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ABSTRACT  Integration of internal and external cues into developmental programs is indispensable for growth and 
development of plants, which involve complex interplays among signaling pathways activated by the internal and exter-
nal factors (IEFs). However, decoding these complex interplays is still challenging. Here, we present a web-based plat-
form that identifies key regulators and Network models delineating Interplays among Developmental signaling (iNID) 
in Arabidopsis. iNID provides a comprehensive resource of (1) transcriptomes previously collected under the conditions 
treated with a broad spectrum of IEFs and (2) protein and genetic interactome data in Arabidopsis. In addition, iNID 
provides an array of tools for identifying key regulators and network models related to interplays among IEFs using 
transcriptome and interactome data. To demonstrate the utility of iNID, we investigated the interplays of (1) phytohor-
mones and light and (2) phytohormones and biotic stresses. The results revealed 34 potential regulators of the interplays, 
some of which have not been reported in association with the interplays, and also network models that delineate the 
involvement of the 34 regulators in the interplays, providing novel insights into the interplays collectively defined by 
phytohormones, light, and biotic stresses. We then experimentally verified that BME3 and TEM1, among the selected 
regulators, are involved in the auxin–brassinosteroid (BR)–blue light interplay. Therefore, iNID serves as a useful tool to 
provide a basis for understanding interplays among IEFs.
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Introduction
Plants, which are sessile, constantly revise their developmen-
tal programs to cope with changing environments during 
growth and development. Integration of internal and exter-
nal cues into the developmental programs is thus essential. 
This integration involves complex interplays among signal-
ing pathways activated by both internal and external factors 
(IEFs), leading to coordination in developmental outputs, 
such as germination, elongation, and maturation, over the 
developmental stages. For example, plants perceive season, 
temperature, and their developmental status to determine 
a precise timing of flowering for successful reproduction. 
Regulation of the timing of flowering involves complex inter-
plays among external (e.g. photoperiod, vernalization, and 
temperature) and internal factors (e.g. gibberellins (GA)) 
(Srikanth and Schmid, 2011).

Identification of key regulators for the interplays and 
biological networks delineating the interplays mediated by 
these regulators is critical to understand coordinated con-
trols by IEFs during plant development. Genetics approaches 
have been used to investigate the interplays between IEFs. 
For example, Xi et  al. (2010) identified a key regulator for 
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seed germination, mother of FT AND TFL1 (MFT), which inte-
grates the signals from abscisic acid (ABA) and GA (Xi et al., 
2010). Also, several studies (Moon et al., 2003; Hisamatsu and 
King, 2008) used genetics approaches to identify flowering 
time regulators, such as FT and SOC1, as the integrators of the 
signals from photoperiod, vernalization, and GA. However, 
these approaches require huge amounts of labor and time, 
and also commonly provide relationships among a limited 
number of molecules. Thus, it is often challenging to search 
for key regulators involved in the interplays among multiple 
IEFs, leading to the limited capability of decoding biological 
networks for the interplays among a large number of IEFs. 
Therefore, there has been a need for an alternative approach 
that can effectively identify both key regulators and biologi-
cal networks for the interplays.

Gene expression analysis has been offering new oppor-
tunities for identifying key regulators and networks asso-
ciated with the interplays. Several tools for analysis of 
transcriptome data and/or network analysis have been 
developed (Supplemental Table  1). First, BAR Expression 
angler (Toufighi et  al., 2005) and Genevestigator (Hruz 
et al., 2008) provide tools to explore gene expression pro-
files and identify co-expressed genes. However, they pro-
vide no tools to generate biological networks and identify 
key regulators. Second, CSB.DB (Steinhauser et  al., 2004), 
ATTED-II (Obayashi et  al., 2007), CORNET (De Bodt et  al., 
2010), and CorTo (Giorgi et al., 2013) provide tools to iden-
tify co-expressed genes and generate biological networks. 
Also, the interactome databases, AtPID (Cui et  al., 2008), 
AtPIN (Brandao et al., 2009), AtPAN (Chen et al., 2012), or 
GeneMANIA (Mostafavi et  al., 2008), can be used to gen-
erate biological networks. However, they provide no tools 
to identify key regulators based on the networks. Third, 
VirtualPlant (Katari et al., 2010) provides tools to identify 
differentially expressed genes (DEGs), generate networks, 
and identify network statistics scores for the nodes in the 
networks. However, these scores provide no statistical 
framework to select key regulators in the networks. Thus, 
all these tools, which are not specifically designed to ana-
lyze the interplays among multiple IEFs, are still lack of sta-
tistical tools to identify key regulators and network models 
associated with the interplays among IEFs.

Here, we present a web-based analytical framework that 
identifies key regulators and Network models delineating 
Interplays among Developmental signaling (iNID). iNID pro-
vides (1) a comprehensive database of gene expression pro-
files and interactomes in Arabidopsis and (2) three analytical 
tools for a series of analyses to identify key regulators and 
network models for interplays among multiple IEFs (Figure 1). 
The database contains 488 gene expression profiles collected 
after treatments with 41 IEFs and 1 171 417 interactions 
including protein–protein interactions (PPIs), protein–DNA 
interactions (TF–target; PDIs), protein–metabolite interac-
tions (PMIs), genetic interactions (GIs), etc. The three analyti-
cal tools were developed for (1) identification of the genes 

related to the interplay among a selected set of IEFs; (2) selec-
tion of key regulators mediating the interplay from the inter-
play-related genes; and (3) development of network models 
for the interplay using the key regulators and their associ-
ated pathways. iNID is available at http://sbm.postech.ac.kr/
inid (accessed 24 January 2014).

RESULTS
Transcriptomic Data in iNID

For investigation of interplays among various IEFs, iNID pro-
vides 41 time-course gene expression data sets (536 arrays) 
that were generated after treatments of the following four 
groups of IEFs (Table 1): (1) eight phytohormones: ABA, auxin, 
brassinosteroid (BR), cytokinin (CK), ethylene (ET), GA, jas-
monic acid (JA), and salicylic acid (SA) (van Leeuwen et al., 
2007; Goda et al., 2008) (GSE39384, E-TABM-51); (2) four dif-
ferent wavelengths of light (red, far-red, blue, and white 
lights; GSE5617); (3) abiotic stresses, including cold (GSE5621), 
drought (GSE5624), genotoxic (GSE5625), heat (GSE5628), 
osmotic (GSE5622), salt (GSE5623), UV-B (GSE5626), and 
wounding (GSE5627) (Kilian et al., 2007); and (4) biotic stresses, 
including Botrytis cinerea (GSE5684), Phytophthora infestans 
(GSE5616), Erysiphe orontii (GSE5686), pathogen-derived elic-
itors (hairpin Z, GST-NPP1, Flg22, and LPS; GSE5615), and six 
different Pseudomonas syringae strains (pv. maculicola strain 
ES4326, pv. maculicola strain ES4326 avrRpt2 (GSE5685), pv. 
tomato DC3000, pv. tomato avrRpm1, pv. tomato DC3000 
hrcC–, and pv. phaseolicola (ME00331)).

After treatments of these four groups of IEFs, gene expres-
sion profiles were measured at various developmental stages 
and tissues over time (Table 1). Gene expression profiles under 
conditions treated with seven of the eight phytohormones 
(ABA, auxin, BR, CK, ET, GA, and JA) and light were generated 
from seedlings in early stages (i.e. 7- and 4-day-old seedlings, 
respectively). After SA treatments, gene expression profiles 
were obtained from 5- or 6-week-old vegetative leaves. 
Gene expression profiles under abiotic stress conditions were 
measured from 18-day-old shoot and root tissues. Using the 
data from these two different tissues, we can examine tissue-
specific responses to the abiotic stresses. On the other hand, 
gene expression profiles under biotic stress conditions were 
generated from 4–5-week-old leaves (GSE5684, ME00331, 
GSE5616, and GSE5686) and distal leaf tissues inoculated with 
the above pathogens (GSE5685). Using these data, molecular 
signatures associated with systemic acquired resistance in the 
leaves can be investigated. However, the analysis of the data 
sets generated from different developmental stages, differ-
ent tissues, and under different experimental conditions may 
lead to misinterpretation of the data due to the variations 
from different stages and tissues (see the ‘Discussion’ section 
for details).

For each data set, iNID provides the significance (adjusted 
P-values and false discovery rates; FDR) that each gene is 
differentially expressed over time by the corresponding IEF. 

http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
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To  identify DEGs from individual data sets on the common 
statistical basis, we re-analyzed all data sets and selected 
DEGs with P < a cut-off (e.g. P or FDR < 0.05) using the method 
we previously reported (Storey and Tibshirani, 2003; Hwang 
et al., 2009). For a list of genes, the changes in their expres-
sion under the IEF-treated conditions can be explored using 
‘Quick search’ in iNID (Supplemental Figure 1A). In addition, 
for analysis of a new gene expression data set not included 
in iNID, iNID provides an interface that imports P-values and 
fold-changes pre-computed using the above method (avail-
able in the iNID website) or users’ own statistical methods 
(Supplemental Figure  1B). Using this interface, users can 
investigate the interplays between their own data sets and 
the ones in iNID.

