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Abstract. For a σ-finite measure µ and a Banach space Y we study
the Bishop-Phelps-Bollobás property (BPBP) for bilinear forms on L1(µ)×Y ,
that is, a (continuous) bilinear form on L1(µ)×Y almost attaining its norm at
(f0, y0) can be approximated by bilinear forms attaining their norms at unit
vectors close to (f0, y0). In case that Y is an Asplund space we characterize
the Banach spaces Y satisfying this property. We also exhibit some class of
bilinear forms for which the BPBP does not hold, though the set of norm
attaining bilinear forms in that class is dense.

1. Introduction.

The Bishop-Phelps Theorem states the denseness of the set of norm attaining func-
tionals in the (topological) dual of any Banach space [16]. Bollobás proved a quantita-
tive version of this result, known nowadays as the Bishop-Phelps-Bollobás Theorem [17],
which is very useful to study numerical ranges of operators (see for instance [18]). As
usual, BX and SX denote the closed unit ball and the unit sphere of a Banach space
X, respectively; X∗ denotes the (topological) dual of X. The Bishop-Phelps-Bollobás
Theorem can be stated as follows:

Let X be a Banach space and 0 < ε < 1. Given x ∈ BX and x∗ ∈ SX∗ with
|1 − x∗(x)| < ε2/4, there are elements y ∈ SX and y∗ ∈ SX∗ such that y∗(y) = 1,
‖y − x‖ < ε and ‖y∗ − x∗‖ < ε.

The study of both results in the vector valued case has attracted the interest of
many authors. In his pioneering work [34] Lindenstrauss studied versions of the Bishop-
Phelps Theorem for operators. He gave the first counterexample of Banach spaces X

and Y such that the subset NA(X, Y ) of norm attaining operators between X and Y is
not dense in L(X, Y ), the Banach space of all (bounded and linear) operators from X

into Y . He also provided either isomorphic or isometric properties of the Banach spaces
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X and Y to obtain positive results. Bourgain generalized one of these results proving
that for each Banach space X with the Radon-Nikodým property, NA(X, Y ) is dense
in L(X, Y ) for every Banach space Y [19]. Many other interesting results along the
same line for classical Banach spaces have been shown (see [1], [2], [9], [26], [28], [29],
[31], [39], [40]). For bilinear forms the study of similar results was initiated by Aron,
Finet and Werner [13]. In this case there are also interesting positive results and some
counterexamples (see [4], [10], [13], [20], [21], [30], [36]). The survey [3] contains the
most relevant achievements in the field until 2006.

For versions of the Bishop-Phelps-Bollobás Theorem the situation is quite different.
For instance, let us mention that the Radon-Nikodým property on X does not imply a
version of the Bishop-Phelps-Bollobás Theorem for operators from X into any Banach
space Y . Even in the case of `1 this result fails. Actually in [6] it is characterized the
Banach spaces Y for which the Bishop-Phelps-Bollobás Theorem holds for operators from
`1 into Y .

If µ is a σ-finite measure and m is the Lebesgue measure on the unit interval, it was
shown in [12] that the Bishop-Phelps-Bollobás Theorem holds for operators from L1(µ)
into L∞(m). Another positive results can be found in [11] for operators from an Asplund
space X into C(K) (K is a compact Hausdorff space) and in [32] for operators from c0

into a uniformly convex space. There is also a version of the Bishop-Phelps-Bollobás
Theorem for operators from a uniformly convex space into any Banach space [33] and
[7].

For the space of bilinear forms the parallel problem was initiated by Choi and Song
[23]. In this case there are only a few results and the answers are quite different from
the operator case. For two Banach spaces X and Y, by using the usual identification of
the continuous bilinear forms on X × Y and the space L(X, Y ∗) it holds that a version
of the Bishop-Phelps-Bollobás Theorem for bilinear forms on X × Y implies the parallel
result for the space L(X, Y ∗). The converse is no longer true even for X = Y = `1 in
view of [23] and [6, Theorem 4.1]. However, Dai [24] proved that the converse holds if Y

is uniformly convex (see also [7]). In [7] the authors proved that there is a version of the
Bishop-Phelps-Bollobás Theorem for bilinear forms on a product of uniformly convex
Banach spaces. They also gave a characterization of the Banach spaces Y such that
the same results holds for bilinear forms on `1 × Y . As a consequence, they obtained a
positive result when the space Y is finite dimensional, uniformly smooth, C(K) or K(H)
(the space of compact operators on a Hilbert space H). Also in the case X = `1 the
mentioned characterization shows the difference between the operator and the bilinear
cases.

