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Abstract
Interferometric signals are degraded by decoherence, which encompasses dephasing,mixing and any
distinguishingwhich-path information. These three paradigmatic processes are fundamentally differ-
ent, but, for coherent, single-photon andN N00 -states, they degrade interferometric visibility in the
very sameway, which impedes the diagnosis of the cause for reduced visibility in a single experiment.
We introduce a versatile formalism formany-boson interferometry based on double-sided Feynman
diagrams, whichwe apply to a protocol for differential decoherence diagnosis: twin-Fock states
∣ 〉N N, with ⩾N 2 reveal towhat extent decoherence is due to path distinguishability or tomixing,

while double-Fock superpositions∣ 〉 = ∣ 〉 + ∣ 〉N M N M M N: ( , , ) 2 with > >N M 0 additionally
witness the degree of dephasing. Hence, double-Fock superposition interferometry permits the differ-
ential diagnosis of decoherence processes in a single experiment, indispensable for the assessment of
interferometers.

1. Introduction

The coherent superposition of physically exclusive single-ormany-particle path amplitudes is exemplified best
with theminimalistic paradigmof a single particle prepared in the state∣ 〉 ≡ ∣ 〉 + ∣ 〉1: 0 ( 1, 0 0, 1 ) 2 , a
coherent superposition of the upper and lower arms of aMach–Zehnder interferometer. Fringes appear in the
output signal, the probability tofind the particle in the upper detector, as a function of the relative phase η that
the particle acquires between the two arms (figure 1).We define the fringe visibility of the output signal

=s s( , ) (1, 0)1 2
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is the probability of the signal with s s( , )1 2 detected particles for the bosonic initial state∣ 〉N M: ,

defined below. Interference is jeopardized by several deteriorating effects summarized as decoherence [1–5], and,
in practice, the visibility(1,0)

1:0 never reaches unity. The interferometer infigure 1 illustrates three prominent
mechanisms for decoherence: dephasing,mixing, and path distinguishability. By tracing out the internal degrees
of freedomof the particle and performing the classical average over phasefluctuations, the state of a single
particle in the two arms is described by an effective two-state densitymatrix
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where the visibility(1,0)
1:0 coincides with the classical ensemble-average of the scalar product ϕ ϕ〈 ∣ 〉˜ of the states

of the particle in the upper and the lower arms, and thereby quantifies the coherence between the arms. The
three decoherence effects are, thus, not differentiated in practice by the single-particle interferometric signal. For
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—possibly strong—coherent states, for which the signal intensity replaces the event probability in equation (1),
there is no possibility for a qualitative differentiation of decoherencemechanisms either, nor forN N00 -states,
as we show below.

The parsimonious description inherent to (2) is certainly sufficient to predict the combined impact of
dephasing, distinguishability andmixing on an interferometer [7, 8], and an impressive level of understanding
of decoherence in nature has been achieved through studies that essentiallymonitor only the visibility, as
demonstrated for largemolecules [8]. However, the precise cause of decoherence remains unknown in
circumstances that are not well understood, and three interferometers that are affected by three qualitatively
different decoherence processesmay exhibit the very same signal. For the characterization and eventual
alleviation of decoherence, differential diagnosis, i.e. detailed information about the nature of decoherence, is
crucial: only a well-characterized cause of the signal deterioration can be thoroughly addressed and eventually
removed.

For example, in nuclearmagnetic resonance, it is crucial to distinguish truly irrevocable dephasing from
inhomogeneous spin precessions, which can be diagnosed and reversed by spin-echomeasurements [9]. In the
present context of interferometry, the key to amore differentiated picture of decoherence processes lies in the
complexity inherent to entangledmany-boson states. Here, we introduce a versatile treatment of bosonic
double-Fock superpositions, which encompasses single-particle states,N N00 -states and double-Fock states of
the form∣ 〉N M, as special cases. The formalismnaturally allows us to treatmixed states and to thereby
incorporate decoherence processes such asmixing, distinguishability and dephasing. As a result, a four-particle
double-Fock state∣ 〉2, 2 allows a clear diagnosis ofmixing against distinguishability, while the entangled double-
Fock superposition∣ 〉 ≡ ∣ 〉 + ∣ 〉2: 1 ( 1, 2 2, 1 ) 2 additionally quantifies dephasing. States with larger particle
numbers promise an evenmore detailed revelation of the processes that deteriorate interference.

2.Double-Fock interferometry

2.1. Pure states
Weconsider double-Fock superpositions of the form

= +

≡ +

ϕ ϕ ϕ ϕ( )N M N M M N

N M M N

:
1

2
1

2
( , , ), (3)

1, 2, ˜ 1, 2, ˜

where ⩽ <M N0 , and∣ 〉 θK l, denotes the Fock state ofK bosons in the interferometric arm l and in the internal
state θ∣ 〉.The latter pools all remaining relevant degrees of freedombywhich particles can possibly be
distinguished (besides themode number): for a photon, θ∣ 〉 typically describes the polarization and the spatio-
temporalmode function. Double-Fock superpositions comprise single-photon ( = =N M1, 0) andN N00
-states ( > =N M1, 0) as special cases.