Interactome Data in iNID

iNID provides interactomes (Figure  2A and Supplemental 
Figure  2) that comprise (1) interactomes collected from 10 
databases or resources (DB interactome in Figure 2A), TAIR 
(Lamesch et  al., 2012), BIOGRID (Stark et  al., 2011), BIND 

(Bader et  al., 2003), Intact (Kerrien et  al., 2007), AGRIS 
(Yilmaz et  al., 2011), TRANSFAC (Matys et  al., 2003), KEGG 
(Kanehisa et al., 2006), multi-network (Gutierrez et al., 2007), 
AtORFeome2.0 (Braun et  al., 2011), AtPIN (Brandao et  al., 
2009), and PPIN-1 (Mukhtar et  al., 2011); (2) interactomes 
predicted by various methods (Predicted interactome in 
Figure 2A; e.g. PPIs predicted from homologous interactions 
in other species) in Aranet (Lee et al., 2010b), Interactome2.0 
(Geisler-Lee et al., 2007), and multi-network (Gutierrez et al., 
2007); and (3) interactomes manually curated from previous 
literatures (Curated interactome in Figure 2A). iNID contains 
in a total of 1 171 417 interactions for 27 103 molecules. The 
‘DB interactome’ includes a total of 50 293 interactions: (1) 
21 556 PPIs, (2) 80 GIs, (3) 11 548 PDIs, (4) 16 990 PMIs, and 
(5) 119 microRNA–target interactions. The ‘Predicted interac-
tome’ includes a total of 1 119 519 interactions: (1) 253 520 
PPIs, (2) 22 590 GIs, (3) 1625 PDIs, (4) 56 protein–RNA interac-
tions (PRIs), and (5) 371 781 functional interactions. Finally, the 
‘Curated interactome’ (Supplemental Data 1) include a total 
of 27 112 interactions: (1) 14 086 PPIs, (2) 1407 GIs, (3) 11 559 
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Figure 1.  Database and Analytical Tools in iNID for Investigating Interplays among IEFs.

(A) Database including (1) 41 time-course data sets collected after treatments of phytohormones, light, and abiotic and biotic stress; and (2) inter-
actomes obtained from public databases and interaction data curated from previous literatures and gene expression data of mutants. The num-
bers of data sets in each category of IEFs are denoted in parentheses. From this database, gene expression profiles related to the interplay being 
investigated are selected. A three-dimensional (time, gene, and condition) heat map shows example up- (red) and down-regulated (green) genes.
(B) Identification of interplay-related genes showing differential expression patterns in the selected data sets (Conditions). Example interplay-
related clusters and their expression patterns are shown.
(C) Selection of key regulators mediating the interplay. An example key regulator (a large node in the center) with a large number of interactors 
is shown.
(D) Development of network models for the interplay using the key regulators and their associated pathways. An example network model for the 
interplay is shown. The network model includes the three key regulators (large nodes in the center).
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Table 1.  Transcriptomes Collected after Treatments of IEFs in iNID.

Category Array ID Condition # DEGsa Sample Time point Reference/ 
database

Hormone GSE39384b Abscisic acid 1096 7-day-old 
seedlings

30 min, 1 h, 3 h Goda et al., 
Plant J. (2008)Auxin 1049

Brassinosteroid 754

Cytokinin 924

Ethylene 752

Gibberellin 459

Jasmonic acid 1132

E-TABM-51c Salicylic acid 901 5–6-week-old 
leaves

4 h, 28 h, 52 h van Leeuwen 
et al., Plant 
Cell (2007)

Light GSE5617b Red 1143 4-day-old 
seedlings

45 min, 4 h At GenExpress

Far-red 1473

Blue 1429

White 1527

Abiotic stress (shoot) GSE5621b Cold 1272 Shoot of 
18-day-old 
plants

30 min, 1 h, 3 h, 
6 h,12 h, 24 h

Kilian et al., 
Plant J. (2007)GSE5624b Drought 1028

GSE5622b Osmotic 1087

GSE5623b Salt 1162 15 min, 30 min, 
1 h,3 h, 6 h, 12 h, 
24 h

GSE5625b Heat 1370

GSE5626b UV-B 1216

GSE5627b Wounding 1053

GSE5628b Genotoxic 881

Abiotic stress (root) GSE5621b Cold 1155 Root of 
18-day-old 
plants

30 min, 1 h, 3 h, 
6 h,12 h, 24 h

Kilian et al., 
Plant J. (2007)GSE5624b Drought 970

GSE5622b Osmotic 1075

GSE5623b Salt 1150 15 min, 30 min, 
1 h, 3 h, 6 h, 
12 h, 24 h

GSE5625b Heat 1339

GSE5626b UV-B 1052

GSE5627b Wounding 874

GSE5628b Genotoxic 936

Biotic stress GSE5685b P. syringae pv.  
maculicola ES4326

1064 4-week-old 
plants

4 h, 8 h, 16 h, 
24 h, 48 h

AtGenExpress

P. syringae pv.  
maculicola ES4326 avrRpt2

1010

ME00331d P. syringae pv. tomato 
DC3000

1378 5-week-old 
plants

2 h, 6 h, 24 h

P. syringae pv. tomato 
avrRpm1

1278

P. syringae pv. tomato 
DC3000 hrcC–

1249

P. syringae pv. phaseolicola 1188
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PDIs, (4) 45 PMIs, (5) 10 microRNA–target interactions, and (6) 
five PRIs. In addition, by analyzing 389 gene expression data 
sets obtained from 263 transgenic plants (Supplemental Data 
2), we also identified 469 947 genetic associations between 
mutated genes and DEGs in the mutants, compared to wild-
types (Supplemental Data 3).

To facilitate interpretation of network models for the inter-
plays, iNID provides a pathway model generated using the 
curated interactions for each of which experimental evidence 
was previously reported and that are thus relatively reliable to 
the DB and Predicted interactomes (Figure 2A). Among 12 137 
molecules with the curated interactions, 1887 molecules are 
mapped into 22 known pathways (Figure  2B) based on the 
molecule–pathway association reported in the literatures and 
AHD2.0 database (Jiang et al., 2011). The 22 pathways com-
prise (1–9) phytohormones pathways (ABA, auxin, BR, CK, 
ET, GA, JA, SA, and strigolactone), (10) light signaling path-
ways, (11) defense-related pathways, (12) flowering, (13) 26S 
proteasome, (14) cell division, (15) cell death, (16) chromatin 
remodeling, (17) embryo development, (18) mitogen-activated 
protein kinase (MAPK) signaling, (19) senescence, (20) shoot 
apical meristem development, (21) stress, and (22) trichome 
development pathways. Each pathway model is then defined 
by the molecules mapped to the pathway and the curated 
interactions among them. For example, the defense-related 
pathway model (Figure  2C) includes the molecules involved 
in pathogen effectors, receptors, resistance (R)-genes, R-gene-
interacting genes, MAPK signaling components, and defense 
regulators, and the interactions among these molecules. Based 
on this pathway model, among the 22 pathways, iNID provides 

pathways represented by the genes in network models delin-
eating the interplays among IEFs (see case studies below).

Identification of Key Regulators and Network Models 
for Interplays Using iNID

In addition to the above resources, iNID provides an array of 
analytical tools for identifying interplay-related genes, select-
ing key regulators for the interplays, and reconstructing net-
work models for the interplays (Figure 1). To demonstrate the 
utility of the data resources and the analytical tools, we applied 
iNID to the two case studies to understand interplays among (1) 
two phytohormones, auxin and BR, and blue light and (2) eight 
phytohormones and defense responses to nine pathogens.

Case Study 1: Interplays among Auxin, BR, and 
Blue Light

Light and phytohormones are indispensable in growth and 
development of plants (Alabadi and Blazquez, 2009; Lau and 
Deng, 2010). Various developmental processes, such as pho-
totropism and hypocotyl growth, involve the action of blue 
light, auxin, and BR (Hardtke et al., 2007; Jiao et al., 2007). 
Several studies identified the genes involved in the inter-
plays among these three factors: (1) NPH3 (Wan et al., 2012) 
between blue light and auxin, (2) GATA2 (Luo et  al., 2010) 
between blue light and BR, and (3) BIN2 and ARF2 (Vert et al., 
2008) between auxin and BR. However, there has been no 
systematic approach for identifying the components mediat-
ing the interplays among auxin, BR, and blue light. Moreover, 
biological networks describing the interplays among these 
IEFs have been rarely explored. Thus, we applied iNID to 

Category Array ID Condition # DEGsa Sample Time point Reference/ 
database

GSE5615b Pathogen-derived elicitors: 
hairpin Z

1493 5-week-old 
plants

1 h, 4 h

Pathogen-derived elicitors: 
GST-NPP1

1475

Pathogen-derived elicitors: 
Flg22

1523

pathogen-derived elicitors: 
LPS

790

GSE5684b Botrytis cinerea 849 4-week-old 
plants

18 h, 48 h

GSE5616b Phytophthora infestans 1588 5-week-old 
plants

6 h, 12 h, 24 h

GSE5686b Erysiphe orontii 1361 31-day-old 
plants

6 h, 12 h, 18 h, 
24 h, 2 d, 3 d,  
4 d, 5 d

a Differentially expressed genes (DEGs) with P < 0.01 and absolute log2fold-change > 0.58. The data sets are available from bNCBI GEO database, 
cEBI Arrayexpress, and dTAIR.

Table 1.  Continued

http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
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systematically identify key regulators and network models for 
the interplays among these IEFs.