Our intention now is to list the results proved in this paper. Throughout the paper,
X and Y denote Banach spaces over the (same) scalar field K (K = R or C). By
L(2X × Y ) we denote the space of continuous bilinear forms on X × Y .

In order to be more precise, we recall the following definition:

Definition 1.1 ([23], [7]). The pair (X, Y ) has the Bishop-Phelps-Bollobás prop-
erty for bilinear forms (BPBP for bilinear forms), if given ε > 0 there exist β(ε) > 0 and
η(ε) > 0 with limε→0+ β(ε) = 0 such that for any A ∈ SL(2X×Y ), if (x0, y0) ∈ SX ×SY is
such that |A(x0, y0)| > 1− η(ε), then there exist (u0, v0) ∈ SX × SY and B ∈ SL(2X×Y )
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satisfying the following conditions:

|B(u0, v0)| = 1, ‖u0 − x0‖ < β(ε), ‖v0 − y0‖ < β(ε) and ‖B −A‖ < ε.

The outline of the paper is the following. In Section 2 we give a necessary condition
on a Banach space Y in order that (L1(µ), Y ) has the BPBP for bilinear forms, when
L1(µ) is infinite dimensional. This condition is called the approximate hyperplane series
property for the pair (Y, Y ∗) and it was introduced in [7]. In case that the measure µ

is σ-finite and Y is Asplund, we prove that the mentioned condition is also sufficient,
obtaining a complete characterization. We deduce several consequences:

(1) (L1(µ), X) has the BPBP for bilinear forms for X finite dimensional and for a σ-finite
measure µ.

(2) (L1(µ), c0) has the BPBP for bilinear forms whenever µ is σ-finite.
(3) (L1(µ1), L1(µ2)) cannot have the BPBP for bilinear forms when µ1 and µ2 are arbi-

trary measures such that L1(µ1) and L1(µ2) are infinite dimensional.

In Section 3 we prove that the space of (continuous) n-homogeneous polynomials
P (nX;Y ) has the BPBP for every Banach space Y , when X is uniformly convex. Finally,
in Section 4 we provide classes of Banach spaces X and Y for which the pair (X∗, Y ∗)
does not have the BPBP for separately w∗-continuous bilinear forms, but the BPBP is
satisfied for the corresponding operators, which are w∗-w-continuous operators from X∗

into Y . Nevertheless, we show that every separately w∗-continuous bilinear form can be
approximated by norm attaining bilinear forms in the same class, i.e. this class satisfies
the Bishop-Phelps Theorem for bilinear forms.

2. The Bishop-Phelps-Bollobás Theorem for bilinear forms.

To be precise and to understand related results well, we recall the following definition.

Definition 2.1 ([6]). The pair (X, Y ) has the Bishop-Phelps-Bollobás property
for operators (BPBP for operators), if given ε > 0 there exist β(ε) > 0 and η(ε) > 0 with
limε→0+ β(ε) = 0 such that for any T ∈ SL(X,Y ), if x0 ∈ SX is such that ‖Tx0‖ > 1−η(ε),
then there exist a point u0 ∈ SX and an operator S ∈ SL(X,Y ) satisfying the following
conditions:

‖Su0‖ = 1, ‖u0 − x0‖ < β(ε) and ‖S − T‖ < ε.

In general, it is clear that (X, Y ∗) has the BPBP for operators if (X, Y ) has BPBP for
bilinear forms. As we already mentioned in the introduction, the pair (L1(µ), L∞([0, 1]))
satisfies the BPBP for operators, for every σ-finite measure µ [12]. However, the subset
of norm attaining bilinear forms on L1([0, 1])×L1([0, 1]) is not dense in the whole class,
i.e. this class does not satisfy the Bishop-Phelps Theorem for bilinear forms [20].

At the beginning of the section we will give a necessary isometric condition on a
Banach space Y in order that the pair (L1(µ), Y ) has the BPBP for bilinear forms.
Under this condition we will obtain later a characterization by assuming also some extra
isomorphic assumption on Y .
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Acosta et al [7] characterized the Banach spaces X such that the pair (`1, X) has the
BPBP for bilinear forms. They introduced the approximate hyperplane series property
(AHSP) for a pair (X, X∗), and showed that (`1, X) has the BPBP for bilinear forms if
and only if the pair (X, X∗) has the AHSP.

