronic mail: sschoi@postech.ac.kr.
b)Electronic mail: jwc@postech.ac.kr.
c)Electronic mail: kim@postech.ac.kr.
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With its importance and intense scholarly interest, the Riemann hypothesis is now considered as
one of the greatest unsolved problems in mathematics.1, 13 Over the earlier centuries, there have been
numerous attempts to substantiate the Riemann hypothesis5–13 as well as diverse trials of physicists
to relate the zeta function and the distribution of its zeros to physical properties.14–47 Thus, many
physicists still have a keen interest in this issue.48–55 Not merely has the secret of prime numbers
been believed to be crucially important in mathematics and physics, but this is significantly of a
great importance in many fields including information science.

Motivated by the importance of the problem, first, the functional relations in between primes
and the real and imaginary parts of the nontrivial zeros are studied in this article. Moreover, we
reconfirm such dependences once more by using the Legendre polynomials and by investigating the
partial derivatives of the Riemann zeta function, and we extend the ideas to some possible problems
in physics. Especially, expressing a single term of the Euler product formula in terms of Legendre
polynomials gives rise to an interesting mathematical structure providing functions which show
regularity and define an interesting virtual potential. Finally, we introduce a simple approach to the
numerical calculation of the zeros on the critical line.

II. RELATION BETWEEN IMAGINARY PARTS OF NONTRIVIAL ZEROS
AND PRIME NUMBERS

Let us write a complex number as s = σ + it and call the Nth nontrivial zero of the Riemann
zeta function sN = σ N + itN. Also, let the jth prime number be pj. In fact, it is readily observed that
there is a relation between the imaginary part of a nontrivial zero of the Riemann zeta function and
every prime number, so that a relation between nontrivial zeros also exists. Considering the absolute
value of the Riemann zeta function, we find that it is actually a sum of products where one is the
function of only σ and the other is the function of only t. [Refer to Eq. (15).] Especially, note that
t is included in the cosine terms expressed as cos (t ln pj). Varying t, every cosine term with respect
to every prime number also varies at the same time. This implies that all of the cosine terms are
functionally bound together. Restricting s ∈ {z ∈ C|ζ (z) = 0} in the critical strip, if the Riemann
hypothesis is true, the imaginary parts will vary as N changes, totally independent of the constant
σ N for every N; the truth is that the positions of the ordinates of the nontrivial zeros are dependent
only on how primes are distributed.

For any N, observe that there is a uniquely defined fN,j→i such that

cos (tN ln pi ) = fN , j→i
(
cos

(
tN ln p j

))
, (1)

where i and j are arbitrarily chosen. Rewriting the above relation as

cos (tN ln pi ) = cos
(

tN ln p j + θ
j i
N

)
, (2)

we find

pi = p j e
2nπ+θ

j i
N

tN . (3)

Here, n can easily be evaluated once tN is given while at this stage, we do not know whether or
not θ

j i
N has a relation with σ N. Fortunately, the property of the ordinates of the nontrivial zeros that

are uniformly distributed over the reals in the proper interval56–58 allows us to know the information
of the characteristics of tN, including the fact that tN is determined only by the distribution of prime
numbers. Even if the exact formula of θ

j i
N is unknown, given that tN’s are uniformly distributed

as is mentioned above, we have the following simultaneous Eq. (4) from (2) and the theorem of

directional statistics,59, 60 z = 1
N

N∑
n=1

eiθn with zn = eiθn drawn from a circular uniform distribution.

That is, ∑
N

zN =
∑

N

z = 0, so that
∑

N

eiθ j i
N = 0 (4)
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which are defined for each (i, j), where zN = e
itN ln

(
pi
p j

)
. From this, we know that tN is not determined

by σ N and that all of the ordinates of the nontrivial zeros of the Riemann zeta function and prime
numbers are entangled all together.

On the other hand, if we vary N, σ N might vary as every xi does, and so let us define a relation gN

such that σ N = gN(tN) for any N ∈ N. Then, observe that all of the imaginary parts of the nontrivial
zeros and prime numbers can be thought as being responsible for the value of each σ N, and thus we
finally recognize the fact that there is a relation between σ N and σN ′ for any N and N′. Suppose that
the relation is not the identity transformation, i.e., σN �= σN ′ . Taking into account tN = gN

− 1(σ N)
and tN ′ = gN ′−1(σN ′), we directly face with the contradiction against the fact that the value of tN is
not dependent on σ N. Hence, the relation is in fact the identity transformation, and so σN = σN ′ .

III. RIEMANN ZETA FUNCTION AND LEGENDRE POLYNOMIALS

Expanding the Euler product form of the zeta function in terms of the Legendre polynomials
and making use of their orthogonal property, we reproduce the results in Sec. II through reduction
to the absurd. Also, an interesting mathematical structure is found by expressing a single term of the
Euler product formula in terms of Legendre polynomials, providing functions which show regularity.
Then, a virtual potential can be defined, the plot of which shows very intriguing patterns.

A. Theorems

Theorem 1: The absolute value of the Riemann zeta function can be expressed as

|ζ (s)| =
∑

l1,l2,...
m1,m2,...

