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Abstract—Using memristor devices as synaptic connections has
been suggested with different neural architectures in the liter-
ature. Most of the published works focus on simulating some
plasticity mechanism for changing memristor conductance. This
paper presents a neural architecture of a character recognition
neural system using Al/Pr0.7Ca0.3MnO3 (PCMO) memristors.
The PCMO memristor has an inhomogeneous barrier at the alu-
minum and PCMO interface which gives rise to an asymmetrical
behavior when moving from high resistance to low resistance
and vice versa. This paper details the design and simulations
for solving this asymmetrical memristor behavior. Also, a general
memory read/write framework is used to describe the running and
plasticity of neural systems. The proposed neural system can be
produced in hardware using a small 1 K crossbar memristor grid
and CMOS neural nodes as presented in the simulation results.

Index Terms—Character recognition, memristors, neural
classifier, neuromorphic.

I. INTRODUCTION

N EUROMORPHIC devices and systems have seen an up-
surge recently in research due to the interest in using

memristive devices as synaptic connections. Neural networks,
particularly in embedded form, are used in many industrial
applications. In [1], neural networks have been used to solve
the friction compensation problem, while in [2], pulse-coupled
neural networks are presented for color image segmentation.
Also, in [3], recurrent neural networks have been used for
modeling predictive control of nonlinear dynamical systems.
In [4], applications of neural networks in power electronics
and motor drives are presented in detail. From an application
point of view in industrial electronics, the need is always
to have a fast and small form factor intelligent system, and
therefore, such applications become prime targets for the use
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of neuromorphic devices in the near future. In [5], the first
modeling of neural networks with memristors as synapses was
presented, with emphasis on making “crummy” (large scale,
easy to manufacture, and cheap but error prone) memristors
and then using the fault tolerance of neural networks on large-
scale problems to develop self-organized neural systems. In
[6], a cosputtered Ag and Si active layer memristor with Ag/Si
mixture ratio gradient was used to show spike time-dependent
plasticity, using positive and negative pulses. A more detailed
and biologically more plausible scenario is presented in detail
in [7]. This work [7] uses models of actual action potentials
produced in biological neurons and uses those pulses to produce
simulation results on mathematically modeled memristors.

Some other works [8]–[11] also present how some other
memristors can be used as synaptic junctions in neural net-
works in specific and in neuromorphic systems generally. In
[8], a spiking neural network is presented using crossbar-
based memristors, while [9] presents data about the immunity
of memristors when used in neural systems. Another pulse-
based programmable memristor circuit is presented in [10]
while Seo et al. [11] detail spike timing-dependent plasticity
characteristics in a TiO2 bilayer resistive switching device. In
all of the aforementioned works, the memristors either increase
or decrease their conductance for a positive pulse and vice versa
for a negative pulse. Although, in real devices, the increase and
decrease in conductance are not identical for the same shape
of positive and negative pulses, this can be handled through
changing the pulsewidth or pulse amplitude. This behavior
can be considered as symmetric because the use of positive
pulses takes the memristor toward one side of its conductance
spectrum while negative pulses produce the opposite effect, and
both of these changes are gradual. This, in general, means that
one can use positive pulses for one type of potentiation while
negative pulses for the other, and also, a combination of a posi-
tive and a negative pulse can be established without any change
in the conductance due to the canceling effect of each other.

This paper tackles the problem of using a praseodymium
calcium manganese oxide (Pr0.7Ca0.3MnO3, PCMO) device
which is asymmetric. Fig. 1 shows a plot of 200 potentiation
pulses of −4 V, 10 ms followed by 600 pulses of 1 V, 10 ms
for a PCMO memristor device. As Fig. 1 shows, for negative
pulses of −4 V, we have a gradual increase in conductance,
while for the positive pulse of just 1 V, a very sudden decrease in
conductance is evident. In fact, a 1-V pulse resets the memristor
device to its minimum possible conductance. This kind of
device therefore cannot be used in many of the proposed neural
systems where the increase and decrease in conductance are
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Fig. 1. Conductance change of the PCMO device under 200 potentiation and
600 depotentiation pulses.

achieved by applying opposite potential voltages relying on the
fact that the memristor will react gradually in both directions.
This paper presents a two-memristor structure as one synapse
to solve this problem. A two-phase-change-memory synapse
[12] has been suggested, which is proven energy efficient for
neuromorphic architectures. This paper presents a model for a
PCMO-based device with a simpler spiking model and also lists
some interesting properties which can be achieved using this
approach.

