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Nonlinear oscillations of a sessile drop on a hydrophobic surface induced by ac electrowetting
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We examine the nature of ac electrowetting (EW)-driven axisymmetric oscillations of a sessile water drop on
a dielectric substrate. In ac EW, small-amplitude oscillations of a drop differ from the Rayleigh linear modes
of freely oscillating drops. In this paper, we demonstrate that changes in the time-averaged contact angle of the
sessile drop attributed to the presence of an electric field and a solid substrate mainly caused this discrepancy. We
combine the domain perturbation method with the Lindsted-Poincaré method to derive an asymptotic formula
for resonant frequency. Theoretical analysis shows that the resonant frequency is a function of the time-averaged
contact angle. Each mode of the resonance frequency is a linear function of ε1, which is the magnitude of
the cosine of the time-averaged contact angle. The most dominant mode in this study, that is, the fundamental
mode n = 2, decreases linearly with ε1. The results of the theoretical model are compared with those of both
the experiments and numerical simulations. The average resonant frequency deviation between the perturbation
solutions and numerical simulations is 4.3%, whereas that between the perturbation solutions and the experiments
is 1.8%.
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I. INTRODUCTION

The resonance frequency of a freely oscillating drop is
known to be determined by mass and surface tension [1,2].
Meanwhile, drop viscosity dampens drop oscillations [3–5].
However, in the case of constrained drops, solid surface
intervention generates an additional friction force, which
modifies oscillation characteristics (e.g., resonance frequency
or oscillating drop shape). Strani and Sabetta first studied the
resonant frequencies of drops confined to a spherical bowl and
found that constrained drops have an additional low-frequency
mode [6,7]. Bostwick and Steen investigated the oscillation
dynamics of a liquid drop pinned on a circle-of-contact [8].
They extended their studies to the linear oscillations of a
spherical drop constrained by a spherical belt and obtained the
frequency dependence on their constrained geometry [9,10].
Chang et al. [11] recently studied the resonance frequencies
and oscillation modes of a sessile drop on a vertically
oscillating plane and compared these measured resonance
frequencies with theoretical predictions for unconstrained [1]
and constrained drops [9,10].

The aforementioned studies mainly focused on the oscil-
lation dynamics of confined drops with a fixed contact line
(CL). Voinov [12] and Cox [13] developed the Cox-Voinov
law, a hydrodynamics theory, describing the changes in
the dynamic contact angle caused by the viscous bending
of the liquid-gas interface during CL movement. This law
showed the dependence of the apparent contact angle, as
well as the spreading rate, on the capillary number (Ca, the
relative strength of viscous forces relative to surface tension).
Similarly, Hocking [14] suggested a linear relation between the
CL velocity and contact angle deviation from the equilibrium
value. Based on the Hocking conditions, Fayzrakhmanova and
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Straube [15] studied the oscillation characteristics of a sessile
drop. These characteristics include the stick slip dynamics,
contact angle hysteresis (i.e., difference between advancing
and receding contact angles), and frequency responses. Lyubi-
mov et al. [16,17] considered wetting parameters in developing
a theoretical model of oscillating sessile drops with moving
CLs and found that dissipation on moving CLs causes a shift in
resonance frequency. Noblin et al. [18,19] derived the resonant
frequencies of the oscillation modes of sessile drops from
pinned CLs to slipping CLs on a vertically vibrating plate using
a combined dispersion relation of capillary-gravity waves and
stationary surface wave conditions. Sharp and his corworkers
[20] and Sharp [21] also derived a simple relation between
resonance frequency and contact angle using the dispersion
relation and standing wave states along the sessile drop profile
length.

Mechanical vibration methods have difficulty in controlling
CLs precisely and integrating the methods into the packaging
frameworks of microelectronics in practical applications.
Electrowetting (EW), a technique that electrically controls the
wettability of a liquid sitting on a solid surface, is an alternative
method for exploring the oscillation dynamics of a sessile drop
[22] because electrical forces localized at the CL are controlled
precisely. Moreover, ac EW (i.e., EW controlled by an ac
electrical voltage) has many advantages: delay in contact-angle
saturation [23,24], decrease in contact-angle hysteresis (CAH)
[25], and prevention of sample adsorption onto solid surfaces
[26,27]. These advantages enable the development of many
practical applications in digital microfluidics, such as mixing
enhancement [28–30] and drop transport without complicated
electrical control [31,32].

A concrete understanding of the dynamics of drop oscil-
lations induced by ac EW essentially improves the perfor-
mance of microfluidic applications. Many studies about drop
oscillation dynamics induced by ac EW have been reported
[29,33–36]. Oh et al. [33] investigated ac frequency effects
on oscillation behaviors, such as changes in shape modes and
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resonance frequencies. In their experiments, Lai et al. [34]
observed phase differences between applied voltages and cor-
responding drop motions, as well as the beating phenomenon at
resonance frequencies. Dash et al. [35] systematically studied
ac frequency effects on shape modes and phase differences
at different ac voltages. They also observed the sub-harmonic
oscillation at half of the electrical forcing frequency. Based on
both experiments and theoretical models proposed by Oh et al.
[37], Hong et al. [36] explored the effects of drop viscosity on
sessile drop resonance frequencies and oscillation amplitudes,
in response to different ac voltages and frequencies.