( ∞∏
i=1

αli mi Pli (xi )Pmi (xi )

)
,

where Pn(x) is the nth Legendre polynomial, xi = cos (t ln pi), αli mi = 2mi +1
2 βli mi and

βli mi =
{

2pi
−li σ if mi = 0

0 if mi ∈ N.

Proof: Before proceeding, keep in mind that it is not necessary to obtain the analytic continuation
for Re(s) > 0 in this argument. See Appendix A.

The Riemann zeta function can be written in terms of every prime number as

ζ (s) =
∞∑

k=1

1

ks
=

∞∏
i=1

⎧⎨
⎩

∞∑
j=0

(
1

pi
s

) j
⎫⎬
⎭. (5)

In the critical strip, 0 < σ < 1 (for any σ > 0 indeed; the analytic region is σ > 1),
∣∣∣ 1

pi
s

∣∣∣
= 1

pi
σ < 1, and so the convergence theorem of the complex geometric series allows us to write

∞∑
j=0

(
1

pi
s

) j

= 1

1 − pi
−s

. (6)

Hence, we have the Euler product formula,

ζ (s) =
∞∑

k=1

1

ks
=

∞∏
i=1

1

1 − pi
−s

. (7)
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For each pi,

1

1 − pi
−s

= 1√
1 − 2pi

−σ cos(t ln pi ) + pi
−2σ

eiφi (σ,t), (8)

where φi (σ, t) = tan−1
(

sin(t ln pi )
cos(t ln pi )−pi

σ

)
.

If we take the absolute value of the Riemann zeta function, then the phase factor, e
i

∞∑
i=1

φi (σ,t)
, will

vanish, i.e.,

|ζ (s)| =
∞∏

i=1

1√
1 − 2pi

−σ cos(t ln pi ) + pi
−2σ

. (9)

Expanding (9) with the Legendre polynomials as is done in the multipole expansion for the
axial multipole moment in electrostatics, we have

1√
1 − 2pi

−σ cos(t ln pi ) + pi
−2σ

=
∞∑

li =0

pi
−li σ Pli (xi ). (10)

Writing

pi
−li σ =

∞∑
mi =0

αli mi Pmi (xi ), (11)

where

αli mi = 2mi + 1

2
βli mi , (12)

βli mi =
∫ 1

−1
pi

−li σ Pmi (xi )dxi =
{

2pi
−li σ if mi = 0

0, if mi ∈ N,
(13)

then

|ζ (s)| =
∞∏

i=1

⎧⎨
⎩

∞∑
li =0

⎛
⎝ ∞∑

mi =0

αli mi Pmi (xi )

⎞
⎠ Pli (xi )

⎫⎬
⎭ (14)

or equivalently,

|ζ (s)| =
∑

l1,l2,...
m1,m2,...

( ∞∏
i=1

αli mi Pli (xi )Pmi (xi )

)
. (15)

Here, αli mi is the function of only σ , while Pli (xi ) and Pmi (xi ) is the function of only t. �
Theorem 2: For any fixed α ∈ R, the fractional parts of the numbers αγ , where β + iγ runs

over all of the zeros of the Riemann zeta function in the critical strip with 0 < γ < T, become
uniformly distributed in R/kZ for any k ∈ R as T → ∞.

Proof: See the theorems of Fujii and Hlawka.56–58 �
Corollary 2.1: For any fixed i ∈ N and t ∈ R−{0},

Xi = {xi |xi = cos (tN ln pi ) , N ∈ N}
Xt = {xt |xt = cos (t ln pi ) , i ∈ N}

are dense.
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Proof: Theorem 2 directly guarantees that Xi is dense, while the fact that Xt is dense can be
proved with the Prime Number Theorem, providing that ln pi+1 − ln pi < ε

2t for a large enough i
where ε > 0 is fixed. This supports the argument that given ε > 0, for any x ∈ [ − 1,1], there exists
pi such that |tln pi − cos − 1x − 2nπ | < ε for a large enough n. �

Lemma 3: At least for one pair of i and j, there exists N such that

cos (tN ln pi ) = fN , j→i
(
cos

(
tN ln p j

))
, (16)

where fN,j→i is a relation between (tN, pi) and (tN, pj).

Proof: First, let us restrict

s ∈ {z = 1/2 + i t ∈ C|ζ (z) = 0} in (15). Then,

we have

∑
l1,l2,...

m1,m2,...

( ∞∏
i=1

αli mi Pli (xi )Pmi (xi )

)
= 0. (17)

Suppose that there is no N satisfying the above relation for any i and j. Namely, let us assume
xi to be an independent variable. If we could (actually impossible as seen in Sec. II), we would not
face any problem after taking integrations for every xi. (The integrations can be taken because of
Corollary 2.1.) Let us rewrite (17),

∑
l1,l2,...

m1,m2,...

( ∞∏
i=1

βli mi

)( ∞∏
i=1

2mi + 1

2
Pli (xi )Pmi (xi )

)
= 0. (18)

Here, not merely is xi dependent on tN, but also the corresponding real part in βli mi might be so.
Considering σ (tN ) = 1

2 + ε (tN ), we may want to redefine (13) as

βli mi (tN ) = 2pi
−li ( 1

2 +ε(tN ))δ0,mi . (19)

If sN is on the critical line, ε(tN) = 0. Otherwise, there would always exist the unique sN ′ such that
tN = tN ′ with ε (tN ) + ε (tN ′) = 0 which would probably hinder us from making use of integrations.
However, we are not going to face with such a problem later once we accept the result in Sec. II as
a fact, taking ε(tN) = 0 for any N.