The rest of this paper is organized as follows. First, the
background is presented in Section II, where general neural
systems are explained from a simplistic point of view so that
they become easier to think about hardware implementations.
Section III details the memristor type used in this paper. In
Section IV a two-memristor-synapse model is presented to
tackle the asymmetric nature of a PCMO memristor, followed
by the details of how to read and write conductance in the
two-memristor-synapse model. Then, the details of simulation
are presented in light of a character recognition application in
Section V.

II. BACKGROUND

Neural architectures can always be seen as a system with
two main parts. One is the neuron, and the other is the synapse
connecting those neurons, which behaves as a message trans-
mission line between neurons. The signals passing through
these connections are modulated [13] in some way, which
means that we can consider the connections as basic processing
units with defined functionality. The neural bodies aggregate
the signal coming through the synapses and perform further
processing on all the inputs together to produce some output.
The properties of the neural connection and neuronal bodies in
light of neuromorphic considerations are presented next.

A. Neural Connections (Synapses)

Neural connections are links between two neurons, where
one neuron behaves as a source and the other behaves as a sink.
Sometimes, this source and sink classification is not very well
defined, thus giving rise to bidirectional connections [13]. The

source neuron sends a signal that passes through the connection
which usually applies some function onto the signal, and then,
the resultant signal is presented to the sink neuron. Mostly,
the function applied by the neural connections to the message
passing through is a simple scaling of the message by a known
factor called the weight of the connection.

From a system’s point of view, a neural connection has some
memory element which stores the scaling factor or weight
of that connection. It always scales the input signal by the
weight stored in it. Furthermore, there is some external or
internal mechanism available to change the weight stored in a
connection. This last step is necessary for learning and is called
the synaptic plasticity.

Let us consider a connection between two neurons of a strict
feedforward network. In that case, it is customary to consider
the neural connection as a weighted edge. The edges store a
weight in its memory; when a signal is presented to the input
node, the signal is multiplied by the weight of the connection,
and then, the resulting signal is presented to the sink neuron as
the output of the connection. This behavior is well established
and is used extensively.

The contents of memory for the connection between two
neurons is changed based on a learning function. This learning
function considers the overall function of the network and
then decides what type of weight change is necessary for one
connection such that the overall behavior of a network can be
optimized toward a required goal (target function).

In summary, we can say that the following functionality
makes a usable neural connection.

1) Given an input signal from the source neuron, the con-
nection should change the signal based on its memory
content and then pass the resulting signal to the sink
neuron. Also, this operation does not affect the memory
contents of the connection.

2) Given a memory changing signal, the connection should
change its memory contents.

3) Given no signal, the memory content should stay, and no
output signal should be produced.

B. Neural Bodies (Neuron Cells)

Neural bodies (neurons) are aggregating units. They receive
the input from all incoming connections, almost always ag-
gregate the input, and then apply some nonlinear function to
the aggregated sum [14]. After this aggregation and nonlinear
transformation step, neurons usually compare the resultant
value against a threshold. If the threshold is reached, the neuron
is said to go in firing state. In the firing state, the neuron sends
a signal to all its output lines, and sometimes, this firing signal
is sent to both input and output connections. The firing of a
neuron signifies the fact that the neuron was presented with an
input which it has seen in the past.

Another aspect which must be mentioned here is the fact
that neural systems are basically learning machines, i.e, when a
neural network is presented with a set of inputs T , it tries to ac-
quire some sort of experience E from T without remembering
each and every instance of T such that, if the neural network is
again presented with some examples from T , it would perform
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better than before, based on a target function F . One interesting
aspect in this definition is the fact that, sometimes, it is easy
to distinguish between two different stages in the life of a
neural network, namely, training stage and testing stage. This
distinction makes the design and analysis of these systems a bit
easier, although in most situations, transitions between training
and testing phases can be done transparently with minimal or
no change.

III. RRAM MEMRISTORS

A memristor is a two-terminal device whose conductance
can be precisely modulated by the charge or flux through it.
We need to understand this property of the memristor to use
it as synaptic connections between neurons. Relating back to
the summary points enumerated in Section II-A, memristor
properties corresponding to each point are as follows.