In EW, the intervention of a solid surface may change the
resonant frequency of sessile drop oscillations (e.g., sessile
drop on a vertically vibrating plate). Thus, the oscillatory
behavior of a drop in EW is expected to be different from that
of a freely oscillating spherical drop. Oh et al. [33,37] derived
a shape mode equation of drop oscillations in EW based on
the conventional method for isolated spherical drops (bubbles)
[1,38] and the modified boundary conditions reflecting the
effect of electrical stress concentrated on the CL. The shape
mode equation successfully described the time evolution of
the droplet shape in response to electrical stress. The nth
mode resonant frequency in the shape mode equation is
the dimensional form of the resonant frequency of a freely
oscillating spherical drop [1]:

ωn =
√

n(n − 1)(n + 2)
ρR3

γ
, (1)

where R, ρ, and γ are the volume-averaged droplet radius,
droplet fluid density, and surface tension, respectively. How-
ever, the Rayleigh frequency Eq. (1) shows some discrepancy
in predicting the resonance frequencies of drop oscillations by
EW. Resonance frequencies from Eq. (1) are greater by about
12% than the experimental results [33,34].

This study aims to identify an improved prediction method
for the resonant frequency of drop oscillations induced by EW.
We consider a mathematical model that includes the effect
of contact angle changes through Young’s angle or through
electrical stress [37]. We consider two small parameters, ε1 and
ε2, which measure distortion from the hemispherical sessile
drop and the amplitude of drop oscillations in the conventional
methods for an isolated spherical drop, respectively. We then
expand the two parameters, combining the domain perturba-
tion method and the Lindsted-Poincaré method [39,40]. This
analysis provides an asymptotic formula for the dependence
of the oscillating drop frequency on the time-averaged contact
angle of a sessile drop. Fundamental resonant frequencies
(n = 2) for various time-averaged contact angles are measured
numerically and experimentally. Our numerical scheme is
based on a level set method, and experiments are conducted
under a typical EW system, where a tiny drop of water is placed
on a dielectric layer surrounded by air. Resonant frequencies
obtained from our theoretical analysis are compared with the
numerical and experimental results.

II. THEORETICAL ANALYSIS

In this section, we formulate our problem analytically and
conduct perturbation methods to study oscillating sessile drop

FIG. 1. A drop resting on a solid surface oscillates under the
AC EW.

dynamics. We assume that the sessile drop fluid is inviscid,
incompressible, and irrotational. The drop has volume of
2
3πR3, where R is the sessile drop radius when the apparent
contact angle is 90◦. The droplet interface is described in
spherical coordinates, where r denotes the radial distance, and
θ is the polar angle that varies between 0 and π/2 because the
drop rests on a solid. Inplane or plane-normal vibration may
excite asymmetric shape modes. However, we assume that the
oscillating drop shape is axisymmetric about z axis because
the effect of EW force appears uniformly on the sessile drop
perimeter. Moreover, the CL motion and the instantaneous
shapes of the interface are almost axially symmetric in
our experiments. A problem sketch is provided in Fig. 1.
Gravitational effects are not considered in our model because
we consider the drop whose size is smaller than the capillary
length for water (2.7 mm), which is a characteristic length
scale representing the relative strength of gravity and surface
tension. Given that the effect of viscosity on the resonant
frequency of a small sessile water drop (approximately 5 μL)
is negligible, our theoretical analysis results can be compared
with the simulation in Sec. III and, experimental results in
Sec. IV, respectively.

A. Analytical problem formulation

In this subsection, we establish an analytical formulation
of the problem. The velocity potential ψ that satisfies u =
∇ψ exists due to the assumption that the flow in the drop
is irrotational. The velocity potential ψ(r,θ,t) and the shape
function F (θ,t) are governed by the following equations:

∇2ψ = 0, (2)

∂ψ

∂t
+ 1

2
|∇ψ |2 + 1

ρ
p = G(t), (3)

∫ π/2

0
F 3 sin θdθ = 1. (4)
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For even n (n = 2,4, . . .),∫ π/2

0

∫ 2π

0
FPn sin θ cos tdtdθ = πR

2n + 1
ε2, (5)

∫ π/2

0

∫ 2π

0
FPn sin θ sin tdtdθ = 0. (6)

Equation (2) is the Laplace equation for velocity potential,
whereas Eq. (3) is the Bernoulli equation for drop pressure
p(r,θ,t), where G(t) is an integration constant with respect
to the spatial variables r and θ , which correspond to the
continuity and the Navier-Stokes equation for velocity field
u in Sec. III. Volume conservation of the drop provides the
constraint Eq. (4). Equations (5) and (6) define the amplitude
and phase of drop oscillations such that both are determined
only by the term Pn(cos θ ) cos t if the shape function is
represented as a series of Legegendre polynomials [39]. ε2

in Eq. (5) is a frequently used small parameter, which scales
the oscillating motion amplitude in conventional methods for
an isolated spherical drop.