Identification of the Genes Related to Interplays among 
Auxin, BR, and Light

We first selected gene expression profiles generated after 
treatments of auxin, BR, and blue light using the ‘Selection 
of datasets’ tool in the ‘Start analysis’ page of iNID (red arrow 

in Figure  3A). DEGs in these conditions were identified as 
the genes with P < 0.05 and absolute log2-fold-change > 0.58 
(1.5-fold) using the ‘Options’ in the ‘Identification of inter-
play-related genes’ tool (blue arrow in Figure 3A). The Venn 
diagram (Figure 3B) shows 2203, 2158, and 2728 DEGs iden-
tified from auxin, BR, and blue light data sets, respectively. 
Among the DEGs, 281 genes are shared in all three condi-
tions, and 1174 genes (443 + 432 + 299 genes in Figure 3B) are 

Figure 2.  Arabidopsis Interactomes in iNID.

(A) The statistics of three groups of interactomes, each of which was further categorized into subgroups of interactions. For example, the total 
50 293 interactions collected from public DBs (DB interactome) can be further divided into five types of interactions.
(B) The pathway model constructed from the curated interactome, including eight phytohormones pathways (ABA, auxin, BR, CK, ET, GA, JA, and 
SA), light signaling pathways, flowering, 26S proteasome, and defense-related pathways. Colors indicate different pathways.
(C) A network model showing defense-related pathways. Black line, PPI; green line, PDI; orange line, GI.
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shared in two of the three conditions. In contrast, 1047, 1135, 
and 1716 genes showed auxin-, BR-, and blue-light-specific 
expression changes, respectively. A fundamental assumption 
in iNID is that the genes showing shared differential expres-
sion under multiple conditions are likely to be associated with 

the interplays among the corresponding IEFs (Nemhauser 
et al., 2006; Chan, 2012). Thus, the significant numbers of the 
four sets of the shared DEGs (e.g. P < 10–5 for 281 genes in 
Figure 3B) indicate potential interplays among auxin, BR, and 
blue light.

Figure 3.  Identification of the Genes Related to Interplays between Phytohormones, Auxin and BR, and Blue Light.

(A) The interface for selecting data sets related to auxin, BR, and blue light (left panel). DEGs were identified as the genes with P ≤ 0.05 and abso-
lute log2-fold-change ≥ 0.58 (1.5-fold) at least one condition (right panel). The selected data sets are shown (middle panel).
(B) The Venn diagram showing the relationship between DEGs in auxin, BR (brassinosteroid), and blue light-treated (blue) conditions (left panel). 
The input gene lists are shown (middle panel). Each set of the DEGs in the Venn diagram can be selected for further analyses (right panel): in case 
study 1, 281 genes (Set G) were selected (underlined) and used for ‘Pattern analysis’ (orange arrow).
(C) The expression patterns related to interplays among auxin, BR, and blue light, and the numbers of genes and regulators (TF- transcription 
factors, SIG- signaling molecules, and REG- other regulators) included in each cluster. Red and green, up- and down-regulation, respectively, in 
individual selected data sets. The GO biological processes represented by the genes in the clusters can be performed using ‘Related biological 
processes’. See text for the arrows, boxes, or links.
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Among the shared DEGs, we focused on the 281 DEGs 
shared in all three conditions. Different increased or 
decreased expression patterns of the 281 DEGs under the 
three conditions reflect diverse modes of interplays among 
these three IEFs. For investigation of the modes of the inter-
plays, iNID provides two clustering methods—pattern analy-
sis and the non-negative matrix factorization (NMF) method 
(Kim et al., 2011) (see ‘Clustering’ box in Figure 3A)—due to 
their complementary nature (see the ‘Methods’ section for 
further detail) (Devarajan, 2008). In this case study, among 
the two methods, we used ‘Pattern analysis’ (orange arrow 
in Figure 3B). This analysis grouped the 281 shared DEGs into 
eight clusters (C1 to C8 in Figure 3C), reflecting eight different 
modes of the interplays. The largest C1 with 96 genes (34% 
of the 281 DEGs) showed up-regulation by auxin and BR, but 
down-regulation by blue light, whereas C3 showed the oppo-
site expression pattern. Thus, C1 and C3 reflect an antagonis-
tic interplay between light and the two hormones. Pairs of 
the other clusters reflect different relationships among the 
three IEFs: (1) C2 and C6 showed another antagonistic inter-
play between auxin and the other IEFs (BR and blue light); 
(2) C4 and C8 showed the other antagonistic interaction 
between BR and the other IEFs (auxin and blue light); and (3) 
C5 and C7 showed the synergistic interplays among the three 
IEFs. With the cluster navigator (green arrow in Figure 3C), 
iNID provides information of the genes in the cluster (i.e. 
names, descriptions, and interactors of the genes, and previ-
ous publications associated with the genes), as well as time-
course log2-fold-changes, significances (adjusted P-values and 
FDRs), and a heat map showing differential expression of the 
genes under the three conditions (Supplemental Figure  3). 
Also, with the tool of ‘Related biological processes’ (magenta 
arrow in Figure  3C), iNID provides cellular processes repre-
sented by the genes in each cluster (Supplemental Figure 4).

Selection of Key Regulators Mediating Auxin–BR–Light 
Interplays

It has been demonstrated that a hub-like regulator with 
a large number of interactors can serve as a key regulator 
(Barabasi and Oltvai, 2004; Barabasi et  al., 2011). Based on 
this concept, for every gene in each cluster, iNID computes the 
numbers of first and second interacting neighbors among the 
281 DEGs. iNID provides two methods—the non-weighted 
and weighted methods—for computing the numbers of the 
interacting neighbors (Supplemental Figure  5). The non-
weighted method merely counts the number of interact-
ing neighbors, assuming that different types of interactions 
(PPIs, PDIs, and GIs) are equally important in pertaining a 
gene as a functional hub. In contrast, the weighted method 
computes the sum of the scores for the interactions linking 
a gene to its neighbors (‘Methods’ section). The scores rep-
resent the importance of interaction types, assuming that 
different types of interactions have their due importance. In 
this study, we used the non-weighted method for computing 

the numbers of the neighbors (see the ‘Discussion’ section for 
comparison of these two methods).

Using the non-weighted method, we first computed the 
number of the first or second neighbors for individual genes 
in each cluster and then calculated the significance of the 
numbers of the first (P1st) or second (P2nd) neighbors. Potential 
key regulators in each cluster were selected as the genes with 
significant numbers of the first or second neighbors (P1st < 
0.1 and P2nd < 0.1, respectively; Figure 4A). Furthermore, the 
clusters with many key regulators can represent the major 
modes of interplays. Thus, iNID then identified these major 
clusters. To this end, for each cluster, iNID provides a cluster 
P-value (PC) that represents whether the cluster has a signifi-
cant number of key regulators. Among the eight clusters in 
Figure 3C, we selected the four major clusters (C1, C2, C3, and 
C4) indicated by asterisk in Figure 4A, with significant num-
bers of potential key regulators (PC

1st < 0.01 or PC
2nd < 0.01 in 

Figure 4A; ‘Methods’ section).
We then examined whether these four clusters (C1–C4) 

representing the major modes of interplays are associated 
with cellular processes regulated by auxin, BR, and/or blue 
light (Figure 4B) using ‘Related biological processes’ in iNID 
(e.g. magenta arrow in Figure 3C). Among the four clusters, 
C1 includes the largest number of the genes involved in 
hypocotyl elongation-related processes (‘Growth’ and ‘Plant-
type cell wall organization’) and the processes related to 
auxin, BR, and light (‘Response to light stimulus’, ‘Response 
to BR stimulus’, and ‘Response to auxin stimulus’). The results, 
together with the cluster P-values, indicate that C1 represents 
most strongly the interplay among auxin, BR, and blue light. 
The cluster navigator (green arrows in Figures 3C and 4A) 
shows that C1 includes both early and late responsive genes 
up-regulated by auxin and BR, but down-regulated by blue 
light (Figure 4C).

Based on these results, we focused on C1 representing 
antagonistic interplays between blue light and two phytohor-
mones. We then examined the key regulators selected from 
the genes in C1. Combining the five and eight key regulators 
with P1st < 0.1 and P2nd < 0.1, respectively (‘Key regulators’ 
for C1 in Figure 4A), C1 included a total of eight unique key 
regulators (BME3, AT5G05090, AT1G21910 (DREB26), TEM1, 
ANAC029, PKS4, IAA3/SHY2, and AT1G79700; Figure  4D). 
Among the eight potential key regulators, two (SHY2 and 
PKS4) were previously shown to play their roles in auxin–BR–
light signaling (Supplemental Table 2) (Colon-Carmona et al., 
2000; Tian et al., 2002, 2003; Weijers et al., 2005; Schepens 
et al., 2008). SHY2 negatively regulates auxin signaling (Tian 
et  al., 2002) and is also involved in light signaling, as indi-
cated by its interaction with PHYA and PHYB (Colon-Carmona 
et al., 2000; Tian et al., 2003). The suppression of the hypoco-
tyl elongation phenotype of phyB mutant in the shy2-2 gain-
of-function mutants also indicates the involvement of SHY2 
in light signaling (Reed et al., 1998). Another regulator, PKS4, 
a member of the PHYTOCHROME KINASE SUBSTRATE (PKS) 

http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
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Figure 4.  Identification of Key Regulators and a Network Model for the Auxin–BR–Blue Light Interplays.