1) The application of a voltage pulse across a memristor
causes a current proportional to the conductance of the
memristor to flow through it. This current can be used as
a measurement of the conductance of the memristor.

2) All real memristors have a threshold voltage below which
they do not change their conductance, but as soon as a
voltage higher than the threshold is applied, the conduc-
tance of the memristor changes. Thus, for reading a mem-
ristor conductance, one can use any voltage below the
threshold while a voltage over the threshold will change
the conductance of the memristor, therefore giving a write
mechanism.

We have used PCMO [15] thin layers for their unifor-
mity as a material and a low power consumption to pro-
duce resistive random-access memory (RRAM) for use in
neuromorphic hardware. These PCMO devices behave as the
metal–semiconductor structure in the low resistance state (LRS)
and as the metal–oxide semiconductor structure in the high
resistance state (HRS). In the LRS, an inhomogeneous barrier
is formed at the aluminum/PCMO interface with an effective
barrier height (φeff) of ∼0.15 eV. In the HRS, by applying the
Poole–Frenkel emission theory, the intrinsic trap energy level
(Φt) of the AlOx layer formed at the aluminum/PCMO inter-
face was obtained as ∼1.4 eV. On the basis of characterization
results of such devices, a simple 4F2 cross-point array with
a Schottky barrier [16], formed through a redox reaction at
the PCMO interface, can be fabricated without any additional
fabrication steps. The data presented in this paper are from a 1 K
cross-point device.

IV. PROPOSED SYNAPSE AND ARCHITECTURE

In our PCMO RRAM devices, the long-term depression
(LTD) (or simply depression) or HRS is not progressive with
the migration of oxygen by using invariant or identical pulses
as shown in Fig. 1. Therefore, a two-PCMO-memristor device
model in which two PCMO devices constitute one synapse
as shown in Fig. 2 is proposed here. The two devices make
opposite contributions to the integrated state of a neuron. One
is responsible for long-term potentiation (LTP) (or simply po-

Fig. 2. Two-memristor schemes where one memristor contributes LTP current
in the first half of a clock cycle while the second contributes current for LTD in
the second half of a clock cycle.

tentiation) as LTP contributing device, and the second device
causes LTD (or depotentiation) as LTD contributing device.

With this scheme, when the synapse needs to be potentiated,
the conductance of the LTP device is increased, and that of the
LTD device is not changed, which causes an overall potentiation
of the double-memristor synapse. Also, by using this same
mechanism, moving the LTD contributing device toward the
LRS will cause depression. Since all kinds of plasticity for this
model will cause either a LTP or LTD device to move from
HRS to LRS, we will see sooner or later that either one or
both contributing devices saturate toward LRS. To handle this
eventual convergence toward the upper bound of LRS for all
memristors, we have introduced a sleep cycle mechanism.

Using the double-memristor structure gives us a few benefits,
which need to be mentioned here. Memristor devices are almost
always asymmetrical for potentiation and depotentiation pulses
to some extent. Designing a neuromorphic system using such
devices will always require some algorithmic way to minimize
the effect of such asymmetry. The proposed two-memristor
architecture is presented considering the case where memristor
devices show a gradual response of change in conductance for
potentiation while the change in conductance is pretty abrupt
for depotentiation pulses. Therefore, by using the proposed
scheme, it is possible to achieve symmetrical behavior by a
memristor for potentiation and depotentiation pulses.

In biological neural systems, some synapses are excitatory
which cause the increase in the membrane potential of the
sink neurons, while others behave as inhibitory which cause
the decrease in the membrane potential of their sink neurons.
By the same token, in the neural network literature, neural
connections have real numbered weights. Achieving synaptic
weights which are evenly spread around zero is very hard if one
memristor is used as a synapse. However, using the proposed
architecture, real numbered weights between some bounds can
be easily achieved. Also, the distribution of weights around zero
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Fig. 3. Spiking input has a voltage pulse in the first half of a clock cycle while
nonspiking input has a voltage pulse in the second half of a cycle.

Fig. 4. Read cycle schematic structure: Left figure shows the status of the
network in the first half of a clock cycle, and right figure shows the status in the
second half of the clock cycle.

is very even in this case. Also, Suri et al. [12] suggest that this
double-memristor model is more energy efficient.