Since βli mi ∈ [0, 2] with lim
li →∞

βli mi = 0 and βli mi

∣∣
mi >0 = 0, the following integration in relation

to (18) has the property:
∞∏

i=1

2mi + 1

2

∫ 1

−1
Pli (xi )Pmi (xi )dxi =

∞∏
i=1

δli ,mi ∈ {0, 1} , (20)

where δli ,mi is the Kronecker delta. Therefore, for every combination of li ’s and mi ’s, it is guaranteed
to have ( ∞∏

i=1

∫ 1

−1
dxi

)( ∞∏
i=1

2mi + 1

2
βli mi Pli (xi )Pmi (xi )

)
� 0. (21)

Especially, considering the case that li = 0 and mi = 0 for every i ∈ N, i.e., β00 = 2 and δ0, 0

= 1, we can simply notice the fact that

∑
l1,l2,...

m1,m2,...

∞∏
i=1

∫ 1

−1

2mi + 1

2
βli mi Pli (xi )Pmi (xi )dxi = ∞, (22)

which is contradictory to (18), resulting from the wrong assumption that there is no relation between
xi ’s. Therefore, the proof is complete. �

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

119.202.81.206 On: Sat, 04 Jul 2015 11:43:57



122108-6 S. Choi, J. W. Chung, and K. S. Kim J. Math. Phys. 53, 122108 (2012)

Corollary 3.1: The function fN, j → i in Lemma 3 is uniquely defined.

Proof: Suppose that there exists another function g satisfying the relation in Lemma 3. Then,
we immediately get g = fN,j→i from

cos (tN ln pi ) = fN , j→i
(
cos

(
tN ln p j

)) = g
(
cos

(
tN ln p j

))

g−1 ◦ fN , j→i
(
cos

(
tN ln p j

)) = cos
(
tN ln p j

)
. (23)

�
Remark:

(1) fN,j→i is invertible.
(2) Using θ

j i
N , the relation fN,j→i can be re-expressed as follows: cos (tN ln pi )

= cos
(

tN ln p j + θ
j i
N

)
.

(3) θ
j i
N is independent of σ N.

Theorem 4: For any i and j, Lemma 3 holds.

Proof: Repeating the similar argument in Lemma 3, it is generalized to Theorem 4. That is,
suppose that only for two different q and r, there exists N satisfying Lemma 3. Here, we proceed the
same steps in the proof of Lemma 3 except that we do not integrate for the (supposedly) independent
variables xq and xr, and so let us start from the following:

∑
l1,l2,...

m1,m2,...

∏
i∈N/{q,r}

∫ 1

−1
αli mi Pli (xi )Pmi (xi )dxi =

⎡
⎣ ∑

{li ,mi | i∈N/{q,r}}

⎛
⎝ ∏

i∈N/{q,r}

∫ 1

−1

2mi + 1

2
βli mi Pli (xi )Pmi (xi )dxi

⎞
⎠
⎤
⎦

×

⎡
⎢⎢⎣∑

lq ,lr
mq ,mr

1

4

(
2mq + 1

)
(2mr + 1) βlq mq βlr mr Plq

(
xq

)
Pmq

(
xq

)
Plr (xr ) Pmr (xr )

⎤
⎥⎥⎦.

(24)

Similar to (22), the former square bracket part diverges to positive infinity. Moreover, note that
the latter one – let us call it L – can be expressed as

L =
⎡
⎣∑

lq

pq
−lqσ Plq

(
xq
)⎤⎦
[∑

lr

pr
−lr σ Plr (xr )

]
= 1√

1 − 2pq
−σ cos(t ln pq ) + pq

−2σ

× 1√
1 − 2pr

−σ cos(t ln pr ) + pr
−2σ

(25)

and that L can never be zero. Thus, these facts finally lead to contradiction. Note that we can
arbitrarily choose xq and xr, and therefore, the proof of Theorem 4 is complete. �

Corollary 4.1: For any i, j and N ∈ N, there exists θ
j i
N such that pi = p j e

2nπ+θ
j i
N

tN , where

n =
[

tN ln
(

pi
p j

)
2π

]
.

Proof: Refer to Sec. II. �
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TABLE I. The first few γlt mt .