After propagation through the interferometer, the component∣ 〉M N, in (3) acquires the relative phase
η−N M( ) with respect to∣ 〉N M, . This phase can be inferred by combining the two arms at a beam-splitter and

measuring the probability s s
N M

( , )
:

1 2
tofind = + −s s N M s( , )1 2 1 particles in the two outputmodes [10]. In

practice, the pathsmight not be fully indistinguishable, which is reflected by a non-unity scalar product ϕ ϕ〈 ∣ 〉˜ ,
i.e. by partial distinguishability, which complicates the computation of event rates. One approach to partially

Figure 1. Interferometer subject to decoherence. Particles in either arm start in the same internal single-particle state ϕ∣ 〉. In the lower
arm, each particle acquires the phase η, which ismeasured by combining the arms at a beam splitter and recording the number of
particles s1 and s2 in the two detectors. The interferometricmeasurement is jeopardized by dephasing (a randomphase ηrand, acquired
here in the upper armwith probability γ−1 phase), path distinguishability (a change in the internal states of the particles travelling

through the lower arm, resulting in afinite scalar product ϕ ϕ γ∣〈 ∣ 〉∣ =˜
dist and leading to decoherence [6]) andmixing (with probability

γ−1 mix for each arm, the particles are left in an unknown randomly chosen state).
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distinguishable bosons consists in replacing the ideal bosonic permanent by a sumofmore general immanants
[11, 12]. Alternatively, the initial state can be decomposed into orthogonal components of different degrees of
distinguishability [13–16].Neithermethod, however, offers a straightforward extension tomixed states—a
prerequisite in our context—because the resulting expressions for the event probabilities feature a complicated
dependence on the scalar product ϕ ϕ〈 ∣ 〉˜ .

Here, we overcome this shortcoming by treating the coherentmany-particle propagation via double-sided
Feynman diagrams [17]. Our starting point is the expectation value of the projectorQ̂ s s( , )1 2

, whose eigen-space is
defined by the desired particle numbers in the outputmodes of the beam-splitter (figure 1)

 = Q U N Mˆ ˆ : (4)s s
N M
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:
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2

1 2 1 2

= N M U Q Q U N M: ˆ ˆ ˆ ˆ : (5)s s s s
†
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s s
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( , )1 2

⎡⎣ ⎤⎦
whereÛ describes themany-particle beam-splitter transformation in Fock-space, induced by

→ +θ θ θ−( )a b bˆ
1

2
i ˆ ˆ , (7)k k k,

†
,
†

3 ,
†

where k refers to the beam splittermode (see figure 1) and a phase-shift ofπ 2 is acquired upon reflection. In
deriving equation (6), we used that, for a balanced beam-splitter, the states∣ 〉N M, and∣ 〉M N, lead to the same
event probability. Equation (6) contains two contributions to the event probability: amain contribution (i) for
which the bra-and ket-vectors are the same, and a swapped contribution (ii) with different bra-and ket-vectors.
These two terms can be interpreted as double-sided Feynman-diagrams that combine propagation forwards and
backwards in time, implicit in equation (6): the state∣ 〉N M: is propagated in time viaÛ , projected onto the

measurement outcome described by the projectorQ̂, and propagated back viaÛ
†
(see figure 2).

Inserting the transformation (7), we identify the permutations of the particles in themodes that yield the
same summands. All the possibilities for distributing the particles among themodes need to be taken into
account; using ϕ ϕ〈 ∣ 〉 = 〈 ∣ 〉ϕ ϕK K ˜ K˜ , wewrite the signal probability as a polynomial in the scalar product ϕ ϕ〈 ∣ 〉˜
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where the explicit formof the combinatorial factorJ togetherwith an illustration are given in the appendix.

Equation (8) reveals the dependence of the probability s s
M N

( , )
:

1 2
for the event (s s,1 2) on powers of the

indistinguishability parametrized by ϕ ϕ〈 ∣ 〉˜ up to order +N M . Absolute-square powers of the form ϕ ϕ∣〈 ∣ 〉∣˜ J2

(term (i)) contributewithout any dependence on η. A particle ‘starting’ and ‘ending’ in the same arm (horizontal

Figure 2. Full double-sided Feynman diagrams, illustrated for (a)∣ 〉1: 0 , =s s( , ) (1, 0)1 2 ; (b)∣ 〉 =s s2: 0 , ( , ) (1, 1)1 2 ; (c)∣ 〉1, 1 ,
=s s( , ) (1, 1)1 2 . The initial state is propagated in time by Û , projected ontoQ̂(1,1) (orange frame, the projector does not differentiate

the internal state, hence the gray coloring) and propagated back viaÛ
†
. The upper rows correspond to the term (i) in equation (8), the

lower rows to (ii); the latter is absent for the twin-Fock state∣ 〉1, 1 . For states with possible bosonic exchange processes, there are
several competing paths; in general, all paths need to be summed up.
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single-colored arrows infigure 3) contributes a certain amplitude, a particle ending in a different arm (diagonal
two-colored arrows) yields an amended amplitude that is attenuated by a factor ϕ ϕ〈 ∣ 〉˜ or ϕ ϕ〈 ∣ 〉˜ . Themany-
particle paths forwhich all particles end in the arm they started from (marked by dotted edges) constitute the
‘classical’ contribution, which can be understood via interference-free classical combinatorics. The other terms
contain non-vanishing powers of ϕ ϕ〈 ∣ 〉˜ and describe different exchange processes. Bosonic exchange processes
are thosewith ≠J 0, i.e. J counts howmany particles were actually exchanged between the armswithin one
component∣ 〉N M, , such that, naturally, ⩽J M . Exchanges between the∣ 〉N M, and∣ 〉M N, -components lead
to a phase-dependence on η (term (ii)).