On a solid substrate, the following impermeability condi-
tion should be satisfied:

∂ψ

∂θ
= 0 at θ = π

2
. (7)

The kinematic, the normal stress, and the tangential stress
boundary conditions should be satisfied on the drop surface
[F (θ,t) = r]. The kinematic and the tangential stress condi-
tions are given as:

(∇ψ · ∇)(r − F ) = −∂(r − F )

∂t
, (8)

{[t · (n · Th)]} = 0, (9)

where {[·]} is defined as [·]in − [·]out, t is the unit tangential
vector, and n is the outward unit normal vector at the
interface.

In the EW-problem, the drop interface is deformed by
wetting tension, which is the force acting on CL. This
interface deformation results in macroscopic contact angle
changes in EW [41]. In this paper, we modify the classical
normal stress condition, which considers only the effect of the
hydrodynamic stress Th, to normal stress condition to reflect
drop deformation:

{[n · (n · Th)]} + γ cos ϑ
2

R
δ(cos θ ) = γ (∇·n), (10)

where γ is the surface tension, ϑ is the time-averaged sessile
drop contact angle, and δ(cos θ ) is the δ function, which
approximates contact angle effect in the very narrow region
of the CL.

The δ function can be decomposed into a series of Legendre
polynomials as:

δ(cos θ ) =
∞∑

n=0

dnPn(cos θ ), (11)

where

dn = 2n + 1

2

∫ 1

−1
δ(η)Pn(η)dη = 2n + 1

2
Pn(0). (12)

To obtain perturbation solutions, we introduce two indepen-
dent small parameters. ε1 represents the sessile drop quiescent
deformation, which is determined by the time-averaged contact
angle of the sessile drop as ε1 = | cos ϑ |. ε2, the parameter in
Eq. (5), scales the drop oscillation amplitude.

B. Perturbation solution

In this subsection, we solve Eqs. (2)–(6) with the boundary
conditions from Eqs. (7)–(10) by using multiple parameter
expansions. A new independent variable τ = ωt is introduced.
ω is initially an unspecified function of ε1 and ε2, despite
acting as the drop oscillation frequency. Variable t is the newly
introduced variable τ different from the original time variable
used in Sec. II A.

We seek approximate solutions for ψ(r,θ,t), F (θ,t), and ω

in a power series form in terms of ε1 and ε2:

f (r,θ,t ; ε1,ε2) =
∞∑

j=0

∞∑
k=0

ε
j

1ε
k
2

j !k!
f [j,k](r,θ,t), (13)

where

f [j,k] ≡
(

∂

∂ε1
+ ∂F

∂ε1

∂

∂r

)j (
∂

∂ε2
+ ∂F

∂ε2

∂

∂r

)k

f (14)

at ε1, ε2 = 0, and r = R.
Moreover, we define notation f 〈j,k〉 as

f 〈j,k〉 ≡
[

∂j+kf

∂ε
j

1∂εk
2

]
ε1=0,ε2=0

. (15)

Given that the shape function is not a function of r ,
F [j,k](θ,t) = F 〈j,k〉(θ,t), and F 〈j,k〉 at each order is assumed
to be a series of Legendre polynomials:

F 〈j,k〉(θ,t) =
∞∑

n=0

a〈j,k〉
n (t)Pn(cos θ ). (16)

From the Laplace Eq. (2) with the natural boundary condition
that the velocity at the drop center is bounded, the velocity
potential is solved at each order in the form of

ψ 〈j,k〉(r,θ,t) =
∞∑

n=0

b〈j,k〉
n (t)rnPn(cos θ ). (17)

In O(1,1), the sessile drop is a quiescent, hemispherical
drop with contact angle ϑ = 90◦. The solutions are

ψ 〈0,0〉 = 0, and F 〈0,0〉 = R. (18)

In O(ε1,1), the time derivative and the velocity potential
are zero because there are no oscillations, and the sessile drop
is in equilibrium. Hence, the solutions are at steady states:

ψ 〈1,0〉 = 0, (19)

a〈1,0〉
n = sgn(W)(2n + 1)

(n − 1)(n + 2)
RPn(0), (20)

where sgn(W ) indicates the sign of cos ϑ .