(A) The number of potential key regulators identified from the genes in each cluster. PC
1st and PC

2nd represent cluster P-values that have the num-
bers of key regulators based on the first and second neighbors, respectively (‘Methods’ section). ‘All clusters’ tab above the table indicates that the 
total 281 DEGs in all the eight clusters were used to count the first and second neighbors during the selection of key regulators.
(B) GO biological processes (GOBPs) represented by the genes in each cluster. iNID first selected GOBPs represented by the genes in all clusters 
with enrichment P ≤ 0.1 (default cut-off in DAVID) and then displayed the fractions of the genes annotated with the selected GOBPs in individual 
clusters (Supplemental Figure 4C). Color bar, gradient of the fraction.

http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1


Choi et al.  •  Network Analysis for Cellular Signaling Interplays    801

family, suppresses PhyA- and PhyB-dependent inhibition of 
hypocotyl elongation, which is also regulated by auxin and 
BR (Schepens et  al., 2008). BME3 (Liu et  al., 2005), TEM1 
(Castillejo and Pelaz, 2008), and ANAC029 (Guo and Gan, 
2006) modulate germination, flowering, and senescence, 
respectively, which can be regulated by auxin, BR, and/or 
light (Jiao et al., 2007; Depuydt and Hardtke, 2011).

Development of a Network Model Delineating the 
Auxin–BR–Blue Light Interplay

To understand how the eight key regulators selected from C1 
collectively contribute to the auxin–BR–blue light interplay, 
iNID also provides a network model (Figure  4E) that delin-
eates the auxin–BR–light interplay. The network model was 
generated using the interactions between the eight key regu-
lators and the genes in C1 based on the interactome data 
in iNID (see the ‘Methods’ section for further detail). iNID 
visualizes the network model using Cytoscape (Smoot et al., 
2011). The network model included 104 nodes (e.g. genes or 
proteins) that comprise the eight key regulators (large nodes 
in Figure 4E), 37 genes in C1 (nodes with black boundaries 
in Figure 4E), and 59 of their first neighbors involved in the 
auxin, BR, or light pathways. These nodes were first grouped 
into auxin, BR, and light pathways (orange, magenta, and 
blue nodes, respectively) according to the pathway models 
(Figure 2B). The nodes belonging to each pathway were fur-
ther sub-grouped into modules based on their functions (e.g. 
receptors, signaling molecules, transporters, and responsive 
genes). For example, the auxin pathway includes the modules 
associated with ‘Auxin transport’, ‘Aux/IAA protein’ (repres-
sors in auxin signaling), and ‘Auxin response’.

The network model revealed potential functional roles of 
the identified key regulators in the interplay among auxin, 
BR, and blue light, together with their known roles in each 
pathway. For example, SHY2, a selected key regulator, nega-
tively regulates auxin signaling (Tian et  al., 2002) together 
with Aux/IAA proteins, leading to suppression of expression 
of auxin-responsive genes. SHY2 also interacts with PHYB, 
a light receptor, and its promoter activity is regulated by 
HY5, a major downstream TF in light signaling (1st box in 
Figure  4E). Moreover, genetic associations (Supplementary 

Data 2) showed that the expression of SHY2 could be affected 
by several factors involved in auxin (GH3.5), BR (DET2), and 
light (PIF1/3/4/5) signaling (pink dashed lines in 1st box in 
Figure  4E). PKS4, another selected regulator, negatively 
regulates light signaling in hypocotyl growth orientation 
(Schepens et  al., 2008). It also interacts with Ca2+ sensors, 
CBL1/3 (2nd box in Figure 4E). Ca2+ signaling plays a critical role 
in BR biosynthesis via a calmodulin-binding protein DWF1 (Du 
and Poovaiah, 2005) and in inhibition of hypocotyl growth 
by blue light (Folta et al., 2003). The genetic associations fur-
ther showed that the expression of PKS4 could be affected 
by several factors involved in auxin (ACS6), BR (DET2), and 
light (PIF1/3/4/5) signaling. In addition, the network model 
suggests novel functions of the key regulators in the inter-
play. Genetic associations of the five potential key regulators 
(DREB26, BME3, AT5G05090, ANAC029, and TEM1) indicate 
that their expression can be affected by several factors in 
auxin (AXR1/2, ARF2, ACS6, ATMYB50, or GH3.5), BR (DET2), 
and light (PhyB or PIF1/3/4/5) signaling (3rd box in Figure 4E). 
Taken together, the network model provides the hypotheses 
for roles of the eight potential regulators in auxin–BR–blue 
light interplays.

Experimental Validation of the Involvement of BME3 
and TEM1 in the Auxin–BR–Blue Light Interplay

To experimentally test the involvement of the identified 
key regulators in auxin–BR–blue light interplays, among the 
eight potential key regulators, we selected BME3 and TEM1 
for which there has been no evidence supporting their direct 
associations with the auxin–BR–light interplay. Using RT–PCR 
analysis, we first confirmed the differential expression of 
BME3 and TEM1 detected by microarray analysis after treat-
ments of auxin, BR, and light (i.e. increased expression by auxin 
or BR and decreased expression by light stimulus) (Figure 5A). 
To test the involvements of BME3 and TEM1 in the interplays 
of auxin, BR, and light, we then examined the responses of 
their T-DNA insertion knockout mutants (bme3 and tem1) 
to auxin, BR, and light. The mutants showed altered expres-
sion of the auxin (SAUR27), BR (BAS1), and light-responsive 
(PKS4 and GA2OX6) genes included in C1 after treatments of 
auxin, BR, and light (Figure 5B and 5C). These data indicate 

(C) The heat map showing the expression patterns of the genes in cluster 1 (C1). The expression changes of each gene (row) in 30, 60, and 180 min 
after treatments of auxin and BR, and in 45 min and 4 h after the exposure to blue light are shown in columns. Red and green, up- and down-
regulation in time points, respectively, under the corresponding conditions. Color bar, gradient of log2-fold-changes.
(D) The potential key regulators identified from the genes in C1. For each regulator, the table shows the numbers of the first and second neighbors 
among the 281 shared DEGs in auxin, BR, and blue light-treated conditions, as well as P1st and P2nd.
(E) A network model for the interplay. Node colors represent involvement of the genes in auxin (orange), BR (purple), or light (blue) pathways, 
and the process (Figure 4B) associated with the interplay (gray). Node boundary colors represent whether the corresponding genes were included 
in C1 (black) or the 281 shared DEGs (blue). Large nodes indicate the selected key regulators from the genes in C1. A module (solid black box) was 
named by the corresponding GOBPs. Three sub-networks (right panels) were generated to clearly show the interactions of the selected eight regu-
lators (SHY2, PKS4, and six unknown regulators, respectively). Black lines, PPIs; orange lines, GIs; green lines, PDIs; dashed gray lines, predicted PPIs; 
dashed blue lines, predicted functional interactions; dashed pink lines, genetic associations identified from gene expression profiles of mutants. 
Target genes in PDIs and genes affected by mutations in genetic associations from gene expression profiles were denoted by diamond heads in 
these edges. The activation (arrow) and inhibition (inhibition symbol) information between the nodes (e.g. DEGs or key regulators) was obtained 
from previous literatures of the nodes.
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that BME3 and TEM1 regulate the expression of the auxin, 
BR, and light-responsive genes represented in the network 
model describing the auxin–BR–light interplay. Furthermore, 
in these mutants, we examined the changes in hypocotyl 
elongation that is regulated by auxin, BR, and/or light and 

also was strongly represented by the genes in C1 (Figure 4B). 
The results revealed that the deletion of BME3 and TEM1 led 
to suppressed hypocotyl elongation in dark-grown conditions 
(Figure 5D). Taken together, all these data indicate that BME3 
and TEM1 function as novel regulators that contribute to 
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Figure 5.  Experimental Validation of Two Selected Key Regulators, BME3 and TEM1, in the Auxin–BR–Light Interplay.

(A) Differential expressions of BME3 and TEM1 after treatments of indole-3-acetic acid (IAA), brassinolide (BL), and light determined by quantita-
tive RT–PCR. The expression levels of the genes were normalized by that of eukaryotic translation initiation factor 4A-1 (EIF4A1) gene. The nor-
malized expression levels of non-treated (control) or dark conditions were set to 1, and relative expression levels of BME3 and TEM1 in indicated 
conditions were plotted (n = 3).
(B, C) The relative expression levels of auxin- (SAUR27), BR- (BAS1), and light-responsive (PKS4, and GA2OX6) genes in C1 after treatments of IAA 
and BL (B), and after light stimulus (C) in wild-type (Col-0), bme3, and tem1. The normalized expression levels of non-treated (control; (B)) or dark 
conditions (C) in wild-type were set to 1, and relative expression levels of the four genes in indicated genotypes and conditions are plotted (n = 3).
(D) The hypocotyl lengths of 5-day-old seedlings (n = 45~51) of Col-0, bme3, and tem1 grown under the dark conditions. Error bars indicate stand-
ard deviations. ** P < 0.01; * P < 0.05 (Student’s t-test).
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the auxin–BR–light interplay through the regulation of gene 
expression and physiology related to the interplay.

Comparison of iNID with Previous Tools in 
Identification of Key Regulators and Network Models 
for Auxin–BR–Blue Light Interplays

We summarized above a dozen of tools for analysis of tran-
scriptome data and network analysis (Supplemental Table 1). 
Among them, only VirtualPlant provides a tool (‘Network 
statistics’) that computes the numbers of interacting neigh-
bors of the genes in the resulting network. These numbers 
of neighbors can be used to identify key regulators as in 
iNID (Figure 4A). Unlike iNID, however, ‘Network statistics’ in 
VirtualPlant provides no statistical significance of the number 
of neighbors (P-values in Figure  4D), and thus an arbitrary 
cut-off for the number of neighbors should be used to select 
key regulators. For the comparison of key regulators that 
can be selected from the 96 genes in C1 by iNID (Figure 4D) 
and VirtualPlant, we first calculated the numbers of the 
first and second neighbors of the 96 genes in the network 
using ‘Network statistics’ in VirtualPlant. Then, the four key 
regulators (SHY2, At5g50570, At5g67060, and At1g77640) 
(Supplemental Figure  6A) were selected with the cut-offs 
used for the selection in iNID (i.e. the numbers of first and 
second neighbors  =  3 and 123, corresponding to P1st < 0.1 
and P2nd < 0.1, respectively; Figure 4D). Among the four key 
regulators, only SHY2 with the largest number of neighbors 
(Supplemental Figure 6A) is shared with the eight key regula-
tors (Figure 4D) identified by iNID. The discrepancy in the key 
regulators selected by VirtualPlant and iNID can be due to the 
difference in the interactome data sets between VirtualPlant 
and iNID.