For single-photon andN N00 -states,M=0, and the sum (8) reduces to one term

R  ϕ ϕ= + − η( )1 ( 1) i ˜ e , (9)s s
N

s s
s N

( , )
:0

( , )
dist i

1 2 1 2
1

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

where = ( ) 2s s
N

s
N

( , )
dist

1 2 1
is the ‘classical’ combinatorially obtained probability tofind s s( , )1 2 distinguishable

particles in the outputmodes. Consistently with ⩽ =J M 0, no bosonic exchange processes take place.

Figure 3.Reduced double-sided Feynman diagrams illustrating equation (6), divided upwith respect to their contribution to
equation (8): for double-Fock superpositions, thefirst row corresponds to the phase-independent term in equation (8)(i), the second
rowdenotes the phase-dependent term (ii), naturally absent for twin-Fock-states without phase-dependence. In contrast tofigure (2),
we omit the intermediate projector and only show the initial state. The columns correspond to processes with different numbers J of
bosonic exchange processes. The classical contributions aremarked by dotted edges. Particles starting in differentmodes are possibly
distinguishable, reflected by their different colors. Arrows connecting particles of different colors contribute the scalar product ϕ ϕ〈 ∣ 〉˜

or ϕ ϕ〈 ∣ 〉˜ to the total amplitude.
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For twin-Fock states∣ 〉N N, , the event probability can also be obtained using equation (8), but neglecting the
second summand (ii), i.e. the phase-dependent contribution: twin-Fock states do not carry any phase-relation
between the twomodes, therefore, a phase acquired in one armmanifests itself only as a global, non-observable
phase. As a consequence, twin-Fock states are immune to dephasing. The input state∣ 〉1, 1 leads toHong–Ou–
Mandel interference [18]; for higher occupation, we obtain terms proportional to ϕ ϕ∣〈 ∣ 〉∣˜ J2 with =J N0, 1 ,...,
[15].

Double-Fock superpositions with < <M N0 combine the best of bothworlds: phase-sensitivity and
bosonic effects. Since equation (3) is a superposition of two two-mode Fock states, bosonic bunching governs
the general statistics of the particles in the outputmodes [10, 16, 19]. Simultaneously, interference between the
two components∣ 〉N M, and∣ 〉M N, permits tomeasure the phase η. The phase-sensitivity of the∣ 〉N M: -state
is enhanced by a factor −N M with respect to the single-photon case, just like forN N00 -states [20], which
feature an enhancement of a factorN. The richness of interference effects is reflected by the four different
contributions depicted infigure 3(d). In general, the state∣ 〉N M: leads to + +M N 1distinguishable events:

+ + − +N M N M N M( , 0), ( 1, 1),...(0, ), each of which exhibits a certain dependence on higher powers of
the scalar product ϕ ϕ〈 ∣ 〉˜ .

2.2.Mixed states
In the previous section, we took into account the possible deterioration of interference due to path
distinguishability ( ϕ ϕ∣〈 ∣ 〉∣ ≠˜ 1), but we assumed that the state of the particles is always the samewhen they
reach the beam splitter. Due to non-unitary randomprocesses, however, we need to assume that the particles in
the upper (lower) arm are in the internal state ψ∣ 〉j ( ψ∣ 〉˜k ) with probability pj (p̃k), i.e. in amixed state. One then

experiences event probabilities corresponding to the classical average (weighted by the pj and p̃k) of the
quantum-mechanical probability evaluated for ψ∣ 〉j and ψ∣ 〉˜k

 ∑= ψ ψ
p p̃ , (10)s s

N M

j k
j k s s

N M

( , ),mix
:

,

( , )

: j k

1 2 1 2

, ˜

wherewemade the dependence on ψ ψ∣ 〉 ∣ 〉, ˜j k explicit.

In other words, we can still use equation (8), but each power of a scalar product ϕ ϕ ϕ ϕ∣〈 ∣ 〉∣ 〈 ∣ 〉˜ ˜m k2 in (8) needs
to be replaced by the ensemble-averaged scalar product power (ASPP), denoted by curly brackets{}

∑ϕ ϕ ϕ ϕ ψ ψ ψ ψ={ } p p˜ ˜ ˜ ˜ ˜ , (11)m k

j l
j l j l

m

j l

k2

,

2

whichmathematically corresponds to a highermoment of the scalar product. ASPPs of higher order,
≠m k( , ) (0, 1), play a crucial role in our subsequent analysis: deteriorating processes affect theASPPs of

different orders in a different way, such that these quantities can encode information about the decoherence
process.