033017-3



LEE, PARK, HONG, LEE, KANG, AND HWANG PHYSICAL REVIEW E 90, 033017 (2014)

In O(1,ε2), the solutions are equal to those in Rayleigh’s
free oscillation case:

a〈0,1〉
n = R cos t, for n even, (21)

ψ 〈0,1〉
n = −ω〈0,0〉 rn

nRn−1
sin tPn(cos θ ), for n even,

(22)

and

ω〈0,0〉
n =

√
n(n − 1)(n + 2)

γ

ρR3
, for n even. (23)

Owing to the volume conservation constraint Eq. (4),
a

〈1,0〉
n (t) and a

〈0,1〉
n (t) should be zero for n = 0 and odd n.

Hence, only positive even modes (n = 2,4, . . .) survive in
Eqs. (20)–(23).

The correction term for the resonant frequency can be
obtained by deriving the shape mode equation at the order of
O(ε1,ε2). A secular term in the shape mode equation appears
for m = n:

ä〈1,1〉
m (t) + m(m + 1)(m − 1)(m + 2)

n(n + 1)(n − 1)(n + 2)
a〈1,1〉

m (t)

= (2m + 1)

2

[
ω

〈1,0〉
m

ω
〈0,0〉
n

(
1 + m

n

)
〈Pn,Pm〉

+ sgn(W )
(2n + 1)Pn(0)

(n − 1)(n + 2)

×
〈
(m − n + 1)P 2

n + 1

n

(
∂Pn

∂θ

)2

,Pm

〉]
cos t. (24)

To remove the secular term, ω〈1,0〉
n should satisfy the following:

ω
〈1,0〉
n

ω
〈0,0〉
n

= −sgn(W )
(2n + 1)2Pn(0)

4(n − 1)(n + 2)

×
〈
P 2

n + 1

n

(
∂Pn

∂θ

)2

,Pn

〉
, (25)

where 〈h,g〉 is the inner product

〈h(θ ),g(θ )〉 =
∫ π

0
h(θ )g(θ ) sin θdθ. (26)

Hereafter, the resonant frequency ωn means the form including
the correction term of order ε1 as follows:

ωn = ω〈0,0〉
n + ε1ω

〈1,0〉
n . (27)

III. NUMERICAL ANALYSIS

In this section, we study the oscillating sessile drop
dynamics by using a numerical model based on a level set
method. A 5-μL volume of water drop rests on a surface
with an undisturbed contact angle of 116◦. The computa-
tional domain is 4 mm×4 mm and is evenly discretized
into 200×200 square cells. Both the water drop and its
surrounding air are incompressible and immiscible. Navier’s
slip boundary condition is applied to the bottom wall, whereas
no-slip boundary condition is applied to other boundaries. We
use OpenFOAM, an open-source C++ library for complex
physics simulations based on the finite volume method, to

solve the fluid flow [42]. Velocity u and pressure p are
obtained from the incompressible one-fluid formulation of the
continuity and the Navier-Stokes equation,

∇ · u = 0, (28)

ρ

[
∂u
∂t

+ (u · ∇)u
]

+ ∇p = μ∇2u + Fs , (29)

where ρ and μ are the density and viscosity, respectively.
Fs is the body force arising from surface tension γ and is

given as:

Fs = −γ (∇ · n)∇�lsf, (30)

where �lsf denotes the level set function, and n is the outward
unit normal vector.

Parameter values are given as ρwater = 1000 kg/m3, ρair =
1.25 kg/m3, μwater = 1×10−3 Pa s, μair = 1.82×10−5 Pa s,
and γ = 7.2×10−2 N/m, in accordance with the aqueous drop
described in Sec. IV. Subscript water and air indicate the water
drop and surrounding air, respectively.

Navier’s slip boundary condition [43] is applied to the entire
bottom wall to avoid the stress singularity problem at the CL
as

Ft = μ

ls
ut,wall, (31)

where Ft is the tangential component of stress acting on a cell
in contact with the bottom wall, and ut,wall is the tangential
component of the flow velocity at the bottom wall. ls is the slip
length that defines the distance below the bottom surface at
which the extrapolated fluid velocity reaches zero, and is set to
half of the mesh size. To capture the moving interface, our own
code is added to OpenFOAM by using a modified conservative
level set method [44]. The interface is implicitly defined as
�lsf = 1

2 , which is initially set to �lsf,0 = 1
1+exp(−x/ι) , where

x indicates the signed distance from the interface, and ι is
the parameter that determines numerical interface thickness
[45,46]. ι is set as the mesh size in this paper. The interface
moves along with the neighboring fluid, which is described by
the advection equation as:

∂�lsf

∂t
+ ∇ · (�lsfu) = 0. (32)

The reinitialization process is performed after each time step to
maintain the initial smooth profile of �lsf across the interface.

�lsf

∂τ
+ ∇ · [�lsf(1 − �lsf)n] = ι∇ · (∇�lsf ), (33)

where τ indicates an artificial time used only in intermediate
reinitialization. The advection and reinitialization steps are
performed in the conservative scheme [45] to prevent the loss
or gain of mass.