mt γlt mt

0 1
lt 2 R2+1

1 1
lt 2 R2+4

2

(
0+lt 2 R2

)
(
1+lt 2 R2

)(
9+lt 2 R2

)
3

(
1+lt 2 R2

)
(
4+lt 2 R2

)(
16+lt 2 R2

)
4

(
0+lt 2 R2

)(
4+lt 2 R2

)
(
1+lt 2 R2

)(
9+lt 2 R2

)(
25+lt 2 R2

)
5

(
1+lt 2 R2

)(
9+lt 2 R2

)
(
4+lt 2 R2

)(
16+lt 2 R2

)(
36+lt 2 R2

)
6

(
0+lt 2 R2

)(
4+lt 2 R2

)(
16+lt 2 R2

)
(
1+lt 2 R2

)(
9+lt 2 R2

)(
25+lt 2 R2

)(
49+lt 2 R2

)
7

(
1+lt 2 R2

)(
9+lt 2 R2

)(
25+lt 2 R2

)
(
4+lt 2 R2

)(
16+lt 2 R2

)(
36+lt 2 R2

)(
64+lt 2 R2

)
8

(
0+lt 2 R2

)(
4+lt 2 R2

)(
16+lt 2 R2

)(
36+lt 2 R2

)
(
1+lt 2 R2

)(
9+lt 2 R2

)(
25+lt 2 R2

)(
49+lt 2 R2

)(
81+lt 2 R2

)
9

(
1+lt 2 R2

)(
9+lt 2 R2

)(
25+lt 2 R2

)(
49+lt 2 R2

)
(
4+lt 2 R2

)(
16+lt 2 R2

)(
36+lt 2 R2

)(
64+lt 2 R2

)(
100+lt 2 R2

)
10

(
0+lt 2 R2

)(
4+lt 2 R2

)(
16+lt 2 R2

)(
36+lt 2 R2

)(
64+lt 2 R2

)
(
1+lt 2 R2

)(
9+lt 2 R2

)(
25+lt 2 R2

)(
49+lt 2 R2

)(
81+lt 2 R2

)(
121+lt 2 R2

)

Theorem 5: For any fixed σ , t ∈ R with R = σ
t ,

1

|1 − pi
−s | =

∞∑
lt =0

∞∑
mt =0

αlt m t Pmi (xt )Plt (xt ),

where

αlt mt = 2mt + 1

2
βlt mt γlt mt , βlt mt = 1 + (−1)mt e−lt Rπ ,

γlt mt =
mt +1∏
j=0

(
j2 + (lt R)2

)S( j,mt ) and S( j, mt ) =

⎧⎪⎨
⎪⎩

1, j + mt ∈ 2N

0, {( j = 0) ∧ (mt ∈ 2N − 1)}
−1, j + mt ∈ 2N − 1.

Proof: The proof is omitted; through the mathematical induction, we can get the general forms
of βlt mt and γlt mt . Actually, they can empirically be deduced, and we might go through the following
evaluations: (26)–(29), to find the rule. See Table I.∫ 1

−1
e−lt Rcos−1xt P0(xt )dxt =

∫ 1

−1
e−lt Rcos−1xt dxt = −

∫ 0

π

e−lt Rut sin ut dut =
[

e−lt Rut (cos ut + lt R sin ut )

lt
2 R2 + 1

]0

π

= 1

lt
2 R2 + 1

+ e−lt Rπ

lt
2 R2 + 1

= (
1 + e−lt Rπ

) 1

lt
2 R2 + 1

⇒ βlt 0 = 1 + e−lt Rπ , γlt 0 = 1

lt
2 R2 + 1

,

(26)

∫ 1

−1
e−lt Rcos−1xt P1(xt )dxt =

∫ 1

−1
xe−lt Rcos−1xt dxt = −

∫ 0

π

e−lt Rut cos ut sin ut dut = −1

2

∫ 0

π

e−lt Rut sin 2ut dut

=
[

e−lt Rut (lt R sin 2ut + 2 cos 2ut )

2
(
lt

2 R2 + 4
)

]0

π

= (
1 − e−lt Rπ

) 1

lt
2 R2 + 4

⇒ βlt 1 = 1 − e−lt Rπ , γlt 1 = 1

lt
2 R2 + 4

,

(27)
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FIG. 1. The density plot of the integral in (30). The first 101 terms of
∑
lt

βlt lt γlt lt are considered. The abscissa and ordinate

correspond to σ and t, respectively.

∫ 1

−1
e−lt Rcos−1xt P2(xt )dxt =

∫ 1

−1

1

2

(
3x2 − 1

)
e−lt Rcos−1xt dxt = −1

4

∫ 0

π

e−lt Rut (3 cos 2ut + 1) sin ut dut

= −3

4

∫ 0

π

e−lt Rut cos 2ut sin ut dut − 1

4

∫ 0

π

e−lt Rut sin ut dut = −3

8

∫ 0

π

e−lt Rut (sin 3ut − sin ut )dut

−1

4

∫ 0

π

e−lt Rut sin ut dut =
[
− e−lt Rut (lt R sin ut + cos ut )

8
(
lt

2 R2 + 1
) + e−lt Rut (3lt R sin 3ut + 9 cos 3ut )

8
(
lt

2 R2 + 9
)

]0

π

= (
1 + e−lt Rπ

) lt
2 R2

lt
4 R4 + 10lt

2 R2 + 9
⇒ βlt 2 = 1 + e−lt Rπ , γlt 2 = lt

2 R2(
1 + lt

2 R2
) (

9 + lt
2 R2

) ,
(28)∫ 1

−1
e−lt Rcos−1xt P3(xt )dxt =

∫ 1

−1

1

2

(
5x3 − 3x

)
e−lt Rcos−1xt dxt = 1

4

∫ 0

π

e−lt Rut (1 − 5 cos 2ut ) cos ut sin ut dut

= 1

8

∫ 0

π

e−lt Rut sin 2ut dut − 5

16

∫ 0

π

e−lt Rut sin 4ut dut

=
[
− e−lt Rut (lt R sin 2ut + 2 cos 2ut )