In general, a possibly complex ASPP cannot bewritten as a function of the single-particle densitymatrices ρ
and ρ̃ that describe the particles in the upper and lower arm, because the coherences between the arms single out
particular bases ψ ψ∣ 〉 ∣ 〉{ }, { ˜ }k k . Consider, for example, a qubit-like particle prepared in ϕ∣ 〉 = ∣ 〉1 and a random
process that acts on the upper arm,which leaves the qubit in ∣ 〉0 or∣ 〉1 with probability 1/2. The average scalar
product with an unaffected qubit in the lower arm is then 〈 ∣ 〉 + 〈 ∣ 〉 =( 0 1 1 1 ) 2 1 2. A process that leaves the
qubit in the upper arm in∣+〉 = ∣ 〉 + ∣ 〉( 0 1 ) 2 or∣−〉 = ∣ 〉 − ∣ 〉( 0 1 ) 2 , however, leads to an average scalar
product of 〈 + ∣ 〉 + 〈 − ∣ 〉 =( 1 1 ) 2 0, and, consequently, to a different interference pattern. That is, even
though the respective single-particle densitymatrix is the fullymixed state

+ = + + + − − = ( 0 0 1 1 ) 2 ( ) 2 ˆ 2

in both cases, the average scalar product differs.
For absolute-squared scalar products of the form ϕ ϕ∣〈 ∣ 〉∣˜ m2 , the coherences between the arms are irrelevant

(figure 3), whichmakes the corresponding ASPPs independent of the single-particle bases, e.g. for the ensemble-

averaged absolute-square of the scalar product, ϕ ϕ ρρ∣〈 ∣ 〉∣ ={ }˜ Tr ( ˜)2 . TheASPPs of different orders arewidely

independent of each other; averaged absolute valuesmerely fulfil

ϕ ϕ ϕ ϕ ϕ ϕ⩽ ⩽{ } { } { }˜ ˜ ˜ , (12)m k m k m

for every ⩾ ⩾k m 1, where the lower bound is due to Jensen’s inequality and the upper bound follows from
ψ ψ∣〈 ∣ 〉∣ ⩽˜ 1k j . For twomixed states with the same eigenvectors, ψ ψ∣ 〉 = ∣ 〉˜k k ( ρ ρ =[ , ˜] 0), the upper bound of

(12) becomes exact; two pure, possibly distinguishable states ρ ϕ ϕ ρ ϕ ϕ= ∣ 〉〈 ∣ = ∣ 〉〈 ∣, ˜ ˜ ˜ saturate the lower bound.
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3.Decoherencemodel

In general, non-unitarymaps [3] that induce decoherence processes in high dimensions can be arbitrarily
complicated, reflecting the possibly complex dynamics in the two interferometric arms.Here, we focus on the
decoherencemodel illustrated in figure 1, which allows us tomodel the immediate impact of distinguishability,
mixing and dephasing via three survival probabilities γ γ γ, ,dist mix phase, respectively.

3.1. Path distinguishability
Distinguishability has various causes: on the one hand, we consider an observer with ameter initially prepared in
the state∣ 〉0 meter, coupled to the lower arm. If the particle takes the upper path, ϕ ϕ∣ 〉 ∣ 〉 → ∣ 〉 ∣ 〉0 0meter meter; if it
takes the lower path, ϕ ϕ β∣ 〉 ∣ 〉 → ∣ 〉 ∣ 〉0 meter meter. Formally, the leakage of which-path information can be
accommodated in an amended internal state ϕ∣ 〉˜ of the particle in the lower arm that incorporates themeter [21],
such that ϕ ϕ β〈 ∣ 〉 = 〈 ∣ 〉˜ : 0 . On the other hand,mis-alignment of the setup or any other influence on the
interferometric arms that permits to distinguish a particle in the upper arm from a particle in the lower arm via
its internal state ( ϕ∣ 〉 and ϕ∣ 〉˜ , respectively) leads to the same effect.We neglect here the systematic acquisition of
a relative phase between the two arms, which induces a shift of the overall signal in η, and assume
ϕ ϕ γ〈 ∣ 〉 = ⩾˜ 0dist . The overall impact of path distinguishability then leads to

ϕ ϕ ϕ ϕ γ= +{ }˜ ˜ . (13)m k m k2
dist
2

3.2.Mixing
Mixing can be due to classical noise that disturbs the internal state of the particle in an incoherentmanner. Here,
wemodelmixing as follows: with probability γmix, all particles in an arm remain unaffected; with probability

γ−(1 )mix , all particles are left in an unknown state that is chosen randomly for each run. That is, ourmixing
process corresponds to the addition of white noise with strength γ−1 mix, which leads to the following
attenuation of theASPPs:

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ γ

ϕ ϕ ϕ ϕ γ
γ

→

→ +
−

{ } { }
{ } { }

d

˜ ˜ ˜ ˜ ,

˜ ˜
1

, (14)

m k m k

m m

2 2
mix
2

2 2
mix
2 mix

2

where ⩾k 1. The last termproportional to d1 reflects that the average absolute-squared scalar product of two
random states isfinite in afinite-dimensional Hilbert-space, whereas the average complex scalar product
vanishes due to isotropy; in the following, we assume → ∞d , which allows us to neglect the corresponding
terms proportional to d1 . In contrast to distinguishability, which affects different powers in a differentmanner
(equation (13)),mixing amends eachASPP of any power by the same factor γmix

2 .