Electric force at the CL is numerically implemented by
apparent contact angle changes following the Lippmann-
Young equation.

γ cos ϑ = εdV
2

2d
+ γ cos θY , (34)

where εd is the dielectric constant of the insulator, V is the
applied voltage, d is the insulator thickness, θY is Young’s
angle (representing the contact angle without externally
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FIG. 2. Numerically obtained instantaneous shapes of a drop with
average contact angle of 90◦ during one period of oscillation.

applied electrical potential), and ϑ is the apparent contact angle
of the sessile drop. Microscopic contact angle θY is assumed to
be undisturbed by electrical stress in EW [41]. We set Young’s
angle θY as 116◦ according to our experimental setup. The
Lippmann-Young equation accurately predicts the equilibrium
contact angle ϑ until contact angle saturation occurs [22]. We
call the right-hand side of Eq. (34) wetting tension W , which
represents the net force per unit length, driving wetting of a
drop. The wetting tension is distributed at the surface in a very
narrow region near the CL.

Figure 2 shows instantaneous images of the sessile drop
at φ = 0, π/4, π/2, 3π/4, and π with time-averaged contact
angle ϑ = 90◦, where φ denotes the oscillation phase angle.
Figure 3 shows the oscillation patterns for different time-
averaged contact angles. Oscillation patterns are obtained by
superposing instantaneous images. The time-averaged contact
angles are (a) 70◦, (b) 80◦, (c) 90◦, (d) 100◦, (e) 110◦, and
(f) 120◦. All numerical results in this paper were measured in
the 10th period of the drop oscillations. Oscillation amplitudes
were calculated as the maximum change of drop base diameter
during one period. Frequency was scanned with a resolution
of 0.5 Hz to identify the resonant frequencies.

We then compared our fixed contact angle model with
dynamic contact angle models, such as the Hocking condition
or Cox-Voinov relation.

The Hocking condition is

γ cos ϑd = γ cos ϑ − λU, (35)

where ϑd , λ, and U are the dynamic contact angle, friction
coefficient, and CL velocity of the sessile drop, respectively.

The Cox-Voinov relation is given by

ϑ3
d = ϑ3 + CcvCa, (36)

FIG. 3. Oscillation patterns obtained by superposing numerical
drop shapes for the average contact angle of (a) 70◦, (b) 80◦, (c) 90◦,
(d) 100◦, (e) 110◦, and (f) 120◦.

where Ca and Ccv are the capillary number and Cox-Voinov
relation coefficient, respectively.

By combining our numerical method with the dynamic
contact angle models as a CL boundary condition, we
obtained the sessile drop resonant frequencies for the contact
angle ϑ = 90◦. The coefficients for the Hocking condition
and Cox-Voinov relations agreed with those derived from
the experimental results (e.g., λ = 0.05 for the Hocking
condition and Ccv = 382 for the Cox-Voinov relation). The
corresponding resonant frequencies are 38, 38, and 38.5 Hz
for the Hocking condition, Cox-Voinov relations, and fixed
contact angle models, respectively. Resonant frequencies are
almost the same regardless of contact angle models. For this
reason, we did not consider the dynamic contact angle models
in the present paper.

IV. EXPERIMENT

In this section, we describe the experiments conducted
to validate our theoretical model. The experimental setup
employed to observe drop oscillations is similar to a typical
apparatus for EW experiments [33,37], as shown in Fig. 4.
An aqueous drop of 0.1 M NaCl was placed on a bottom
electrode with a micropipette. Volume of the conducting drop
was consistently fixed at 5 μL corresponding to the initial
base radius of approximately 1 mm. The undisturbed water
drop contact angle without an externally applied electrical
potential, so-called Young’s angle, was approximately 116◦.
The bottom electrode was indium tin oxide (ITO) electrode
plate coated with a dielectric layer (Parylene-C) of 5-μm
thickness and a hydrophobic layer (DuPont, AF1600) of
100 nm. A stainless steel wire with 80-μm diameter was
used as a top electrode. Electrical signals were produced by a
function generator (33220A, Agilent) and amplified 100 times
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FIG. 4. Experimental setup for an oscillating drop driven by AC
EW.

by a voltage amplifier (A800, FLC Electronics). Contact angles
were measured using a contact angle goniometer (SmartDrop,
Femtofab). The temporal evolution of drop oscillations was
recorded consecutively with a high speed camera (Fastcam
SA3, Photron) at a frame rate of 1 000 fps.

The drop contact angle and oscillation amplitude were
controlled by manipulating the electrical signal. The periodic
electrical signal was combined with DC signals to change
the average apparent contact angle and AC signals to perturb
the drop oscillations. Figure 5 shows (a) the electrical signal

FIG. 5. (a) An electrical signal combined with DC and AC
components as a function of time scaled with one period of signal
and (b) the corresponding EW number η.