8
(
lt

2 R2 + 4
) + e−lt Rut (5lt R sin 4ut + 20 cos 4ut )

16
(
lt

2 R2 + 16
)

]0

π

= (
1 − e−lt Rπ

) 1 + lt
2 R2

lt
4 R4 + 20lt

2 R2 + 64
⇒ βlt 3 = 1 − e−lt Rπ , γlt 3 = 1 + lt

2 R2(
4 + lt

2 R2
) (

16 + lt
2 R2

) .
(29)

�
Remark: A virtual potential at a fixed s = σ + it can be defined as follows. The density plot

with respect to σ and t is given in Fig. 1.[∫
i∈N

1

|1 − pi
−s |
]

s

=
∫ 1

−1
dxt

∑
lt ,mt

αlt mt Pmt (xt ) Plt (xt ) =
∑

lt

βlt lt γlt lt

= β00 + β11

1R2 + 4
+ β22

(
0 + 4R2

)
(
1 + 4R2

) (
9 + 4R2

) + β33
(
1 + 9R2

)
(
4 + 9R2

) (
16 + 9R2

) + β44
(
0 + 16R2

) (
4 + 16R2

)
(
1 + 16R2

) (
9+ 16R2

) (
25+ 16R2

) + · · · .

(30)
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B. Expatiation upon the above mathematical results

Theorem 1 allows us to express the zeta function in terms of the Legendre polynomials. In order
to make use of integrations to reach Corollary 4.1 and Theorem 5, it is necessary to prove Corollary
2.1 since xi and xt are not continuous variables. Also, reduction to the absurd is applied from Lemma 3
to Theorem 4, which gives rise to Corollary 4.1, reconfirming the dependence between the nontrivial
zeros and primes in Sec. II.

On the other hand, Theorem 5 shows that each prime number is related to the interesting
mathematical functions, βlt mt and γlt mt . Here, βlt mt oscillates as mt increases, while it converges
to 1 as lt goes to infinity. Meanwhile, γlt mt itself decreases as lt and mt increase, but the numbers
appearing in γlt mt have a very regular pattern. For instance, as shown in Table I, if mt = 2, then 02,
12, and 32 are found in γlt mt , but 22 does not appear unless lt = mt. This pattern is shown for the
cases of even mt’s. Similarly, if mt = 5, then 12, 22, 32, 42, and 62 are found in γlt mt , but 52 does not
appear unless lt = mt; when mt is odd, γlt mt has such a pattern. Defining the virtual potential related
to the Legendre polynomials as well as both βlt mt and γlt mt as is in (30), every term except lt = mt

vanishes by the orthogonality of the Legendre polynomials. Although infinitely many primes do not
uniquely define a specific path of the integral, Theorem 5 makes it possible to provide the uniquely
defined value of the integral as in (30). Surprisingly, the density plot of the virtual potential with
respect to σ and t (Fig. 1) gives very intriguing patterns showing various kinds of diamonds. We
conjecture that such patterns would be related to the distribution of prime numbers.

IV. SCHRÖDINGER EQUATION FROM RIEMANN ZETA FUNCTION

A. Theorems

Theorem 6: For σ > 0, ∂ζ (s)
∂t = i ∂ζ (s)

∂σ
with

∂ζ (s)

∂σ
= ζ (s) ln

[ ∞∏
i=1

pi

(
1+ pi

σ −cos(t ln pi )
pi

−σ −cos(t ln pi )

)−1
]

+ iζ (s) ln

[ ∞∏
i=1

pi

sin(t ln pi )
pi

σ +pi
−σ −2 cos(t ln pi )

]
,

∂ζ (s)

∂t
= iζ (s) ln

[ ∞∏
i=1

pi

(
1+ pi

σ −cos(t ln pi )
pi

−σ −cos(t ln pi )

)−1
]

− ζ (s) ln

[ ∞∏
i=1

pi

sin(t ln pi )
pi

σ +pi
−σ −2 cos(t ln pi )

]
.

Proof: From (7) with the chain rule being applied, we readily have

∂ζ (s)

∂σ
= ζ (s) ln

( ∞∏
i=1

pi
1

1−pi
s

)
and

∂ζ (s)

∂t
= iζ (s) ln

( ∞∏
i=1

pi
1

1−pi
s

)
. (31)

To decompose (31) into real part and imaginary part, let us differentiate both sides of (8). Then,
we have

∂ζ (s)

∂σ
= −ζ (s)

∞∑
i=1

(
cos

(
1
2 t ln pi

)− i sin
(

1
2 t ln pi

))
ln pi

(pi
σ − 1) cos

(
1
2 t ln pi

)+ i (pi
σ + 1) sin

(
1
2 t ln pi

)
= ζ (s)

∞∑
i=1

(
1 − pi

σ e−i t ln pi
)

ln pi

pi
2σ − 2pi

σ cos (t ln pi ) + 1
= ζ (s)

∞∑
i=1

(1 − pi
σ cos (t ln pi ) + i pi

σ sin (t ln pi )) ln pi

pi
2σ − 2pi

σ cos (t ln pi ) + 1

= ζ (s)
∞∑

i=1

ln pi

1 + pi
σ −cos(t ln pi )

pi
−σ −cos(t ln pi )

+ iζ (s)
∞∑

i=1

sin (t ln pi ) ln pi

pi
σ + pi

−σ − 2 cos (t ln pi )

= ζ (s) ln

[ ∞∏
i=1

pi

(
1+ pi

σ −cos(t ln pi )
pi

−σ −cos(t ln pi )

)−1
]

+ iζ (s) ln

[ ∞∏
i=1

pi

sin(t ln pi )
pi

σ +pi
−σ −2 cos(t ln pi )

]
.