Definition 2.2 ([7]). For a Banach space X, the pair (X, X∗) has the approximate
hyperplane series property (AHSP) if for every ε > 0 there exist 0 < δ, η < ε such that
for every convex series

∑
n αn and for every sequence (x∗k) ⊂ SX∗ and x0 ∈ SX with

Re
∞∑

n=1

αnx∗n(x0) > 1− η

there exist a subset A ⊂ N, {z∗k : k ∈ A} ⊂ SX∗ and z0 ∈ SX satisfying

(1)
∑

k∈A αk > 1− δ,
(2) ‖z0 − x0‖ < ε and ‖z∗k − x∗k‖ < ε for all k ∈ A,
(3) z∗k(z0) = 1 for all k ∈ A.

It is easy to check that we may assume in Definition 2.2 that the sequence (x∗k) is
contained in BX∗ .

Next we show that if (L1(µ), Y ) has the BPBP for bilinear forms, then the pair
(Y, Y ∗) has the AHSP. The converse is not true in general. Further, we characterize the
BPBP for bilinear forms on (L1(µ), Y ) when Y is an Asplund space.

The following simple result will be useful.

Lemma 2.3 ([7, Lemma 3.5]). Let z be a complex number with |z| ≤ 1 and 0 <

r < 1. If Re z > r then |z − 1|2 < 2(1− r).

Theorem 2.4. Let Y be a Banach space and suppose that L1(µ) is infinite di-
mensional. If the pair (L1(µ), Y ) has the BPBP for bilinear forms, then (Y, Y ∗) has the
AHSP.

Proof. Given 0 < ε < 1, choose 0 < s < 1 so that 0 < 2(1− s) < ε2/9. Let η(ε)
and β(ε) be the positive numbers that appear in the definition of the BPBP for bilinear
forms. We next choose δ > 0 small enough such that 0 < δ < ε/3, β(δ)/(1 − s) < ε/3
and η(δ) + δ + 2β(δ) < ε2/18.

Let y0 ∈ SY , (y∗n) ⊂ SY ∗ and
∑

αn be a convex series satisfying

Re
∞∑

n=1

αny∗n(y0) > 1− η(δ).

Since L1(µ) is infinite dimensional, there is a disjoint sequence {En} of measurable
subsets of Ω such that 0 < µ(En) < ∞ for all n. Let

x∗n(f) :=
∫

En

f dµ, (f ∈ L1(µ)),
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for each n ∈ N. Clearly we have that
∑∞

n=1 |x∗n(f)| = ‖fχS∞
k=1 Ek

‖1 ≤ ‖f‖1 for every
f ∈ L1(µ).

We define the continuous bilinear form A ∈ SL(2L1(µ)×Y ) by

A(f, y) =
∞∑

n=1

x∗n(f)y∗n(y) (f ∈ L1(µ), y ∈ Y ).

Clearly ‖A‖ = 1. Let f0 =
∑∞

n=1 αn(χEn
/µ(En)) ∈ SL1(µ). We can see that

Re A(f0, y0) > 1− η(δ).

Since the pair (L1(µ), Y ) has the BPBP for bilinear forms, there exist a bilinear form
B ∈ SL(2L1(µ)×Y ) and (g, z0) ∈ SL1(µ) × SY such that

‖B‖ = |B(g, z0)| = 1, ‖B −A‖ < δ, ‖g − f0‖ < β(δ) and ‖z0 − y0‖ < β(δ). (2.1)

Thus

|B(g, z0)−A(f0, y0)|
≤ |B(g, z0)−A(g, z0)|+ |A(g, z0)−A(g, y0)|+ |A(g, y0)−A(f0, y0)|
≤ ‖B −A‖‖g‖‖z0‖+ ‖A‖‖g‖‖z0 − y0‖+ ‖A‖‖g − f0‖‖y0‖
< δ + 2β(δ).

Therefore

Re B(g, z0) ≥ Re A(f0, z0)− |B(g, z0)−A(f0, y0)| > 1− η(δ)− δ − 2β(δ) > 1− ε2

18
,

and by Lemma 2.3 we have that

|1−B(g, z0)| < ε

3
. (2.2)

Since we know that
∑∞

n=1 |x∗n(g)| ≤ ‖g‖ ≤ 1, and

β(δ) > ‖f0 − g‖ ≥
∞∑

n=1

∫

En

|f0(t)− g(t)| dµ(t)

=
∞∑

n=1

∫

En

∣∣∣∣
αn

µ(En)
− g(t)