For detailing the read operation, write operation, and sleep
cycle operation, the following scenario is considered. We have
two neurons N1 and N2. N1 will be trained while N2 will not
be trained for the pattern 1010.

A. Read Operation

Real memristors have a threshold voltage under which they
show change in conductance to a negligible degree [17], [18].
In our device, −2.4 V is the threshold voltage denoted as
Vthreshold. Therefore, we use pulses of −2 V denoted by Vread

for reading memristive devices. As shown in Fig. 3, a spiking
terminal will send a spike to the output neuron in the first half
of a clock cycle φ1 while a nonspiking terminal illustrated by 0
will send a pulse in the second half φ2 of the global clock.

In φ1, all currents collected from the LTP memristors will
be summed to I(LTP )φ1

, and currents collected from LTD
devices will be summed to I(LTD)φ1

as shown in Fig. 4.
The state of the neuron can then be calculated by Nstate =
I(LTP )φ1

− I(LTD)φ1
. As we are using pulses to identify

nonspiking nodes in φ2, we can actually think of them as spik-
ing nodes in φ1 and use the values as neuron states. Therefore,
the values in φ2 are basically a logical NOT for the input,
and therefore, the calculating node states in φ1 and φ2 are
equivalent.

B. Write Operation

The requirement of a write cycle is to achieve plasticity.
For potentiation, the overall weight of a memristor pair should

Fig. 5. Write cycle schematics: Left figure shows the pulse format in the first
half of a clock cycle causing LTP while right figure shows the pulse format in
the second half of a clock cycle which is responsible for LTD.

increase, while for depression, it should decrease. The increase
in weight leading to potentiation is required when an input from
the input neurons needs to cause the output neuron to fire with
high correlation. On the contrary, if we want an input from input
neurons not to affect the firing of the output neuron, we want to
decrease its weight causing depression.

To further illustrate this, let us consider Fig. 5. Since neu-
ron N1 is being trained while neuron N2 is not, only back-
spikes from N1 will be produced. Now, in φ1, a backspike
of Vback will be generated. In our case, we produce a 1-V
pulse as the backspike. As Fig. 5 shows, in φ1, we will have
Vread − Vback applied to the spiking LTP devices while −Vback

will be applied to the nonspiking LTP devices. In our case,
Vread − Vback = −2− 1 = −3 V will be applied to the spiking
LTP devices which is greater than Vthreshold. Therefore, the
LTP devices with spiking input will increase their conduc-
tance, while the memristors which had no pulse in φ1 will
experience Vread − Vback = 0− 1 = −1 V, which is below
Vthreshold, resulting in no change of conductance. Similarly, the
memristors on the LTD line for the spiking input in φ1 will
experience Vread − Vback = −2− 0 = −2 V and nonspiking
input Vread − Vback = 0− 0 = 0 V. This tells us that, since
both are below Vthreshold, they undergo no change. Therefore,
the net effect of the backspike in φ1 will be an increase in LTP
memristor conductance only.

Similarly, in φ2, when spiking inputs become nonspiking
while nonspiking ones become spiking, the roles are reversed.
LTD devices of spiking input in φ2 will increase their conduc-
tance which will result in the overall decrease in the conduc-
tance of a memristor pair. This will have the effect of training
no input neurons with negative weights.

C. Sleep Operation

The conductance of LTP and LTD devices keeps on grad-
ually increasing during the operation of the network, and
therefore, a sleep mechanism is being introduced to make
sure that the weights are adjusted between their bounds after
a certain lifetime of the network. Biological neural systems
are known to reconfigure and refresh memories during sleep
time [19].

Let us consider that, for a given input, pulse size, and its
duration, the average number of M steps is required for a device
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Fig. 6. Sleep cycle schematics: Left figure shows the read pulse followed by
the reset pulse while right figure shows how again potentiation is performed.

to go from an HRS to LRS, which naturally entails that, after
a minimum of M pulses to the LTP or LTD device, they might
reach their maximum LRS. In experiments, it has been observed
that our PCMO memristors are extremely fragile at these limits
and easily render themselves useless if used at those limits.
Therefore, we must run a sleep cycle for the network after every
M pulses at maximum. In addition, Suri et al. [12] mention
that running such cycle involves marginal time/energy cost and
therefore can be run for a much smaller number than M . The
sleep cycle is illustrated in Fig. 6. When a network goes into
sleep mode, all nodes in the network know that the network is
in sleep mode, and they run the following algorithm to adjust
their weights during sleeping in which no input from outside
the network is accepted. The following algorithm is used to
reset all memristors’ conductance in a sequence and, then, to
repotentiate them.