(32)
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Also,

∂ζ (s)

∂t
= iζ (s) ln

[ ∞∏
i=1

pi

(
1+ pi

σ −cos(t ln pi )
pi

−σ −cos(t ln pi )

)−1
]

− ζ (s) ln

[ ∞∏
i=1

pi

sin(t ln pi )
pi

σ +pi
−σ −2 cos(t ln pi )

]
. (33)

�
Corollary 6.1: For σ > 0, the Riemann zeta function satisfies the Schrödinger equation

i
∂ζ (s)

∂t
= − 1

2M(s)

∂2ζ (s)

∂σ 2
+ V (s)ζ (s)

with M(s) = 1

2
ln

( ∞∏
i=1

pi
1

1−pi
s

)
and V (s) =

〈
2ps

1 − ps

〉∣∣∣∣ ln pi
1−pi

s , i∈N.

Proof: Only a few further evaluations in the proof of Theorem 6 are needed. In fact,

M(s) = 1

2
ln

[ ∞∏
i=1

pi

(
1+ pi

σ −cos(t ln pi )
pi

−σ −cos(t ln pi )

)−1
]

+ i

2
ln

[ ∞∏
i=1

pi

sin(t ln pi )
pi

σ +pi
−σ −2 cos(t ln pi )

]
, (34)

V (s) =
〈

2ps

1 − ps

〉∣∣∣∣ ln pi
1−pi

s , i∈N
=

∞∑
i=1

(
2pi

s

1−pi
s

) (
ln pi

1−pi
s

)
∞∑

i=1

ln pi

1−pi
s

. (35)

�
Definition 1: For σ > 0 and any set of prime numbers P,

ζP (s) =
∏
pi ∈P

⎧⎨
⎩

∞∑
j=0

(
1

pi
s

) j
⎫⎬
⎭ =

∏
pi ∈P

1

1 − pi
−s

.

Corollary 6.2: ζ P(s) satisfies

i
∂ζP (s)

∂t
= − 1

2MP (s)

∂2ζP (s)

∂σ 2
+ VP (s)ζP (s)

with MP (s) = 1

2
ln

⎛
⎝∏

pi ∈P

pi
1

1−pi
s

⎞
⎠ and VP (s) =

〈
2ps

1 − ps

〉∣∣∣∣ ln pi
1−pi

s , pi ∈P.

B. Analysis

From Secs. I and II, we are aware of the fact that the positions of the imaginary parts of the
nontrivial zeros of the Riemann zeta function are independent of the real parts. Actually, it is the
distribution of prime numbers that determines the positions. Theorem 6 agrees with these conclusions
in that the variation of the behavior of the zeta function is not much controlled by the real part but
by the imaginary part and the distribution of prime numbers. See Fig. 2.

On the other hand, the behaviors observed in Fig. 2 are actually the behaviors of the mass of the
virtual particle in Corollary 6.1, which is under the mean prime potential, V (s). From this point of
view, we observe that only the imaginary parts of the zeros of the Riemann zeta function determine
the positions where the mass of the particle drastically increases. On the other hand, the probability
that the particle exists on the critical line at the corresponding imaginary parts is zero.

Meanwhile, M(s) and V (s) defined above have not yet obtained the analytic continuation in the
critical strip at this stage since we started from the Euler product formula, which is not analytically
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FIG. 2. (a)
100∏
i=1

pi

(
1+ pσ

i −cos(t ln pi )
p−σ
i −cos(t ln pi )

)−1

with the vertical lines corresponding to t = tn from n = 1 to n = 29

(b)
1000∏
i=1

pi

(
1+ pσ

i −cos(t ln pi )
p−σ
i −cos(t ln pi )

)−1

and
1000∏
i=1

pi

sin(t ln pi )
pi

σ +pi
−σ −2 cos(t ln pi ) for σ = 1 and 1 < t < 100 with the same vertical lines.

defined in that region. Thus, further researches are required in order to show analytic behaviors in
the critical strip by introducing new analytic functions as if the Dirichlet Eta function is employed
to express the zeta function instead of using its p-series form in the critical strip. Nevertheless, the
above definition of M(s) and V (s) itself is still able to numerically show their singular behaviors at
the imaginary parts of the nontrivial zeros as mentioned above.

V. MODIFIED RIEMANN ZETA FUNCTION WITH FINITE TERMS

In this section, we introduce a modified zeta function with finite terms which converges to the
Riemann zeta function in the limit case.