∣∣∣∣dµ(t) ≥
∞∑

n=1

∣∣αn − Re
(
x∗n(g)

)∣∣, (2.3)

we obtain

∞∑
n=1

Re
(
x∗n(g)

)
> 1− β(δ).
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Defining C = {n ∈ N : Re(x∗n(g)) > sx∗n(|g|)}, we have that

1− β(δ) <
∞∑

n=1

Re
(
x∗n(g)

)
=

∑

n∈C

Re
(
x∗n(g)

)
+

∑

n∈N\C
Re

(
x∗n(g)

)

≤
∑

n∈C

Re
(
x∗n(g)

)
+ s

∑

n∈N\C
x∗n(|g|)

≤
∑

n∈C

Re
(
x∗n(g)

)
+ s

(
1−

∑

n∈C

x∗n(|g|)
)

≤
∑

n∈C

Re
(
x∗n(g)

)
+ s

(
1−

∑

n∈C

Re
(
x∗n(g)

))
,

so

∑

n∈C

Re
(
x∗n(g)

)
> 1− β(δ)

1− s
.

From this, we can see that C 6= ∅ and x∗n(g) 6= 0 for all n ∈ C.
Therefore, it follows from (2.3) that

∑

n∈C

αn ≥
∑

n∈C

Re
(
x∗n(g)

)− β(δ)

> 1− β(δ)
1− s

− β(δ) = 1− γ(δ),

where we take γ(δ) := β(δ) + β(δ)/(1− s) < ε.
Again by Lemma 2.3 we have for all n ∈ C that

∣∣∣∣1−
x∗n(g)
x∗n(|g|)

∣∣∣∣
2

< 2(1− s) <
ε2

9
. (2.4)

By (2.1) there is a real number t such that B(g, z0) = eit. For each n ∈ N we set
z∗n = e−itB(gχEn

/x∗n(|g|), ·) if x∗n(|g|) 6= 0, and z∗n = 0 otherwise. Clearly it is satisfied
that z∗n ∈ BY ∗ for every n ∈ N. We have

1 = e−itB(g, z0) = e−itB

(
gχΩ\(S∞n=1 En) +

∞∑
n=1

gχEn
, z0

)

= e−itB
(
gχΩ\(S∞n=1 En), z0

)
+

∞∑
n=1

x∗n(|g|)z∗n(z0)

≤ ∥∥gχΩ\(S∞n=1 En)

∥∥
1

+
∞∑

n=1

x∗n(|g|)|z∗n(z0)|
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≤
∥∥gχΩ\(S∞n=1 En)

∥∥
1

+
∞∑

n=1

x∗n(|g|) ≤ 1.

Thus, z∗n(z0) = 1 and ‖z∗n‖ = 1 for every n with x∗n(|g|) 6= 0. Since A(gχEn
/x∗n(g), ·) = y∗n

for every n ∈ C, we have

∥∥∥∥eitz∗n −
x∗n(g)
x∗n(|g|)y∗n

∥∥∥∥ =
∥∥∥∥B

(
gχEn

x∗n(|g|) , ·
)
−A

(
gχEn

x∗n(|g|) , ·
)∥∥∥∥ ≤ ‖B −A‖ < δ <

ε

3
.

Therefore, in view of (2.2) and (2.4), for every n ∈ C it is satisfied that

∥∥z∗n − y∗n
∥∥ ≤ ∥∥z∗n − eitz∗n

∥∥ +
∥∥∥∥eitz∗n −

x∗n(g)
x∗n(|g|)y∗n

∥∥∥∥ +
∥∥∥∥

x∗n(g)
x∗n(|g|)y∗n − y∗n

∥∥∥∥ <
ε

3
+

ε

3
+

ε

3
= ε,

which implies that (Y, Y ∗) has the AHSP. ¤

Lemma 2.5 ([7, Lemma 3.2]). Let {cn} be a sequence of complex numbers with
|cn| ≤ 1 for every n, let η > 0 and {αn} be a sequence of nonnegative real numbers
such that

∑∞
n=1 αn ≤ 1 and assume also that Re

∑∞
n=1 αncn > 1 − η. Then for every

0 < r < 1, the set A := {i ∈ N : Re ci > r} satisfies the estimate

∑

i∈A

αi > 1− η

1− r
.