FIG. 6. Experimentally captured instantaneous images of the
drop with the average contact angle of 88◦ during one period of
oscillations.

obtaining the time-averaged contact angle ϑ = 103◦ and
(b) the corresponding EW number η. The dc voltage and the
amplitude for the ac field are 80 and 5.44 V, respectively.
The dimensionless EW number is defined as the ratio of the
electrical force to the surface tension as follows:

η = εdV (t)2/2dγ, (37)

where εd is the insulator dielectric constant, V (t) is the applied
voltage, d is the insulator thickness, and γ is the surface
tension.

Figure 6 shows the instantaneous images of the oscillating
drop. The instantaneous images are captured at φ = 0, π/4,
π/2, 3π/4, and π with the time-averaged contact angle ϑ =
88◦, where φ denotes the input voltage phase angle.

FIG. 7. Oscillation patterns obtained by superposing experimen-
tally captured drop images for the average apparent contact angle of
(a) 83◦, (b) 88◦, (c) 103◦, and (d) 115◦.
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Figure 7 shows the oscillation patterns for different time-
averaged contact angles, which were obtained by superposing
experimentally captured instantaneous images. Time-averaged
contact angles are changed to (a) 83◦, (b) 88◦, (c) 103◦, and
(d) 115◦ by altering dc signal levels. The ac signal amplitude
was controlled to have the same oscillation amplitude for
each contact angle at the resonant frequency of approximately
0.6 mm. Oscillation amplitude was calculated as the maximum
change in drop base diameter during one period.

V. RESULTS AND DISCUSSION

In this section, we first show that the theoretical model
proposed in Sec. II is valid for the usual range of the
contact angle (70◦ to 120◦), and then compare the resonance
frequencies obtained by the theoretical model with those
obtained by both the experiments and numerical simulations.

We checked whether the contact angle ϑ̄ obtained from the
perturbation solution was consistent with the original contact
angle ϑ to validate our theoretical model. Given that the sessile
drop amplitude in equilibrium is approximated by a

〈1,0〉
n in

Eq. (20), the shape function at equilibrium is approximated as
follows:

F̄ (θ,t) ≈ R

[
1 + sgn(W )ε1

∞∑
n=2

2n + 1

(n − 1)(n + 2)

×Pn(0)Pn(cos θ )

]
, (38)

where sgn(W )ε1 is determined by sgn(W )ε1 = cos ϑ .
The sessile drop apparent contact angle can be approxi-

mated by the perturbation solution of the shape function (38)
as

cos ϑ̄ = t · ex |θ=89◦ = 1

|∇(rb − F̄ )|
[
− 1

rb

∂(rb − F̄ )

∂θ
sin θ

+ ∂(rb − F̄ )

∂r
cos θ

]∣∣∣∣
θ=89◦

, (39)

where t is the unit tangent vector of the drop surface at the
CL, ex is the standard vector in Cartesian coordinates, and rb

is the base radius of oscillating sessile drops at equilibrium.
We numerically calculated the dimensionless base radii rb

and then nondimensionalized the base radii according to the
hemispherical drop radius. The dimensionless radii are 1.18,
1.09, 1, 0.91, 0.82, and 0.73 for contact angles 70◦, 80◦, 90◦,
100◦, 110◦, and 120◦, respectively. The right-hand side of
Eq. (39) is always zero at θ = 90◦ because the perturbation
solution F̄ is a weighted sum of P2n(cos θ ). Hence, we used
the slight deviation θ = 89◦ from θ = 90◦ to approximate the
apparent contact angle.

The contact angle value ϑ̄ from Eq. (39) and the original
contact angle ϑ for various values of cos ϑ are compared in
Fig. 8. The solid line represents the original contact angle ϑ ,
and the markers represent ϑ̄ from Eq. (39). The shape mode
is used up to N = 90 to compute the perturbation solution
F̄ . Good agreement was observed in the range of ϑ = 70◦
to ϑ = 120◦. Although the deviation between two data points
becomes larger as the apparent contact angle ϑ becomes farther
from 90◦, the deviation is less than 5% in the given range. In

FIG. 8. Comparison between the original contact angle (solid
line) and the approximation for the contact angle from Eq. (38)
(markers).

EW applications, however, the contact angle of electrowetted
drops on a hydrophobic surface is usually limited in the range
of 70◦ to 120◦ because of the emergence of contact-angle
saturation [37]. Thus, the present method which is based on
the assumption that the drop shape is not significantly distorted
from the hemispherical shape (ϑ = 90◦) could be valid for
most practical situations in EW.

Resonance frequency is known to decrease as the apparent
contact angle ϑ increases. This result could not be predicted by
Rayleigh’s linear mode [1,33,37]. By the asymptotic Eqs. (25)
and (27), we can explicitly observe the dependence of resonant
frequency on contact angle:

ωn = ω〈0,0〉
n + ω〈1,0〉

n ε1 = ω〈0,0〉
n + f (n) cos ϑ, (40)

where ε1 = | cos ϑ | and f (n) = sgn(W )ω〈1,0〉
n .