3.3.Dephasing
Dephasing is ubiquitous: to name two examples, unstable optical setups lead to phasefluctuations in photonic
experiments, while atomic interferometers are affected by background gas collisions.We incorporate the loss of
phase coherence between the arms of the interferometer by assuming that, with probability γphase, all phases

remain unaffected; with probability γ−1 phase, all particles in the lowermode acquire a uniformly randomphase

η π⩽ ⩽0 2rand . The survival rate γphase is, thus, independent of the number of particles4. Although each value of

ηrand induces an interference pattern in ηwith high visibility, the origin of that pattern is shifted by
η−N M( ) .rand Since the shift is unknown and varies from run to run, the experimentally observed interference

pattern is washed out.
We account for dephasing by amending the phase-dependent ASPPs

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ γ

ϕ ϕ ϕ ϕ

→

→

{ } { }
{ } { }

˜ ˜ ˜ ˜ ,

˜ ˜ , (15)

m k m k

m m

2 2
phase

2 2

where ⩾k 1, i.e. phase-independent terms remain naturally unaffected by dephasing.

4
This survivalmechanism is fully equivalent to the acquisition of a randomphasewith afinite amplitude at every run of the experiment, but

it possesses conceptual and practical advantages for the computation of probabilities.
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3.4.Overall impact of decoherence
The three decoherencemechanisms commute, and the resulting ASPPs after all processes become the product of
the survival rates

ϕ ϕ ϕ ϕ γ γ γ= +{ }˜ ˜ , (16)m k m k2
phase mix

2
dist
2

ϕ ϕ γ γ={ }˜ , (17)m m2
mix
2

dist
2

for ⩾ ⩾k m1, 0. Summarizing, on the one hand, observable signals s s
N M

( , )
:

1 2
depend on various ASPPs

(equation (8)). On the other hand, different ASPPs reflect the decoherence parameters in a different way
(equations (16), (17)). This nourishes the hope that we can observe differences between decoherence
mechanisms inmany-particle interference signals.

4.Decoherence diagnosis

4.1. Fringe visibility for single-photon,N N00 and twin-Fock states
The three decoherencemechanisms described in the previous section reduce the fringe visibility of every
interferometric signal. For the single-particle state∣ 〉1: 0 , the visibility (1) is reduced to

 ϕ ϕ γ γ γ= ={ }˜ , (18)(1,0)
1:0

phase mix
2

dist

i.e. one can only infer the product of definite powers of the threemodel parameters. Geometrically speaking, a
given value of the visibility inferred from the observed signal (figure 4(a)) leaves room for a surface in the three-
dimensional space γ γ γ( , , )phase mix dist (figure 4(c)).

ForN N00 -states∣ 〉N : 0 , only the process inwhich all particles are exchanged between themodes is relevant
(figure 3(b)), andwe find

 ϕ ϕ γ γ γ= ={ }˜ . (19)s s
N N N

( , )
:0

phase mix
2

dist1 2

Even though the phase-sensitivity of∣ 〉N : 0 is enhancedwith respect to∣ 〉1: 0 , there are no contributions from
bosonic exchange processes ( >J 0) in equation (8), and only the product of definite powers of the threemodel
parameters can be inferred from the experimental data.

For the double-Fock state∣ 〉1, 1 , the depth of the resulting phase-independentHong–Ou–Mandel dip [18] is
proportional to

ϕ ϕ ρρ γ γ= ={ } ( )˜ Tr ˜ , (20)2
mix
2

dist
2

which does not allow any differentiation betweenmixing and distinguishability, whichmakes the actual purity
of a single photon only accessible through advanced analyses [22]. In general, two identicalmixed states

Figure 4. (a) Single-particle interference signal with visibility ≈ 0.21(0,1)
1:0 . (b) In double-Fock superposition interferometrywith

∣ 〉2: 1 , three independent parameters are accessible experimentally. (c) The observed single-particle visibility(0,1)
1:0 constrains the

three parameters γ γ γ( , , )dist phase mix to a surface defined by equation (18). For the double-Fock superposition∣ 〉2: 1 , the three

parameters unambiguously determine γ γ γ= = =0.6, 0.7, 0.7phase dist mix at the crossing point of the three red lines.
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ρ ρ ϕ ϕ= ≠ ∣ 〉〈 ∣˜ cannot be distinguished from twopure distinguishable states ϕ ϕ∣ 〉 ∣ 〉, ˜ that lead to the
sameASPP.

In principle, the visibilities for the three initial states∣ 〉 ∣ 〉1: 0 , 2: 0 and∣ 〉1, 1 depend on the three
decoherencemodel parameters in a different way (compare equations (18)–(20)) and, by combining the data
from three experiments with different initial states, the parameters γ γ γ, ,dist mix phase can be extracted.However,

when the initial state is changed, it is difficult to assess which deteriorating effects are due to the possibly
imperfect state preparation andwhich are caused by the actual decoherence in the interferometer. In the
following, we showhow to circumvent this problemby extracting the decoherence parameters in one single
experiment.