A. Theorems

Definition 2: Z(s, N) = ζ (s, N) − L(s, N),

where ζ (s, N ) =
N∑

k=1

1

ks
,

L(s, N − 1) =
∫ N

1

dk

ks

and

Re [L (s, N − 1)] = σ − 1 + N σ−1t sin (t ln N ) + N σ−1 (1 − σ ) cos (t ln N ),

1 − 2σ + σ 2 + t2

Im [L (s, N − 1)] = −t + N σ−1t cos (t ln N ) + N σ−1 (σ − 1) sin (t ln N )

1 − 2σ + σ 2 + t2
.

Theorem 7: lim
N→∞

Z (s, N ) 
 ζ (s) for σ > 0.

Proof: Let us first consider the real part. Note that there exist functions f and g such that the
oscillation of Re [L(s, N )] with increasing N is enveloped by f(N) and g(N). Observe that

{ f (N + 1) − g (N + 1)} − { f (N ) − g (N )} → 0 (36)

as N → ∞.
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Since f (N ) − g (N ) > Re [L(s, N )],

lim
N→∞

|Re [L(s, N + 1)] − Re [L(s, N )]| = 0 (37)

or simply

lim
N→∞

{Re [Z(s, N + 1)] − Re [Z(s, N )]} = 0 (38)

due to the fact that

Re [Z(s, N )] − Re [ζ (s)] 
 Re [L(s, N )] . (39)

Moreover, for any N, at least one of the following inequalities is satisfied:

cos (t ln N )

N σ
� Re [ζ (s, N )] − Re [Z(s, N )] � Re [Z(s, N + 1)] − Re [Z(s, N )]

cos (t ln N )

N σ
� Re [ζ (s, N )] − Re [Z(s, N )] � Re [Z(s, N + 1)] − Re [Z(s, N )] (40)

in which both cos(t ln N )
N σ and Re [Z(s, N + 1)] − Re [Z(s, N )] converge to zero as N → ∞. Hence,

Re [ζ (s)] 
 lim
N→∞

Re [ζ (s, N )] = lim
N→∞

Re [Z(s, N )] . (41)

A similar argument applies to the case of Im [ζ (s)] which finally leads to

ζ (s) = lim
N→∞

ζ (s, N ) 
 lim
N→∞

Z(s, N ). (42)

The symbol, 
, is used because there is a disagreement between the behavior of lim
N→∞

Z(s, N )

and the Riemann zeta function for small t < t1. See Fig. 4. �
B. Analysis

Theorem 7 allows us to effectively deal with the problematic summation part even if we keep
using the p-series form of the zeta function in the critical strip. The more terms we consider here,
the more vibrating noises we have from t = 0 to some extent (Fig. 3). Summing up simply in the
order does not give very satisfactory results as is expected from the fact that the p-series form can
only conditionally be convergent, i.e., it is not analytically defined in the critical strip. In Fig. 3, the
noises in the left figure hinder us from finding s = σ + it such that Re [ζ (s, N )] 
 0. Once we
choose N to which we summed up from n = 1 subsequently, there is a determined region of t where
we can successfully analyze the behavior of the zeta function. However, it could ill-behave in other
regions.

Nevertheless, we might try to find out a way with which we can utilize the p-series form of
the zeta function for the half plane Re (s) > 0. The method suggested in Theorem 7 focuses on the
overlap between ζ (s, N) and L(s, N). Thus, if we would like to find zeros, we can try to find out t
such that the overlap is maximized, i.e., Z(s, N) = 0. Note that the oscillation axis of ζ (s, N) is ζ (s),
whereas L(s, N) oscillates always about 0. Once s reaches one of the nontrivial zeros sn, ζ (s, N) also
has its oscillation center at zero. Then, we expect Z(sn, N) 
 0. See Fig. 4.

FIG. 3. Re[ζ (0.5 + i t, 2000)] (in red) and Im[ζ (0.5 + i t, 2000)] (in blue) for 0 < t < 27 (left) and 990 < t < 1000 (right)
with the vertical lines corresponding to the imaginary parts of the nontrivial zeros.
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FIG. 4. Re [Z (0.5 + i t, N )] (red), Im [Z (0.5 + i t, N )] (blue), Re [ζ (0.5 + i t)] (green), and Im [ζ (0.5 + i t)] (gold). In (a)
and (b), we do not have any noises which appear in Fig. 3. Furthermore, we have smoother curves as N increases, as Theorem
7 implies. For a large t with a large enough N, it also behaves well in accordance with the zeta function as is seen in (d) where
the colors of the curves indicate that Z(0.5 + it, 2000) and ζ (0.5 + it) almost overlap.

VI. CONCLUSION

We carried out a logical approach to the nontrivial zeros of the Riemann zeta function with
the uniformly distributed property of the imaginary parts of the nontrivial zeros in relation to the
functional dependence between the zeros and primes. It is noted that there is a uniquely defined
relation between prime numbers and imaginary parts of the zeros, independent of their real part. From
this result, it is inferred that the real parts of the zeros are related by the identity transformation. Also,
the Legendre polynomials are used for the reconfirmation of the existence of the relation between
primes and the ordinates of the nontrivial zeros and for some further investigations, noting on their
orthogonal property. Especially, the term, |1 − p−s