Note that ωn in Eq. (40) decreases for n = 2,6,10, . . . as
contact angle ϑ increases in the range of 70◦ to 120◦.

We focused on the resonance frequencies of the fundamen-
tal P2 mode in this paper because the fundamental mode P2

dominated the drop oscillation, and the other shape modes
were observed to be smaller than those at the P2 mode [33].
The dominant effect of the P2 mode was also observed in
our theoretical model, following (25). The magnitudes of
ω

〈1,0〉
n /ω

〈0,0〉
n for n = 2, 4, 6, and 8 are 0.2232, 0.0531, 0.0257,

and 0.0197, respectively.
The fundamental mode (n = 2) of the resonance frequency

predicted by the asymptotic solution Eq. (27) was compared
to those modes from numerical simulations and experiments
in Fig. 9 for various values of time-averaged contact angles.
For asymptotic results, the parameter values, except for the
liquid drop viscosity, were equivalent to those in the numerical
simulations and experiments. The drop was assumed inviscid
in the asymptotic case because the viscosity effect on the
resonant frequency of a small sessile drop (about 5 μl) is
negligible [33,47]. The P2 shape mode resonant frequency
was determined as the frequency with the largest oscillation
amplitude in the numerical simulation. In experiments, the
resonant frequencies for the contact angles in Fig. 7 were
measured by scanning the frequency with a 0.5-Hz resolution.
Electrical signal frequency was scanned near the P2 shape
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FIG. 9. Comparison between resonant frequencies obtained by
theory, simulation, and experiment as a function of contact angle.

mode resonant frequency of the drop. Resonant frequency was
determined as the frequency at which the largest oscillation
amplitude of drop base diameter occurred.

Figure 9 shows that the frequencies obtained by the pertur-
bation method are close to those from numerical simulations
and experiments. All P2 mode frequencies of 5-μL aqueous
drop obtained from experiments, numerical simulations, and
asymptotic solutions were very close to 38.5 Hz at ϑ = 90◦,
corresponding to the Rayleigh resonant frequency in Eq. (1).
The three results deviated from the Rayleigh frequency as
the contact angle deviation from 90◦ increased. However, the
results of all three cases consistently show that resonance
frequency decreases as contact angle ϑ increases. The average
deviation of resonant frequency between the perturbation
solutions and numerical simulations is 4.3%, whereas that
between the perturbation solutions and the experiments is
1.8%.

VI. CONCLUSION

We investigated the effects of time-averaged contact angles
on resonant frequencies of an oscillating sessile drop on a
dielectric substrate driven by AC EW. The correction term of
the resonance frequency was obtained when the asymptotic
analysis was extended to O(ε1,ε2). The asymptotic solution
showed the decrease in resonant frequencies with increasing
contact angles: this result could not be predicted in the
Rayleigh mode [1,33,37]. The contributions of the capillary
force and electric force to the resonant frequency are shown
explicitly since the contact angle effect is interpreted as a
wetting tension on the CL of the sessile drop through the
Lippmann-Young equation. The resonant frequencies of AC
EW-induced sessile drop oscillations are measured through
experiments and numerical simulations based on the level set
method. The resonant frequencies obtained by the asymptotic
analysis agree with the numerical and experimental results
within the contact angle range 70◦ to 120◦.
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APPENDIX A: O(ε1,1)

Given that ε2 = 0, only a quiescent deformation of the
drop surface is observed. The time derivative and the velocity
potential disappear.

ψ 〈1,0〉 = 0, (A1)

1

ρ
p〈1,0〉 = 0. (A2)

Given that both F 〈0,0〉 and F 〈1,0〉 are steady, the kinematic
boundary condition always holds:

−ω〈0,0〉 ∂F 〈1,0〉

∂t
− ω〈1,0〉 ∂F 〈0,0〉

∂t
≡ 0. (A3)

The normal boundary condition becomes

p〈1,0〉 + sgn(W )
2γ

R

2n + 1

2
Pn(0)Pn(cos θ ) (A4)

= γ

R2
(n − 1)(n + 2)a〈1,0〉

n Pn(cos θ ), (A5)

where sgn(W ) is the sign of cos ϑ , which is equal to that of
the wetting tension W .

a〈1,0〉
n = sgn(W)(2n + 1)

(n − 1)(n + 2)
RPn(0). (A6)

APPENDIX B: O(1,ε2)

∇2ψ 〈0,1〉 = 0, (B1)

with

∂ψ 〈0,1〉

∂r
	= ∞ (r = 0), (B2)

ω〈0,0〉 ∂ψ 〈0,1〉

∂t
+ ω〈0,1〉 ∂ψ 〈0,0〉

∂t
+ 1

ρ
p〈0,1〉 = 0. (B3)