4.2. Twin-Fock state∣ 〉2, 2
Twin-Fock states [23]with = >M N 1clearly bring out the qualitative difference betweenmixing and
distinguishability, and are routinely generated in the experiment [14, 15, 24–26]. The simplest example is
provided by = =M N 2. For twin-Fock states, the phase-dependent summand (ii) in (8) is absent, andwefind

 ϕ ϕ ϕ ϕ= + +( ){ } { }1

16
1 4 ˜ ˜ , (21)(0,4)

2,2 2 4

 ϕ ϕ= −( ){ }1

4
1 ˜ , (22)(1,3)

2,2 4

 ϕ ϕ ϕ ϕ= − +( ){ } { }1

8
3 4 ˜ 3 ˜ , (23)(2,2)

2,2 2 4

whichmatch the results obtained via the orthonormalization of single-particle wave-functions [14, 15]. The
dependence of event probabilities on different powers of ϕ ϕ∣〈 ∣ 〉∣˜ 2 stems fromdifferent bosonic exchange

processes (figure 3(e)). The absence of a second-order term in(1,3)
2,2 is responsible for the narrowing of thewidth

of the (1, 3)-signal [15]with respect to the single-photon coherence length, the alternating signs in(2,2)
2,2 induce

the non-monotonicity of the (2, 2)-signal [14].
Under the decoherencemodel above, we use (17), in addition to (20),find

ϕ ϕ γ γ={ }˜ , (24)4
dist
4

mix
2

which allows us to read off γdist and γmix from the combined signal  ( , )(1,3)
2,2

(2,2)
2,2 (note that(0,4)

2,2 isfixed by the
latter two), as illustrated infigure 5.

As a result, the quantum-to-classical transitions induced bymixing and by distinguishability differ strongly:
puremixing (in general: =p p̃j j and ψ ψ∣ 〉 = ∣ 〉˜j j ; here, in ourmodel: γ = 1dist ) implies that ASPPs of higher

powers ϕ ϕ∣〈 ∣ 〉∣{ ˜ }m2 all take the same value, saturating the upper bound of equation (12).Mixing therefore
always induces a linear interpolation between quantum and classical probabilities, as evident from equation (8)

Figure 5.Physical range of  ( , )(1,3)
2,2

(2,2)
2,2 in twin-Fock state interferometrywith∣ 〉2, 2 . Red solid lines show constantmixing

(γ = 1, 0.8, 0.6, 0.4mix ), blue dashed lines denote constant distinguishability (γ = 1, 0.8, 0.6, 0.4dist ). Perfect interference takes place
for   =( , ) (0, 1 4)(1,3)

2,2
(2,2)
2,2 , classical behavior is characterized by   =( , ) (1 4, 3 8)(1,3)

2,2
(2,2)
2,2 . The black dotted lines denote a

constant depth of the two-particle Hong–Ou–Mandel dip, characterized by ρρ =Tr ( ˜) 0.9, 0.6, 0.3 (equation (20)). Each dip depth
allows a certain range of γ γ,dist mix , fulfilling γ γ= −(1 ) 2(1,1)

1,1
dist
2

mix
2 . The experiments reported in [14, 15] explore the

distinguishability-induced quantum-to-classical transition, corresponding here to the red solid linewith γ = 1mix .
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(straight blue dashed line denoted by γ = 1dist infigure 5). In contrast, pure distinguishability (i.e. the particles

are described by pure states ϕ∣ 〉 and ϕ∣ 〉˜ , the lower bound of equation (12) is saturated; here, γ = 1mix ), leads, in
general, tomore intricate, non-monotonic transitions [14] (curved red solid line for γ = 1mix in figure 5). This
qualitative difference between these two decoherencemechanisms reinforces the role of non-monotonicity as a
witness of a distinguishability-induced quantum-to-classical transition [6, 27].

4.3.Double-Fock superposition∣ 〉2: 1
A clear and unambiguous differentiation of distinguishability, mixing and dephasing is possible using the
double-Fock superposition∣ 〉2: 1 . Such a state can be generated experimentally by annihilating a single photon
in a twin-Fock state∣ 〉2, 2 , where the photon is extracted from eithermodewith the same probability [28], a
technique that was experimentally demonstrated for the∣ 〉3: 1 state [29]. Using (8), the two pertinent
probabilities become

 ϕ ϕ ϕ ϕ η

ϕ ϕ ϕ ϕ η

= ∓

+ ∓

( )
( )

{ }

{ } { }

1

8
1 ˜ ˜ sin ( )

1

4
˜ ˜ sin ( ) , (25)

(0,3)
2:1 2

2

 ϕ ϕ ϕ ϕ η

ϕ ϕ ϕ ϕ η

= ±

− ±

( )
( )

{ }

{ } { }

3

8
1 ˜ ˜ sin ( )

1

4
˜ ˜ sin ( ) , (26)

(1,2)
2:1 2

2

where the upper signs refer to the event s s( , )1 2 and the lower ones to s s( , )2 1 . The dependence on three different
ASPPs can be understood from figure 3(d): the phase-independent classical contribution ismodified by a phase-
independent bosonic exchange contribution, weighted by ϕ ϕ∣〈 ∣ 〉∣{ ˜ }2 , and two differently weighted phase-
dependent terms, corresponding to exchange of one or three particles.