i |−1, which may possibly be related to the concept
of Green’s function, can be integrated. The integral can be thought of as a virtual potential defined
by primes of which the resultant value is invariable even though no unique path of the integral
is defined. Owing to the connection with the Legendre polynomials, the virtual potential is easily
evaluated where the result consists of an interesting mathematical structure. Here, the density plot
of the potential provides enigmatic patterns. Furthermore, the partial derivatives of the Riemann
zeta function can give rise to the Schrödinger equation of which the solution is the zeta function
itself, permitting us to think of a virtual particle under the mean prime potential. Only the imaginary
parts of the zeros of the Riemann zeta function determine the positions where the mass of the
particle drastically increases coincident with the positions of the zeros on the critical line in the
Riemann hypothesis. On the other hand, the probability that the particle exists on the critical line at
the corresponding imaginary parts is always zero. Lastly, the modified zeta function, which finally
converges to the actual zeta function with N approaching to the positive infinity, helps us readily
observe the behavior of the Riemann zeta function for the right half-plane except for small t < t1.

From this study, we anticipate that it can make a path way to understand prime numbers. By
extension, further studies to find the θ

j i
N could lead to the key to the exact relation between primes.

If the Riemann zeta function can also satisfy the Klein-Gordon equation or Dirac equation and the
position of the nontrivial zeros retain the same kind of meaning as in the case of the Schrödinger
equation, then prime numbers can be thought that they are more likely to have a real relation with
nature.
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APPENDIX A: ANALYTIC CONTINUATION

In mathematics, an analytic function is a function that is locally given by a convergent power

series, and so the Riemann zeta function ζ (s) =
∞∑

n=1

1
ns is an analytic function for Re(s) > 1 because

the series itself is absolutely convergent. However, this expression is not analytic for Re(s) � 1,
so that we generally need to extend the analytic domain of ζ (s). In fact, the analytic continuation
of the Riemann zeta function is obtained for all complex numbers s except for a simple pole at s
= 1. To investigate the critical strip, {s ∈ C|0 < Re(s) < 1}, analytically, one may start from the
zeta alternating series, which is called the Dirichlet eta function. (Note that the continuation is
independent of whatever techniques we use because of the uniqueness of analytic continuations.)

Since the eta function η (s) =
∞∑

n=1

(−1)n−1

ns is an analytic function for Re(s) > 0, it is permitted to

extend the domain of definition of the Riemann zeta function in the following way:

η (s) =
∞∑

n=1

(−1)n−1

ns
=

∞∑
n=1

1

ns
−

∞∑
n=1

2

(2n)s

= ζ (s) − 2

2s
ζ (s) ⇔ ζ (s) = 1

1 − 21−s
η (s) . (A1)

That is, the technique using the eta function allows us to extend the analytic domain of the
Riemann zeta function for all complex number s with positive real part except s = 1. (Using a
different way, we can furthermore do the analytic continuation to Re(s) � 1, also.) Even though
it is almost impossible to get a convergent value in the critical strip from the p-series form of the

Riemann zeta function, ζ (s) =
∞∑

n=1

1
ns , the existence of the values of the function is still guaranteed

by the analytic continuation. Notice that

ζ (s) = 1

1 − 21−s
η (s) = 1

1 − 21−s

(
1 − 1

2s
+ 1

3s
− · · ·

)

= 1

1 − 21−s

{
1 − 1

2s
−
(

1

2s

)2

− · · ·
} ∞∏

i=2

1

1 − pi
−s

= 1

1 − 21−s

{
2 −

(
1 + 1

2s
+
(

1

2s

)2

+ · · ·
)} ∞∏

i=2

1

1 − pi
−s

= 1

1 − 21−s

(
2 − 1

1 − 2−s

) ∞∏
i=2

1

1 − pi
−s

= 1

1 − 21−s

1 − 21−s

1 − 2−s

∞∏
i=2

1

1 − pi
−s

=
∞∏

i=1

1

1 − pi
−s

. (A2)

From the function analytically defined for Re(s) > 0 except for s = 1, we deduce the Euler
product formula, which is analytic only for Re(s) > 1. Although the Euler product formula cannot
locally be given by a convergent power series, we use this formula since it is enough for the
development of our logical arguments. See Appendix B.
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APPENDIX B: THE ARGUMENT SIMILAR TO ONE IN SEC. II WITH THE RIEMANN ZETA
FUNCTION DEFINED BY THE ETA FUNCTION

The absolute value of the Riemann zeta function is defined as follows:

|ζ (s)| = 1√
1 − 2

(
21−σ

)
cos (t ln 2) + (

21−σ
)2

|η (s)| . (B1)

Observe that (B1) is zero if and only if η(s) = 0, so that the zeros of η(s) are actually the zeros
of the Riemann zeta function. From Theorem 2, it is easily seen that

Xk = {xk |xk = cos (tN ln k) , N ∈ N} (B2)

is also dense for any k ∈ N/{1}. For any (m, n) ∈ N2, suppose that there is no N ∈ N such that

cos (tN ln m) = f (cos (tN ln n)) , (B3)

where f is a relation between (tN, m) and (tN, n).
Restricting s ∈ {z = 1/2 + i t ∈ C|ζ (z) = 0} and integrating both sides of η(s) = 0 with

∞∏
k=2

∫ 1
−1 dxk , we face with the contradiction that the real part diverges to the positive infinity. The

appearance of this kind of contradiction is actually irrelevant to whether or not the function we
handle is analytically defined.
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