Next, we compared a network model generated from iNID 
with those (Supplemental Figure 6) generated by three rep-
resentative tools—GeneMANIA, ATTED-II, and VirtualPlant—
using the 96 genes in C1 and their first neighbors based on 
various interactome data (Supplemental Table 1). iNID assigns 
pathway information (auxin, BR, and light pathways) to 
nodes according to the pathway models, facilitating func-
tional organization of the nodes for enhanced interpretation 
of a network model (Supplemental Figure 6B). Unlike iNID, 
however, GeneMANIA, ATTED-II, and VirtualPlant provided 
no pathway information for nodes. Instead, GeneMANIA 
provides information about gene ontology biological pro-
cesses (GOBPs) represented by the nodes. ATTED-II provides 
subcellular localization information of the nodes predicted 
by Target P (Emanuelsson et  al., 2000) and WoLF PSORT 
(Horton et al., 2007). For the comparison of the networks, we 
analyzed how well the network models from individual tools 
represented auxin, BR, and light pathways by counting the 
numbers of the genes related to the three pathways. For this 
analysis, we used GOBPs for the nodes in network models gen-
erated from ATTED-II (Supplemental Figure 6C), GeneMANIA 
(Supplemental Figure  6D), and VirtualPlant (Supplemental 
Figure 6E). The comparison revealed that the network model 

generated from iNID most significantly represented all auxin, 
BR, and light pathways (Supplemental Figure  6F). All these 
data showed that, compared to the three representative 
tools, iNID provides the most useful tool to identify key regu-
lators and network models for the auxin–BR–light interplays.

Case Study 2: Interplays between Hormones and Biotic 
Stresses

Phytohormones function as essential internal factors that 
control not only developmental processes, but also responses 
to biotic stress (Bari and Jones, 2009; Robert-Seilaniantz et al., 
2011). Plants interact with a number of pathogens during 
their growth and development. Phytohormones have differ-
ent roles in the plant–pathogen interaction, depending on 
species of pathogens (biotroph or necrotroph), activities of 
pathogen effectors, or infection sites (Ton et al., 2009). SA is 
considered to be involved in response to biotrophs, while JA 
and ET are involved in response to necrotrophs (Glazebrook, 
2005). ABA suppresses callose deposition after the treat-
ment of the bacterial flagellin Flg22 (Clay et al., 2009), but 
induces the callose deposition after the infection of fungal 
necrotrophs (Ton and Mauch-Mani, 2004). However, previous 
studies have focused mainly on relationships between indi-
vidual phytohormones and pathogens. To better understand 
cooperative actions of phytohormones against multiple path-
ogens, a systemic approach for investigating the interplays 
between phytohormones and pathogens is required. Thus, 
in this second case study, we applied iNID to systematically 
identify key regulators and network models for the interplays 
between phytohormones and biotic stresses.

We first selected gene expression data sets collected after 
treatments of eight phytohormones (ABA, auxin, BR, CK, ET, 
GA, JA, and SA) and nine pathogens (Psm ES4326, Psm ES4326 
avrRpt2, Pst DC3000, Pst avrRpm1, Pst DC3000 hrcC–, Psp, 
B. cinerea, P. infestans, and E. orontii) in iNID (Supplemental 
Figure 7). To identify the modes of the interplays under these 
17 conditions, among the two clustering methods in iNID, we 
used the NMF clustering method (Kim et al., 2011) (red arrow 
in Supplemental Figure 7) that effectively identifies clusters 
of the genes showing differential expression patterns (DEPs) 
across a large number of conditions (see the ‘Methods’ section 
for further detail). Using the NMF clustering, we first identi-
fied 30 clusters (Supplemental Figure  8). Among them, we 
then selected eight clusters (C1 to C8 in Figure 6A, red arrows 
in Supplemental Figures 8 and 9) associated with the inter-
plays between phytohormones and biotic stresses with DEPs 
under at least one of phytohormone-treated conditions and 
one of the pathogen-infected conditions. C1, C2, C3, and C6, 
among the eight clusters, showed expression changes by SA 
and the pathogens, indicating potential interplays between 
SA and biotic stress. In particular, C1 and C3 showed down-
regulation by both SA and the eight pathogens, whereas 
C2 showed the opposite expression pattern. Interestingly, 
C6 exhibited strong activation in systemic tissues by the two 
pathogens, Psm ES4326 and Psm avrRpt2, but relatively weak 

http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1


804    Choi et al.  •  Network Analysis for Cellular Signaling Interplays

Figure 6.  Interplays among Phytohormones and Biotic Stresses.

(A) The NMF result showing interplay-related expression patterns (rows) over time under phytohormone- and pathogen-treated conditions 
(denoted by labels in x-axis and dotted lines). Red and green, up- and down-regulation under the corresponding conditions, respectively. The 
numbers of the genes (also regulators) showing the expression patterns are summarized in the table. In each column, the boxes indicated by dot-
ted lines showed temporal expression changes over time in the corresponding data set.
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activation in local tissues by the four pathogens (Pst hrcC–, 
Psp, P.  infestans, and E. orontii) compared to the activation 
shown in C2. Also, C6 showed no response to the other three 
pathogens (Pst avrRpm1, Pst DC3000, and B. cinerea) in local 
tissues. On the other hand, C4, C5, C7, and C8 showed expres-
sion changes by ABA and the pathogens, indicating potential 
interplays between the abiotic stress phytohormone, ABA, 
and biotic stress.

Among the eight clusters representing different modes of 
the interplays between pathogens and phytohormones, we 
selected C2, C6, C7, and C8 with significant numbers (PC

1st 
< 0.01 or PC

2nd < 0.01) of potential key regulators for the 
interplays (Figure 6B). GOBP enrichment analysis (Figure 6C) 
revealed that C2, C6, and C8, compared to C7, were strongly 
associated with both phytohormone responses (‘Response to 
salicylic acid stimulus’ and ‘Response to abscisic acid stimu-
lus’) and biotic stress-related processes (‘Defense response’, 
‘Systemic acquired resistance’, and ‘Cell death’). Interestingly, 
C6 was associated with systemic acquired resistance 
(Figure  6C). Based on the cluster P-values and GO analysis, 
among the four clusters (C2, C6, C7, and C8), we first analyzed 
the genes in C6 to identify potential key regulators and net-
work models for the interplay between SA and biotic stress 
involving systemic acquired resistance.

The Interplay between SA and Biotic Stress

Combining the 17 and 15 key regulators with P1st < 0.01 and 
P2nd < 0.01, respectively (‘Key regulators’ for C6 in Figure 6B), 
we selected a total of 18 unique key regulators (Figure 6D) 
from the genes in C6. Known functional roles of the 18 
selected regulators in defense responses and/or SA signal-
ing are summarized in Supplemental Table  3 (Clarke et  al., 
2001; Feys et al., 2001; He et al., 2007; Cabrera et al., 2008; 
Gao et  al., 2009; Li et  al., 2009; Bhattacharjee et  al., 2011; 
Heidrich et al., 2011). Five of 18 were shown to be involved 
in SA and defense responses. For example, EDS1 is involved 
in R-gene-mediated effector-triggered immunity (ETI) (Feys 
et  al., 2001; Heidrich et  al., 2011), as well as SA biosynthe-
sis (Feys et al., 2001) and signaling (Clarke et al., 2001). Ten 
were predicted to be related to SA and defense response 
(Heyndrickx and Vandepoele, 2012), including three receptor-
like proteins (RLPs; AT3G11010, AT2G32680, and AT3G25010) 
and two leucine-rich repeat (LRR) transmembrane protein 

kinases (AT1G35710 and AT4G08850) whose family proteins 
are involved in pathogen recognition (Antolin-Llovera et al., 
2012; Greeff et al., 2012). The remaining three had no func-
tion previously reported in association with SA and defense 
response.

To understand how the 18 potential key regulators can 
contribute to the interplay (Figure 6E), we generated a net-
work model with 98 nodes including 18 key regulators (large 
nodes), 56 genes in C6 (nodes with black boundaries), and 24 
first neighbors of the genes in C6. The 98 nodes were then 
arranged into SA and defense signaling pathways (orange 
and blue nodes, respectively) according to the pathway mod-
els in iNID (Figure 2B). The nodes in each pathway were fur-
ther sub-grouped into modules based on their functions. SA 
signaling pathway included ‘EDS1 complex’, ‘SA biosynthesis’, 
‘TFs in SA signaling’, and ‘SA response’ modules. Defense 
signaling pathway included ‘Pathogen recognition’ (patho-
gen-associated molecular pattern (PAMP) receptors (WAK1, 
BIR1, and BKK1), LRR transmembrane proteins (SOBIR1, 
AT1G35170, and AT1G07650), and RLPs and cysteine-rich RLP 
kinases (CRKs)), ‘Effector recognition’ (R-genes (RPS2 and 
putative R-genes) and R gene-mediated resistance related 
gene (SGT1A)), ‘ER quality control’ (CRT3, SHD, ATERDJ2B, 
EXO70E2, VSR5, and VSR6), ‘WRKY TFs’ (WRKY38/53/54/60), 
‘Protein kinase’ (CPK4, AT5G38210, AT3G57700, AT1G66880, 
AT1G56120, AT1G51790, AT1G48210, and AT1G34750), and 
‘Cell wall organization’ modules.