The three independent observables that characterize interference are the visibility of (3, 0)-signals(3,0)
2:1 , the

visibility of(2, 1)-signals(2,1)
2:1 and the total probability tofind all particles in onemode,

  = ++30 03
2:1

(3,0)
2:1

(0,3)
2:1 (the total probability tofind the particles in the (2, 1) or (1, 2)-channel is the

complement − +1 30 03
2:1 ). An additional binary degree of freedom is the phase relation between the(1, 2) and

the(3, 0)-signal, which is formally accounted for as follows: the visibility(2,1)
2:1 is set to its negative value when

the(1, 2) and(0, 3) signals are out of phase (we excluded complex scalar products ϕ ϕ〈 ∣ 〉˜ , such thatwe never
encounter phase-shifts other than 0 and π).We combine equations (18) and (20)with equation (16)

ϕ ϕ ϕ ϕ γ γ γ={ }˜ ˜ , (27)2
dist
3

phase mix
2

tofind the observables as a function of the decoherencemodel parameters. Inserting equations (18, 20, 27) into
the probabilities (25, 26), we can express the decoherence parameters γ γ γ( , , )dist phase mix as a function of the

observables    +( ), ,(2,1)
2:1

(3,0)
2:1

30 03
2:1 .

The volume of physically allowed combinations of    +( , , )(2,1)
2:1

(3,0)
2:1

30 03
2:1 is shown infigure 6. Dephasing,

distinguishability andmixing lead to very different trajectories, which define the edges of the volume.When one
decoherencemechanism fully destroys coherence (γ = 0dist or γ = 0phase or γ = 0mix ), it is not possible to

differentiate the other two: fullmixing or full distinguishability (γ = 0dist or γ = 0mix , respectively) lead to
classical behavior, independently of the value of the other decoherence parameters.When phase coherence is
fully lost (γ = 0phase ), distinguishability cannot be differentiated frommixing, as also evident from

equations (20): when the expectation values of the scalar product (18) and the third power (27) both vanish, only
the product of γdist and γmix can be inferred. If the relationship between the decoherence parameters and the
observables were linear, wewould observe a cube-like volume infigure 6; the pathological cases explainwhywe
instead deal with a four-sidedwedge. Outside the realmof full decoherence, each choice of
γ γ γ> > >( 0, 0, 0)dist phase mix leads to exactly one point    +( , , )(2,1)

2:1
(3,0)
2:1

30 03
2:1 , i.e. decoherence rates can be

inferred unambiguously from the observables, and differential diagnosis is possible (figures 4(b), (c)). In
particular, each value of the single-particle visibility(1,0)

1:0 resulting from a single-particle interference
experiment is compatible with a surface in the three-dimensional space (yellow surfaces infigure 6), the exact
position on that surface then clearly reveals all three decoherence parameters. Remarkably, the visibility of the
(2, 1)-signal(2,1)

2:1 can fully vanish for non-vanishing values of the decoherence parameters, due to the
competition of the different phase-dependent terms of opposite sign in equation (26) [28]. In general, full
dephasing does not lead to the classical behavior of distinguishable particles: even though both visibilities vanish
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for γ → 0phase , bosonic statistics survive, favouring the(3, 0) and (0, 3) signal over the(2, 1) and (1, 2)

signal [19].

4.4. General diagnosis
For the state∣ 〉2: 1 , the threemeasured observablesmatch the three physical parameters of the decoherence
model presented in section 3, such that the latter can be extractedwith confidence outside pathological cases.
This bijective relationship, however, is not a trivial artifact of scaling to larger particle numbers: inN N00 -state
interferometry, one alsomeasures several independent signals, but due to the unique dependence on ϕ ϕ〈 ∣ 〉{ ˜ }N

(equation (9)), different decoherence processes cannot be distinguished.
Decoherence processes that act onmany particlesmay impact on themany-body densitymatrix in a

complex fashion, beyond the three-parametermodel of section 3: themixing processmay affect the upper and
lower armdifferently and act in amore intricate way than by the addition of white noise and dephasing can occur
in a nonlinear fashion that impinges on different particle numbers in a different way.Moreover, non-ideal beam
splitters, particle loss and imperfect detectors withfinite detection efficiency and dark counts will additionally
degrade themeasured signals. As a general framework, a decoherencemodel predicts the ASPPs

ϕ ϕ ϕ ϕ∣〈 ∣ 〉∣ 〈 ∣ 〉{ ˜ ˜ }m k2 as a function of itsmodel parameters.
By increasing the number of particlesN andM, we can control a larger set of observables, which allows us to

keep upwith the complexity ofmore sophisticated decoherencemodels and eventually infer themodel
parameters: the double-Fock superposition∣ 〉N M: yields signals that permit to infer +M2 1different ASPPs
(equation (8)).We checked for = +N M 1 that all +M2 1 independent ASPPs can be inferred unambiguously
from experimental observables up toM=11. For twin-Fock states∣ 〉N N, , all powers ϕ ϕ∣〈 ∣ 〉∣{ ˜ }m2 for

=m N1 ... can be inferred, whichwe checked up toN=10. It remains open, however, whether the relationship
between experimental observables andASPPs is always invertible.

5. Conclusions

Many-boson states of the form∣ 〉N M: provide remarkable features: due to the dependence of event
probabilities on several powers of scalar products inherent to (8), the experimental observables are sensitive to
the actual decoherencemechanism. Such double-Fock superpositions therefore provide an inexpensive way to
diagnose the processes that deteriorate interferometric power. In principle, any interferometer—be it optical,
atomic ormolecular—can be diagnosed by feeding it with double-Fock-superpositions and analyzing the
resulting visibilities. The alternative to differential decoherence diagnosis is quantumprocess tomography [30].
Since the internal state of the particle ϕ∣ 〉 typically lives in a high-dimensional Hilbert-space, such reconstruction
of the full densitymatrix is infeasible in the current scenario.