In Algorithm 1, we simply move from one input neuron N to
the other one by one. A read–reset pulse as shown in Fig. 6 with
Vread in φ1 and Vreset in φ2 is applied. The read part of the input
pulse causes a read operation on the LTP and LTD devices, and
we gather I(LTD)iread and I(LTP )iread for each output neuron
i and store their values. Vreset, which, in our PCMO device, is
anything above +1.3 V, is applied to reset all memristors to
their minimum states. After that, each output neuron i takes
a difference Iidiff = I(LTP )iread − I(LTD)iread, which tells if
the output neuron i needs to backspike on the LTP line or LTD
line. If Iidiff is positive, a backspike pulse for the LTP device
is generated. Otherwise, the LTD device is backspiked. After
storing Iidiff , the input neuron N spikes for M cycles in the φ1

part of the cycle without any other concern, while the output
neuron i uses the values of Iidiff backspikes to approximately
match the potentiations necessary to establish conductance that
could have generated Iidiff . Once M pulses have been applied,
the next input neuron is selected, and the same procedure is
repeated.

Algorithm 1 Algorithm for Sleep Cycle

for Input Neuron N do
send read and reset pulse
Iidiff = I(LTP )iread − I(LTD)iread
for j = 0 → M do

Send read spike in φ1

if Iidiff ≥0 and j≈conductance required for Iidiff
then

send back pulse to LTP device in φ1

end if
if Iidiff ≤0 and j≈conductance required for Iidiff

then
send back pulse to LTD device in φ1

end if
end for

end for

V. SIMULATION RESULTS

Considering the immediate requirements of designing a
small testable network, which seems biologically plausible
[20], a very small feedforward network with only 30 input
nodes and 10 output nodes is simulated in the following section.
This meant that a 30 ∗ 10 ∗ 2 memristor array was required
to test this network in the real world. The simulator was
implemented in Python language, and the simulation was done
with sleep cycles after every 300 clock cycles.

A. Memristor Model

It is necessary to discuss the memristor model used in
simulation, as we have a number of data samples available with
us for real memristor devices. The memristor model used in
the simulation requires special mention here (for the detailed
properties of the memristor, see [16]). A number of samples
of data were available from real memristor devices to us.
These data took different memristors from HRS to LRS by the
application of small pulses, and one of them is shown in Fig. 7.
An exponential function of the form

f(x) = −A exp−Bx + C (1)

where A, B, and C are constants, was fitted to the provided data
with

A = 0.96445349, B = 0.00792457, C = 1.09779073.
(2)

A linear model and an exponential model f(x) that fit the data
are shown in Fig. 7. Another function g(x) was generated by
a simple transformation of f(x) with Gaussian noise N as
follows:

g(x) = f(x) ∗ N . (3)

The result of (3) fits the original memristor data the best and is
shown last in Fig. 7. This detail is important because the expo-
nential model f(x) was used in the sleep cycle to estimate the
number of backspikes to be generated, while the function g(x)
was used as the memristor growth function during simulations.
Also, the minimum conductance and maximum conductance
of the memristors were not considered as constants, Gaussian
noise was added to the upper and the lower limit of memristor
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Fig. 7. Memristor conductance models: Three different memristor models (linear, exponential, and simulated) are shown in comparison to real memristor data.
The graphs show how the conductance of a memristor device changes as pulses are applied for 400 clock cycles.

Fig. 8. Neural network structure: Input neural nodes are shown at the bottom
which are fully connected to output nodes by synapses (where each synapse
has two memristors). Ten output nodes are required to classify ten different
input images. Each output node is also connected to all other output nodes with
inhibitory connections to implement the winner-take-all scheme.

conductances, and the mean and variance of such noise were
calculated by measuring real memristor devices.