The network model revealed potential associations of the 
selected regulators with the interplays between SA and biotic 
stress. First, the network model supported known functional 
roles of the selected regulators in the interplay between SA 
and biotic stress. A selected regulator EDS1 recognizes patho-
gen effector, AvrRps4 (Heidrich et al., 2011), and propagates 
the defense signal by forming complexes with PAD4 and 
SAG101 (Zhu et al., 2011) (1st box in Figure 6E). The interac-
tions of EDS1 with RPS4, RPS6, PAD4, SAG101, AT3G48080, 
and RLKs (CRK6, CRK37, AT4G08850, RLP23, and RLP41), 
as well as its genetic associations with MPK4 and RPP4 in 
defense signaling and SID2 and NPR1 in SA signaling, col-
lectively supported the known role of EDS1 in the interplay 
between SA and defense responses. Second, the network 
model also revealed novel functions of the regulators in the 
interplays between SA and biotic stress, which were known to 

(B) The numbers of selected key regulators and their cluster P-values (PC
1st and PC

2nd) in individual clusters. ‘Individual clusters’ tab above the table 
indicates that only the genes in C6, unlike the genes in all clusters in case study 1 (Figure 4A), were used to count the first and second neighbors 
during the selection of key regulators.
(C) GOBPs represented by the genes in individual clusters.
(D) Potential key regulators for the interplay between SA and biotic stress, as well as the numbers of their first and second neighbors and P-values 
(P1st and P2nd).
(E) A network model for the SA–biotic stress interplay. Node colors indicate the genes involved in SA (orange) and pathogen-related (blue) signal-
ing and responses. The black boundary color represents that the corresponding genes were included in C6. Large nodes indicate the 18 potential 
key regulators mediating the interplay. Three sub-networks (right panels) were generated to clearly show the interactions of the selected regula-
tors (EDS1, WAK1, and RLPs, respectively). Black lines, PPIs; orange lines, GIs; green lines, PDIs; dashed gray lines, predicted PPIs; dashed blue lines, 
functional interactions; dashed pink lines, genetic associations identified from gene expression profiles of mutants. See the legend of Figure 4E 
for diamond heads, activation, and inhibition symbols.
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be involved in only either SA or defense signaling. WAK1 was 
known to be involved in defense response as a receptor of cell 
wall fragments released during pathogen invasion (Cabrera 
et al., 2008). The interactions of WAK1 with the components 
involved in SA biosynthesis (SID2), SA receptors (NPR1), and SA 
responses (ANK, PNG1, LURP1, and RLK) indicated its poten-
tial roles in SA signaling (2nd box in Figure  6E). Finally, the 
network model revealed that several selected regulators with 
no known function related to SA or defense response showed 
dense interactions with both SA and defense responses. For 
example, RLP23/34/41 closely interact with the components 
involved in SA-, defense-related signaling and responses (3rd 
box in Figure 6E).

The Interplay between ABA and Biotic Stress

In addition to the SA–biotic stress interplays, the NMF clus-
tering (Figure 6A) also suggested the interplays among ABA 
and several pathogens. Among the four selected clusters (C2, 
C6, C7, and C8) with PC

1st < 0.01 or PC
2nd < 0.01 (Figure 6B), C8 

showed up-regulation by ABA and down-regulation by the 
four pathogens (Pst hrcC–, Psp, and P. infestans, and E. oron-
tii), whereas C7 did the opposite expression pattern, implying 
the negative relationship between ABA and the responses to 
these pathogens. The GOBP enrichment analysis also revealed 
that, compared to C7, C8 is more strongly associated with 
ABA-related processes, such as ‘Response to abiotic stimulus’, 
‘Response to abscisic acid stimulus’, and ‘Secondary metabolic 
process’ (Figure 6C).

Based on these results, we focused on C8 to understand 
an antagonistic interplay between ABA and biotic stress. 
Combining the seven and two key regulators with P1st < 
0.01 and P2nd < 0.01, respectively (‘Key regulators’ for C6 in 
Figure  6B), we then identified a total of eight unique key 
regulators from the genes in C8 (Supplemental Figure 10A). 
Seven out of them have been reported to be involved in ABA, 
abiotic stress, or defense pathways (Supplemental Table  4) 
(Kurkela and Franck, 1990; Abe et al., 2003; Lorenzo et al., 
2004; Kanwischer et  al., 2005; Maeda et  al., 2006; Sattler 
et al., 2006; Dombrecht et al., 2007; Novillo et al., 2007; Wang 
and Hua, 2009; Wang et  al., 2011; Valdes et  al., 2012). For 
example, MYC2, a MYC-related TF, functions as a signaling 
mediator between ABA and JA/ET-dependent defense path-
ways (Ton et al., 2009; Robert-Seilaniantz et al., 2011). MYC2 
induces ABA-responsive genes (Abe et al., 2003) and also acts 
as a negative regulator of JA/ET-dependent defense response 
(Dombrecht et al., 2007).

We then generated a network model with 121 nodes 
including the eight key regulators, 74 genes in C8, and their 
39 first neighbors (Supplemental Figure 10B). The nodes were 
then arranged into ABA (orange nodes) and JA/ET-dependent 
(blue and magenta nodes) defense signaling pathways 
according to the pathway models in iNID (Figure 2B) and then 
were further sub-grouped into modules in each pathway 
based on their functions. ABA signaling pathway included 

‘Protein Phosphatase 2C (PP2C)’, ‘SnRK’, ‘downstream TFs 
in ABA signaling’, and ‘Response to abiotic stress’ modules. 
JA/ET-dependent defense signaling pathways included ‘JAZ 
repressor’, ‘TFs in ET signaling’, ‘Defense response’, and 
‘Wound response’ modules.

As in the network model for SA–biotic stress interplays 
(Figure 6E), this network model also shows known and novel 
associations of the selected regulators with ABA–biotic stress 
interplays. First, the network model supported known func-
tional roles of the selected regulators in the ABA–biotic stress 
interplays. MYC2 and its homologs (MYC3 and MYC4) densely 
interact with the negative regulators of JA signaling in ‘JAZ 
repressor’ module (1st box in Supplemental Figure 10B). MYC2 
had further genetic associations with ABI1 and downstream 
TFs (ABI5, MYB32/91, and HB-7/12) in ABA signaling. Second, 
the network model also revealed novel functions of the regu-
lators in ABA–biotic stress interplays, which were known to be 
involved in only either ABA or defense signaling. For exam-
ple, KIN1, a marker gene of ABA and cold stress (Kurkela and 
Franck, 1990), had dense functional interactions with the mol-
ecules in ‘Response to abiotic stress’ and ‘Defense response’ 
modules (2nd box in Supplemental Figure 10B). Interestingly, 
another selected regulator CCA1, a core component in the 
circadian network (Wang and Tobin, 1998; Pruneda-Paz 
and Kay, 2010), had genetic associations with the molecules 
in ABA and JA/ET-dependent defense signaling pathways 
(Supplemental Figure 11), suggesting that the circadian clock 
can modulate functions of ABA and biotic stress. In support of 
this network-driven hypothesis, recently, CCA1 was identified 
as an essential regulator for temporal control of the expres-
sion of defense-related genes (Wang et al., 2011).

Discussion
Identification of key regulators and network models for 
interplays among various IEFs is essential to understand coor-
dinated controls in plant development by the IEFs. Although 
several methods have been developed, they still lack tools 
that can perform the integrative analysis to identify key reg-
ulators and network models for the interplays among IEFs. 
In this study, we developed an analytical framework, called 
iNID, for effectively identifying key regulators and biological 
networks for the interplays. The applications of iNID to the 
three interplay problems (auxin–BR–light, SA–biotic stress, 
and ABA–biotic stress interplays) revealed several known 
regulators mediating the interplays and also potential novel 
regulators, as well as network models delineating how these 
known and potential regulators collectively act to mediate 
the interplays among the IEFs. As demonstrated in these case 
studies, iNID can be also applied to combinations of IEFs for 
which the mechanisms underlying the interplays among the 
IEFs are unknown. The resulting potential novel regulators 
and network models provide hypotheses that can be further 
tested by detailed functional experiments, thus serving as the 
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bases for enhancing understanding of the interplays among 
the IEFs.

iNID includes the data sets generated from plants at 
various developmental stages of Arabidopsis genotypes 
(Table  1). The analysis of interplay-related expression pat-
terns and regulators using the data sets generated from 
different developmental stages may lead to inappropriate 
biological context and misinterpretation of the data. To par-
tially resolve this problem, iNID normalizes probe intensities 
across gene expression profiles in each data set using the 
same GCRMA normalization method (‘Methods’ section). This 
normalization would reduce variations coming from differ-
ent developmental stages and experimental conditions used 
in different laboratories. In addition to the normalization 
of probe intensities, to further reduce the issue of the vari-
ations, iNID normalizes log2-fold-changes of individual data 
sets by the quantile normalization method (‘Methods’ sec-
tion) before identifying interplay-related expression patterns 
using the NMF method. In the first case study, to understand 
the interplays among auxin, BR, and blue light, we used the 
data sets generated at the same seedling stage after treat-
ments of auxin, BR, and blue light. However, in the second 
case study, we used the data sets generated at two different 
developmental stages (seedling stage for hormone data sets 
and adult stage for biotic stress data sets) to understand the 
interplays between hormones and biotic stresses. The varia-
tions between seedling and adult stages may lead to false 
positive interplay-related expression patterns and regulators. 
To avoid this issue, we focused on the expression pattern 
reflecting the interaction between hormones (i.e. SA or ABA) 
and biotic stresses for which supporting evidence exists.