In O(1,ε2), ψ [0,1] = ψ 〈0,1〉 and p[0,1] = p〈0,1〉.
On the interface r = F (θ,t), we obtain

∂ψ 〈0,1〉

∂r
= ω〈0,0〉 ∂F 〈0,1〉

∂t
+ ω〈0,1〉 ∂F 〈0,0〉

∂t
, (B4)

p〈0,1〉 = γ

R2

∑
(n − 1)(n + 2)a〈1,0〉

n Pn(cos θ ). (B5)

Based on the above equations:

ψ 〈0,1〉 =
∑

b〈0,1〉
n rnPn(cos θ ), (B6)

∑
ω〈0,0〉

n ḃ〈0,1〉
n (t)rnPn(cos θ ) = − 1

ρ
p〈0,1〉, (B7)

∑
nb〈0,1〉

n (t)Rn−1Pn(cos θ ) =
∑

ω〈0,0〉
n ȧ〈0,1〉

n (t)Pn(cos θ ),

(B8)
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or

b〈0,1〉
n (t) = ω〈0,0〉

n

R1−n

n
ȧ〈0,1〉

n (t).

If we substitute Eq. (B7) into Eq. (B5), then

−ρω〈0,0〉
n ḃn

〈0,1〉
(t)rn = γ

R2
(n − 1)(n + 2)a〈0,1〉

n (t). (B9)

Finally, we obtain the second-order ODE for a
〈0,1〉
n (t):

ä〈0,1〉
n (t) + n(n − 1)(n + 2)γ

(ω〈0,0〉
n )2ρR3

a〈0,1〉
n (t) = 0. (B10)

Thus, we obtain

a〈0,1〉
n = cos t, (B11)

and

ω〈0,0〉
n =

√
n(n − 1)(n + 2)

γ

ρR3
. (B12)

APPENDIX C: O(ε1,ε2)

In this case, we obtain

ψ 〈1,1〉 = 0, (C1)

with

∂ψ 〈1,1〉

∂r
	= ∞ (r = 0). (C2)

Thus,

ψ 〈1,1〉 =
∑

b〈1,1〉
n (t)rnPn(cos θ ), (C3)

ω〈0,0〉 ∂ψ 〈1,1〉

∂t
+ ω〈1,0〉 ∂ψ 〈0,1〉

∂t
+ 1

ρ
p〈1,1〉 = 0. (C4)

In O(ε1,ε2),

f [1,1] =
[
f 〈1,1〉 + F 〈1,0〉 ∂f

〈0,1〉

∂r

]
r=R

, (C5)

where f is the velocity potential ψ or the pressure p.

On the interface, r = F (θ,t):

∂ψ [1,1]

∂r
=

[
∂ψ 〈1,1〉

∂r
+ F 〈1,0〉 ∂

2ψ 〈0,1〉

∂r2

]
r=R

=
[
ω〈0,0〉 ∂F 〈1,1〉

∂t
+ ω〈1,0〉 ∂F 〈0,1〉

∂t

+ 1

R2

∂ψ 〈0,1〉

∂θ

∂F 〈1,0〉

∂θ

]
r=R

, (C6)

p[1,1] =
[
p〈1,1〉 + F 〈1,0〉 ∂p

〈1,0〉

∂r

]
r=R

= γ

R2

∑
(n − 1)(n + 2)a〈1,0〉

n Pn(cos θ ). (C7)

By substituting ψ 〈0,1〉, F 〈1,0〉, and F 〈0,1〉 into the kinematic
and normal boundary conditions, we obtain the ordinary
differential equation for a

〈(1,1)〉
m (t):

ä〈1,1〉
m (t) + m(m + 1)(m − 1)(m + 2)

n(n + 1)(n − 1)(n + 2)
a〈1,1〉

m (t)

= (2m + 1)

2

[
ω

〈1,0〉
m

ω
〈0,0〉
n

(
1 + m

n

)
〈Pn,Pm〉 cos t

+ sgn(W )
(2n + 1)Pn(0)

(n − 1)(n + 2)

〈
(m − n + 1)P 2

n

+ 1

n

(
∂Pn

∂θ

)2

,Pm

〉
cos t

]
. (C8)

Given that 〈Pn,Pm〉 = 0 for n 	= m, ω
〈1,0〉
m is determined only

when n = m.
If n = m, then the secular term should vanish:

2
ω

〈1,0〉
n

ω
〈0,0〉
n

〈Pn,Pn〉 + sgn(W )
(2n + 1)Pn(0)

(n − 1)(n + 2)

×
〈
P 2

n + 1

n

(
∂Pn

∂θ

)2

,Pn

〉
= 0.

Thus, the correction to the order ε1 is given by

ω
〈1,0〉
n

ω
〈0,0〉
n

= −sgn(W )
(2n+ 1)2Pn(0)

4(n− 1)(n+ 2)

〈
P 2

n + 1

n

(
∂Pn

∂θ

)2

,Pn

〉
.

(C9)
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