B. Network Structure and Learning Stimuli

The topology of the network trained is shown in Fig. 8. The
network has two layers, namely, input layers and the output
layer. Input layer neurons produce a pulse with the probability
of the pixel value being shown to it. That means a pixel value of
0 will be considered as a nonspiking input while a pixel value
of 1 will produce a pulse as a spiking input at every clock cycle.

The network uses the leaky integrate and fire neurons [21], [22].
These neural bodies integrate their input and fire if a threshold
has been reached. Also, a recurrent connection is provided to all
the neurons which act as a very strong inhibition signal. Once a
neuron fires, it lets every other neuron know that it has fired, and
therefore, all the integrate and fire neurons reset their internal
state to minimum.

Supervised learning was administered in this networks, which
means that, during training, we present input images, then
tell the network which neurons to fire for the given input, and
then run the network in the training mode. During training, the
network adjusts the synapse weights. Algorithm 2 details the
general algorithmic procedure followed during the training of
the network.

Algorithm 2 Algorithm used for training the neural network.
Each training image is given as input to the network for training
a given output node.

for epoch = 0 → MaximumTrainingEpochs do
for j = 0 → totalTTrainingImages do

trainImage ← trainImages[j]
Send read spikes and calculate node state Nstate

Send write spikes for learning node j
end for

end for

A dynamic threshold scheme was simulated where each
neuron would also learn the threshold that it has to fire at.
However, in a different run of the simulations, a dynamic
threshold had the same results as those of a fixed threshold for
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Fig. 9. Ten digit images which are used as input to the network for training.

TABLE I
RECOGNITION RATE FOR DIFFERENT NOISE LEVEL IMAGES

all neural codes. Therefore, for simplicity and easy hardware
implementation, fixed threshold values are used, and the results
are presented with a fixed threshold only.

C. Network Testing Results

Fig. 9 shows the 5 × 6 pixel input images for which the
network was trained. Table I shows the recognition rate of the
neural system when noise is added to images [23]. Fig. 10
shows how noise was added to input image 6 to generate noisy
spike images. The original images for number 6 are shown in
the left column, and uniform random noise mask images are
shown in the middle column. Noisy images are acquired by
flipping all the pixels in the character images wherever there
is a white pixel in the noise mask image as shown in the
right column of Fig. 10 for 10% noise. Algorithm 3 details the
stepwise procedure used during the testing of the network.

Algorithm 3 Algorithm used for testing the neural network.
An image is shown to the network until one of the output node
spikes

for j = 0 → totalTestingImages do
testImage ← testImages[j]
while No Ouptut nodes spikes do

Send read spikes and calculate node state Nstate

if Any node state Nstate reaches threshold then
produce output spike
produce inhibitory spike

end if
end while

end for

Fig. 10. Input image 6 in the left column is shown. Images with 10% random
pixels as white are shown in the middle column to produce noisy image mask.
Resulting noisy images used for testing are shown in the right column where
all pixels which have noisy image mask as white are flipped.

Fig. 11 shows the internal states of the neurons during testing
with 10% noise added to all images. Whenever a node state
reaches the threshold, the node produces an output spike and an
inhibition spike to all other neurons. Therefore, one can see all
nodes resetting to almost zero level whenever a node spikes as
shown by the spiking markers in Fig. 11. This is the expected
behavior from this kind of feedforward neural network. The
recognition rate should be 100% in such networks if noise is not
considered in the system. However, because noise is considered
for simulating real hardware conditions, the recognition rate
falls with increasing noise in the system.

VI. CONCLUSION

Different methodologies have been presented in the literature
to implement some form of plasticity in memristive synapses.
All such works do present some simulation results of neural
systems performing some task. As it is evident from the litera-
ture, the memristors behave differently for positive and negative
voltages. This paper presented a character recognition system
which takes into account this asymmetric property of memris-
tors by using two memristors as one synaptic weight. Using
two memristors gives us the benefit of easily creating synaptic
weights which are excitatory as well as inhibitory. Also, the
proposed system achieves the task of character recognition with
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Fig. 11. Node states accumulate the current coming into a neural node in a leaky integrate manner. Whenever a node spikes, depicting that it has recognized an
image, it produces an output pulse, resets its own state to zero, and sends an inhibition signal to all other nodes, resetting them to zero also.

noisy inputs, showing the feasibility of using two memristors in
larger systems.
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