To select key regulators based on the degrees, iNID pro-
vides an option for the use of non-weighted or weighted 
edges to compute P1st and P2nd and for the computation of 
betweenness centralities (BWCs) (Supplemental Figure  5). 
In the two case studies, 8 (auxin–BR–blue light interplay), 
13 (SA–biotic stress interplay), and 7 key regulators (ABA–
biotic stress interplay) were selected using weighted edges 
(Supplemental Figure  12A–12C, respectively). Comparison 
of the key regulators selected using non-weighted (Figures 
4D, 6D, and Supplemental Figure 10A) and weighted edges 
(Supplemental Figure 12A–12C) revealed that the same eight 
key regulators were selected for the auxin–BR–blue light inter-
play even when the weighted edges were used. However, five 
(WAK1, CRT3, BKK1, CRK14, and HSP90.7) and one (COR15) 
key regulators were not selected when the weighted edges 
were used. This indicates that they might be less important 
key regulators than other key regulators selected using both 
non-weighted and weighted edges. Interestingly, no addi-
tional key regulators were selected using the weighted edges 
for computing P1st and P2nd.

Han et  al. (2004) suggested that party hubs act as local 
coordinators that link the components in a module, whereas 
date hubs act as global coordinators that mediate the 

interactions among the modules (Han et al., 2004). Agarwal 
et al. (2010) also proposed that BWC for each node, which is 
defined by the number of shortest paths from all nodes to 
all other nodes that pass through the node, can be used as 
a metric to determine party and date hubs (Agarwal et al., 
2010). They further showed that date hubs had higher BWCs 
on average, compared to party hubs. Thus, iNID provides an 
option to calculate BWCs for the selected key regulators, 
as described in Agarwal et  al. (2010), and P-values of the 
BWCs (Supplemental Figures 12 and 13). BWCs for the key 
regulators selected using non-weighted edges (Supplemental 
Figure 13A–13C) showed that no key regulators selected for 
the auxin–BR–blue light interplay had significant BWCs (i.e. 
PBWC > 0.05 in Supplemental Figure  13A). In contrast, one 
(AT1G34750) and four (PIF4, CCA1, VTE1, and MYC2) key reg-
ulators selected for the SA– and ABA–biotic stress interplays, 
respectively, had significant BWCs (PBWC < 0.05 in Supplemental 
Figure 13B and 13C). Thus, these five regulators can be con-
sidered as date hubs or global coordinators according to the 
guideline in Agarwal et al. (2010). Interestingly, the two key 
regulators (BME3 and TEM1) with PBWC > 0.05 (Supplemental 
Figure 13A), which can be considered as party hubs or local 
coordinators, were experimentally verified to be involved in 
the auxin–BR–light interplay (Figure  5). These data suggest 
that these two party hubs can function as key regulators at 
least in the auxin–BR–light interplay investigated. All these 
data indicate that the edge weighting and BWC can provide 
complementary natures for selection of the key regulators, 
providing various aspects of potential key regulators for the 
interplays among IEFs.

The integrity of a network model can be judged through 
certain topological features. To understand the importance 
of the selected key regulators, it is important to examine 
how robust the network models are against the removal of 
the key regulators from the network models. To this end, 
we estimated the average shortest path lengths as removing 
the selected key regulators and the non-key regulators from 
the network model and then compared the average shortest 
path lengths after the removal of the key regulators and non-
key regulators (Supplemental Figure 14). For this analysis, we 
used the average shortest path length as a metric to quan-
tify the impact of deleting the nodes as previously described 
(Albert and Barabási, 2002). The results showed that the 
removal of the key regulators from the network models led 
to the increase in the average shortest path lengths of all the 
network models reconstructed for the three interplays inves-
tigated in this study. Moreover, the increase in the average 
shortest path length resulted from the removal of the key 
regulators was more apparent than that which was resulted 
from the removal of the non-key regulators (P-values from 
one-way ANOVA < 0.05). This indicates that the key regula-
tors have higher impacts on the connectivity in the network 
models representing the interplays among the IEFs in the 
network models, compared to the non-key regulators in the 
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network models. Thus, these data confirmed the importance 
of the key regulators selected by P1st and P2nd.

Recently, NGS-based transcriptomic data, such as mRNA-
seq data, have been accumulated. iNID provides the inter-
face to upload users’ own transcriptomic data. The interface 
takes P-values (or FDRs) and log2-fold-changes (Supplemental 
Figure  1B). Thus, P-values and log2-fold-changes for NGS-
based transcriptomic data can be first computed using 
users’ own tools and can be then imported to iNID using 
this interface. However, the scales of the P-values and log2-
fold-changes can be different from those computed from 
microarray data. Using the quantile normalization method, 
iNID normalizes the log2-fold-changes from different NGS or 
microarray data to correct the variations in the scale between 
NGS and microarray data sets. Furthermore, the scale differ-
ence in the P-values between NGS and microarray data sets 
can be reduced by using the tool used to compute P-values in 
this study, which can be downloaded from the iNID website.

iNID is a web-based tool that has a broad spectrum of appli-
cability and easy expandability. To increase the applicability, 
iNID provides an interface to upload users’ own transcriptome 
data into iNID and to investigate the interplays between 
their IEFs and the 41 IEFs in iNID (Supplemental Figure 1B). 
Furthermore, users can investigate DEPs for a list of genes of 
users’ interest and thus can select potential regulators asso-
ciated with the interplay between IEFs being investigated 
(Supplemental Figure 1A). To achieve the expandability, iNID 
uses Cytoscape and its plug-ins for visualization and analyses 
of network models. When these tools are improved, iNID can 
incorporate immediately new functionalities of these tools. 
In addition, new transcriptome data sets, interactomes, and 
pathway information will be updated regularly to extend the 
resources in iNID. These aspects enable iNID to serve as a use-
ful tool to enhance understanding of interplays among vari-
ous IEFs during plant growth and development.

METHODS
Collection of Gene Expression Data Sets

We first obtained 41 time-course gene expression data sets 
collected after treatments of IEFs described in Table 1 from 
AtGenExpress (Kilian et  al., 2007; Goda et  al., 2008) and 
Arrayexpress (Parkinson et al., 2007). For each data set, the 
intensities of the probes were log2-transformed and then 
normalized using the GCRMA method (Wu et al., 2004). To 
determine whether a gene was expressed under a IEF-treated 
condition, the mixture of two Gaussian models, one for non-
expressed (absent) probes and the other for expressed (pre-
sent) probes, was fitted to the distribution of the normalized 
log2-intensity (Lee et  al., 2010a; Kim et  al., 2012). We con-
sidered a gene to be expressed if the normalized intensity 
of the gene was larger than a cut-off intensity in which the 
two Gaussian models meet in at least one sample. Among 
the expressed genes, we identified DEGs as described below. 

For each data set, both the normalized expression data and 
the absent/present calls were deposited into iNID.

Identification of Differentially Expressed Genes

To identify DEGs in each data set, we calculated the over-
all P-values by the following method previously reported 
(Hwang et al., 2005a; Chae et al., 2013): (1) t-statistic values 
and log2-median-differences between the normalized inten-
sities in control and IEF-treated conditions in individual time 
points were calculated; (2) t-values (or log2-median-differ-
ences) at all the time points were summed by the trapezoidal 
method (Thomas et al., 2007); (3) an empirical distribution of 
the summed t-value (or log2-median-differences) was gener-
ated by randomly permuting all the samples in the data set; 
(4) for each probe set, an adjusted P-value of the summed 
t-value (or log2-median-differences) was computed using the 
corresponding empirical distribution; and (5) for each probe 
set, the adjusted P-values from the t-statistic values and log2-
median-differences were combined into an adjusted overall 
P using Stouffer’s method (Hwang et  al., 2005b). DEGs are 
selected as the genes with adjusted overall P < a user’s speci-
fied cut-off value (e.g. 0.05 in case study 1). To remove poten-
tial false positives, we further selected DEGs with absolute 
log2-mediance-difference ≥ a user’s specified threshold (e.g. 
0.58, 1.5-fold-change in the original scale) at least one time 
point. iNID further provides FDRs of the overall P-values com-
puted by Storey’s method (Storey and Tibshirani, 2003). The 
FDRs can be used to select DEGs instead of the adjusted over-
all P-values used in this study. The MATLAB code for this anal-
ysis is provided through the iNID webpage (Supplemental 
Figure 1).

Identification of Genetic Associations from Mutant 
Microarray Data

To identify genetic associations from gene expression profiles 
of mutants, we first collected 389 data sets obtained from 
Arabidopsis mutants and their wild-types. In each data set, 
using the above methods, we then normalized the intensity 
data and identified the DEGs with overall P < 0.05 and abso-
lute log2-mediance-difference ≥ 0.58. Finally, we generated 
genetic associations between the DEGs and the gene mutated 
in the data set. The lists of the data sets and the interactions 
are provided in Supplemental Data 2.