Figure 6.Physical range of    +( , , )(2,1)
2:1

(3,0)
2:1

30 03
2:1 for the double-Fock-superposition∣ 〉2: 1 . Thewedge-like volume is confined by

three surfaces: the blue surface in the background (with the solid blackmesh) describes γ = 1dist , i.e. only dephasing andmixing arise;
the red surface (solid light-redmesh) corresponds to γ = 1phase , i.e. onlymixing and distinguishability. The light green dottedmesh in

the foreground insinuates the third surface, characterized by γ = 1mix , i.e. dephasing and distinguishability. The four edges (shown in
light blue) correspond to pure dephasing, puremixing, pure distinguishability, or full dephasing. The yellow surfaces are areas of
constant single-particle visibility = 0.05, 0.15, 0.3, 0.45, 0.6, 0.9(1,0)

1:0 . Perfect interference takes place for
 = = =+P1, 3 4(3,0)

2:1
(2,1)
2:1

30 03
2:1 , fully classical behavior for = = =+P0, 1 4(3,0)

2:1
(2,1)
2:1

30 03
2:1 .
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For largemolecules [8, 31], the current paradigm for decoherence, double-Fock superpositions are
admittedly extremely challenging to generate, let alone to interfere and detect.Wemay alternatively gain better
insight into decoherence processes with the help of other physical systems: cold atoms in few-well-lattices
provide a feasiblemeans to test the discussed effects, since granular two-particleHong–Ou–Mandel interference
has recently been demonstrated [32] and cold atoms can be subject to various decoherencemechanisms in a
controllable way.With photons, the three decoherence processes discussed above can be simulated by using the
polarization as the distinguishing degree of freedom, and artificially inducingmixing, e.g. in the path delay.On
the other hand, the discussedmethodsmay also help to characterize single-photon sources in amore precise way
than by the usualHong–Ou–Mandel dip [33], which, as we have shown in section 4.1, does not reveal the cause
of imperfect interference. As a further extension, the diagnostic power of double-Fock superpositionsmay also
be used as a probe for other processes, for example, to quantify the non-Markovianity of an environment [34].

In practice, only a finite number of events can be observed, leaving the visibilities uncertain, while the
mapping betweenmodel parameters and experimental observables—with the ASPPs as intermediate step—
might be quite intricate. Suchmore complex scenarios can be treated via Bayesianmethods, whichmay also
allow to design optimizedmeasurement strategies to quickly and reliably reveal the actual values of decoherence
parameters [35, 36]. Using double-sided Feynman diagrams, our analysis can be taken further to general states
of the form Φ α α∣ ⃗ 〉 = ∑ ∣ − 〉= n N n( ) ,n

N
n0 tot

tot . On the one hand, theα α α⃗ = { ,... }N1 tot
can be adjusted to achieve

the best sensitivity to the type of decoherence process, i.e. the best differential diagnosis. On the other hand,
given a fully diagnosed interferometer, the optimalα ⃗ that achieves the best phase-sensitivity [37]may itself
depend on the actually occurring decoherence processes. It remains to be studied towhich extent themethods of
[38–40], which rely on post-selecting a desired output state in order to synthesize phase-super-resolving
interference signals, can be extended to the present purpose of decoherence diagnosis. From amore
fundamental perspective, the complicated dependence of visibilities on decoherence parameters challenges any
attempt to formulate a complementarity relation [21, 41–43] between particle-like andwave-like behavior as
well as to quantifymacroscopic interference [31, 44], which remain great desiderata.
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Appendix. Computation of event probabilities

The coefficientJ in equation (8) is given by

 

∑

∑

= −

× −

= −

− +
+

= −

= −

−
−

− − +
− − +

( )

( ) ( )

( )

( )

C

j J j

( 1)

( ) (2 ), (A.1)
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*
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−
− +−
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n p

j p q
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( ) 2 ( ) 2
. (A.2)q n q

p n p
,
,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

The sumequation (A.1) is illustrated infigure A1 and can be interpreted as follows: the particles are
redistributed from the input to the outputmodes, with r ( −N r) particles from the first inputmode found in
thefirst (second) outputmode. In order to eventuallymeasure s1 and s2 particles in thefirst and second output
modes, respectively, −s r1 ( − −s N r( )2 ) particles from the second inputmodemust be found in the first
(second) outputmode. Since only non-negative particle numbers are allowed for the four processes, r is
restricted to a certain range of values. To yield the probability equation (4), we remainwith two sums, over r and
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r*. The relative phase acquired by such a process is − +( 1) *r r , an additional relative phase arises for the exchange
term (ii) in equation (8). The sumover j accounts for the bosonic exchange processes in the first outputmode,
i.e. j ϕ∣ 〉-particles are exchangedwith ϕ∣ 〉˜ -particles; consequently, −J j2 exchange processes occur in the second
outputmode. The overnormalization due to themultiple creation of bosons in the samemode is accounted for
by −

− j( )q n q
p n p
,
, .

Equation (A.1) can alternatively be derived using a decomposition of single-particle wave-functions in an
orthonormal basis [14–16], for which, however, the clear separations in combinatorial factors and scalar
products in equation (8) only emerges after lengthy algebraicmanipulations.
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