Clustering of Differential Expression Patterns

iNID provides two methods (‘Clustering’ box in Figure  4A) 
for clustering the genes showing differential expression: 
(1) ‘Pattern analysis’ and (2) NMF method. First, for a set of 
genes, pattern analysis classifies the genes in each data set 
into three groups: up-regulated (P < 0.05; log2-fold-change > 
0.58 at least one time point), down-regulated (P < 0.05; log2-
fold-change < –0.58 at least one time point), or not changed 
(P > 0.05 or –0.58 < log2-fold-change < 0.58) genes. It then 
clusters the genes into all possible combinations of the DEPs 
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in the selected data sets. Although this pattern analysis is sim-
ple and fast, the use of the deterministic P-value and fold-
change cut-offs could result in false negative errors when the 
fold-changes less than the cut-off can be truly significant. To 
partially remedy this problem, we employed the NMF method 
that identifies the DEPs (clusters) across the selected data sets 
as previously described in detail (Kim et  al., 2011). Among 
several NMF variants, we used the orthogonal NMF (ONMF). 
In case study 2, we identified 30 DEPs after 30 applications of 
ONMF and 1000 iterations of each ONMF (Kim et al., 2011). 
Before the ONMF clustering, the log2-fold-changes in indi-
vidual data were normalized to correct the difference in the 
distribution of the log2-fold-changes arising from different 
developmental stages and types of the used tissues and dif-
ferent experimental conditions using the quantile normaliza-
tion method (Bolstad et al., 2003). For each DEP associated 
with the interplay, we selected the interplay-related genes 
with P ≤ 0.02. The P-value indicates the significance that a 
gene shows the corresponding DEP. Its cut-off was deter-
mined by examining whether the selected genes actually 
showed the DEP for multiple cut-off values between 0.05 
and 0.01. Compared to pattern analysis using the determin-
istic cut-offs, the NMF method focuses on the DEPs across all 
individual data sets during the clustering, which allows us to 
select the genes with marginal fold-changes in some data sets 
when they showed clear DEPs in the other data sets. As previ-
ously demonstrated (Kim et al., 2011), for a large number of 
data sets, the NMF method tends to effectively cluster the 
genes. In contrast, for a small number of data sets, the sim-
ple pattern analysis produces similar results to those obtained 
from the NMF method.

Identification of Potential Key Regulators Mediating 
Interplays

iNID selects key regulators from the genes with regulatory 
activities (e.g. TF or kinase activity) according to GO molecu-
lar functions (GOMFs) in each interplay-related cluster. For 
each regulator, using the interactome data in iNID, we first 
computed the number of first and second neighbors among 
the genes in a set of DEGs selected for the analysis from the 
Venn diagram (Figure  3B) or the interplay-related patterns 
(Figure 6A) (e.g. 281 shared DEGs in case study 1 and 154 and 
224 genes in C6 and C8, respectively, in case study 2). Two 
methods, the non-weighted and weighted methods, were 
used for computing the numbers of the interacting neighbors 
(Supplemental Figure  5): the non-weighted method merely 
counts the number of interacting neighbors using non-
weighted edges, whereas the weighted method computes 
the sum of the scores for the interactions linking a gene to 
its neighbors using weighted edges. Then, two distributions 
of the counts of the first and second neighbors were gen-
erated using the numbers of first and second neighbors of 
all the genes (22 746 genes in ATH1 microarray) in the same 
domain, respectively. For the numbers of first and second 

neighbors of each regulator in the cluster, two P-values (P1st 
and P2nd) were estimated using the corresponding distribu-
tions. Finally, key regulators are selected as the genes with 
one of the two P-values less than a given threshold (e.g. 
P < 0.01). Also, to assess whether the selected key regulators 
can serve as party or date hubs, BWCs were evaluated for all 
the genes in a selected cluster using the NetworkX Python 
package (Hagberg et al., 2008). To calculate the significance 
(P-values) of the BWC, we randomly sampled the same num-
ber of genes with the selected DEGs 2000 times, computed 
the BWCs for the randomly sampled genes, and estimated 
an empirical distribution of the BWCs. Using the distribution, 
P-values of the observed BWCs for the selected key regulators 
were estimated by the one-tailed test.

Confidence Score of the Interactions

Edges can have their due importance in pertaining a node as 
a regulatory hub. We estimated the confidence of the interac-
tions in iNID using the method previously used in the STRING 
database (von Mering et al., 2005). We first defined three true 
positive sets of PPIs (PPItrue), PDIs (PDItrue), and GIs (GItrue) using 
the curated interactomes in iNID, respectively. These true posi-
tive interactions are similar to the interactions in the KEGG data-
base that STRING used as true positive interactions. Using the 
true positive sets, we then evaluated the scores for PPIs, PDIs, 
and GIs in each source of the interactions (e.g. AtORFeome2.0, 
PPIN-1, Intact, etc.; see reference in Figure 2A) as follows: (1) 
we counted overlapping nodes between the nodes with true 
positive PPIs (PPItrue) and with all the PPIs in the source (PPIref); 
(2) we then counted the PPIs including the overlapping nodes 
in the true positive PPItrue (Ntrue_PPI) and the source (Nref_PPI); (3) 
we estimated the score (SPPI) as Nref_PPI divided by Ntrue_PPI; and 
(4) the same procedure was done to estimate SPDI and SGI using 
PDItrue–PDIref and GItrue–GIref, respectively. This procedure is simi-
lar to that performed to estimate the score using the interac-
tions in the KEGG database and in the individual sources. For 
the sources providing the predicted interactions (e.g. Aranet 
and Interactome 2.0), it is not clear which types of interactions 
the predicted interactions refer to. Therefore, we computed a 
representative score for the predicted interactions by combin-
ing the scores (SPPI, SPDI, and SGI) estimated for PPIs, PDIs, and 
GIs using the naive Bayesian algorithm as previously described 
in STRING (von Mering et al., 2005). These scores were used as 
weights of the edges in each source.

Identification of Major Clusters Related to Interplays

iNID selects major interplay-related clusters with significant 
numbers of key regulators. Key regulators from the genes in 
each cluster are first chosen by the method described above. 
For key regulators in each cluster, iNID calculates a cluster 
P-value (Pc) using Fisher’s exact test using the genes in the 
cluster and all the genes in ATH1 microarray. Then, iNID 
selects major interplay-related clusters as the ones with (PC

1st 
< 0.01 or PC

2nd < 0.01).

http://mplant.oxfordjournals.org/lookup/suppl/doi:10.1093/mp/sst173/-/DC1
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Reconstruction of Network Models for Interplays

iNID provides a ‘Network modeling’ tool for reconstruction 
of a network model delineating the interplay. For an inter-
play-related cluster (e.g. C1 in case study 1 and C6 and C8 
in case study 2), we first selected the genes including the 
key regulators in the cluster using the ‘Cluster navigator’ 
page. To understand their functions and find their associ-
ated pathways, we then expanded the network models 
by incorporating the first neighbors of the selected genes 
(blue arrow in Supplemental Figure 15). The ‘Network mod-
eling’ tool visualizes the resulting network using Cytoscape. 
Among the genes in the initial network, we then chose (1) 
the key regulators and (2) the genes involved in the path-
ways related to the IEFs and the processes represented by 
the interplay-related genes (e.g. ‘response to light stimu-
lus’ in case study 1 in Figure 4B). Finally, the nodes in the 
resulting network were arranged according to the pathway 
models and the cellular processes in which the nodes are 
involved. Furthermore, the known genes involved in the 
pathways related to the IEFs (e.g. auxin, BR, and light in 
case study 1; ABA, SA, and defense in case study 2)  could 
be added using the ‘Add a list of genes’ tool (green box in 
Supplemental Figure 15).

Validation of the Involvement of Key Regulators in the 
Auxin–BR–Light Interplay

To test the response to auxin and BR, seedlings of wild-type 
(Col-0), bme3 (SALK_131396), and tem1 (SALK_097513) were 
grown in 0.5 Murashige and Skoog (Duchefa Biochemie) liq-
uid medium (pH 5.6) containing 1.2% sucrose for 5 d at 23ºC 
under continuous light. The seedlings were then treated 
with 1 μM of indole-3-acetic acid or 10 nM of brassinolide. 
After 3 h, they were immediately frozen in liquid nitro-
gen. To test the response to light stimulus and measure 
the hypocotyl length of dark-grown seedlings, seedlings of 
wild-type, bme3, and tem1 were grown on 0.5 Murashige 
and Skoog medium (pH 5.6) containing 1.2% sucrose and 
0.8% agar type-M (Sigma) for 5 d under the dark. The seed-
lings were then exposed to light for 4 h and immediately 
frozen in liquid nitrogen. The hypocotyl length was meas-
ured from digital photo of the seedlings using Scion Image 
software. To determine the expression levels of auxin, BR, 
and light-responsive genes, total RNAs were isolated from 
the seedlings using Trizol reagent (Invitrogen). cDNAs were 
synthesized from 1  μg of the RNAs using ImProm-II first-
strand synthesis system (Promega Corp.) with an oligo(dT)18 
primer. The quantitative real-time RT–PCR was performed 
using SYBR Premix Ex Taq (TaKaRa Bio Inc.) and analyzed 
by ABI StepOnePlus (Applied Biosystems). The analysis was 
performed using three biological replicates. The measure-
ment was normalized using the expression level of the 
gene encoding eukaryotic translation initiation factor 4A-1 
(EIF4A1) gene (AT3G13920). Primers used in real-time RT–
PCR are listed in Supplemental Table 5.
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