If L1(µ) is finite dimensional and N = dimL1(µ), by looking carefully the proof of
Theorem 2.4 and [7, Theorem 3.6], it can be obtained that the pair (L1(µ), Y ) has the
BPBP for bilinear forms if and only if (Y, Y ∗) has the AHSP only for finite sums of N

elements (instead of any convex series). In case that L1(µ) is infinite dimensional we
will prove a characterization for Asplund spaces Y of the pairs (L1(µ), Y ) satisfying the
BPBP for bilinear forms under a mild assumption on the measure µ. The argument used
to prove this characterization is inspired by the proof of [22, Theorem 2.2].

Theorem 2.6. Let µ be a σ-finite measure such that L1(µ) is infinite dimensional
and Y an Asplund space. Then the pair (L1(µ), Y ) has the BPBP for bilinear forms if
and only if (Y, Y ∗) has the AHSP.

Proof. It is enough to prove that if Y is an Asplund space such that (Y, Y ∗)
satisfies the AHSP, then the pair (L1(µ), Y ) has the BPBP for bilinear forms. In order
to do this, we will denote by (Ω,A, µ) the measure space.

Since (Y, Y ∗) does have the AHSP, given 0 < ε < 1, there are 0 < δ, η < ε satisfying
the conditions in Definition 2.2.

We choose 0 < b < min{η, 2δ} and take a = bε/8. Given Φ ∈ SL(2L1(µ)×Y ), assume
that (f0, y0) ∈ SL1(µ) × SY satisfies that |Φ(f0, y0)| > 1− a. By using some appropriate
linear surjective isometry (say φ) on L1(µ) and changing the bilinear form Φ by the
mapping (f, y) 7→ Φ(φ−1(f), y) we can assume that f0(t) ≥ 0 for every t ∈ Ω. By
rotating also the bilinear form Φ, if necessary, we can also assume that Φ(f0, y0) =
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|Φ(f0, y0)| > 1 − a. Let T denote the operator from L1(µ) to Y ∗ associated to the
bilinear form Φ. Hence we know that T ∈ SL(L1(µ),Y ∗) and it is also satisfied that
T (f0)(y0) = Φ(f0, y0) = |Φ(f0, y0)| > 1− a.

By the denseness of the simple functions in L1(µ), there is a simple positive function
s0 ∈ SL1(µ) satisfying

‖s0 − f0‖1 < ε and also Re T (s0)(y0) = Re Φ(s0, y0) > 1− a. (2.5)

So there are a positive integer N , a subset of positive real numbers {αi : i ≤ N}
and a family of pairwise disjoint subsets {Ai : i ≤ N} ⊂ A satisfying 0 < µ(Ai) < ∞ for
all i such that

s0 =
N∑

k=1

αk
χAk

µ(Ak)
,

N∑

k=1

αk = 1.

Since Y is an Asplund space, Y ∗ has the Radon-Nikodým property. Also µ is σ-finite,
so every operator from L1(µ) into Y ∗ can be represented by a function in L∞(µ, Y ∗) (see
[25, Theorem 5, p. 63, Corollary 3, p. 42]). Hence there is h ∈ SL∞(µ,Y ∗) such that

T (f) =
∫

Ω

hf dµ, ∀f ∈ L1(µ).

Since the range of h is essentially separable, up to an arbitrarily small perturbation, we
can also assume that there are a sequence {Bn} of pairwise disjoint measurable subsets
of Ω such that

⋃
n∈NBn = Ω and functionals {y∗n : n ∈ N} ⊂ BY ∗ such that

h =
∞∑

n=1

χBn
y∗n.

If one considers the family of sets {Ai ∩Bn : 1 ≤ i ≤ N, n ∈ N, µ(Ai ∩Bn) > 0} ∪ {Bn ∩
(Ω\⋃

k≤N Ak) : n ∈ N}, after writing the functions s0 and h in terms of the above sets
and indexing them, we may assume that Ak = Bk for 1 ≤ k ≤ N .

We denote by E the set given by

E := {k ≤ N : Re y∗k(y0) > 1− b}.

From the assumption (2.5) we have that

1− a < Re T (s0)(y0)

= Re
( ∫

Ω

hs0 dµ

)
(y0)

= Re
( N∑

k=1

∫

Ak

s0(t)y∗k(y0) dµ

)
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= Re
N∑

k=1

αky∗k(y0).

By using Lemma 2.5 for η = a, r = 1− b, we obtain that

‖s0χAE
‖1 =

∑

k∈E

αk > 1− a

b
= 1− ε

8
> 0 and so ‖s0χΩ\AE

‖1 <
ε

8
, (2.6)

where AE =
⋃

k∈E Ak.
We denote by α :=

∑
k∈E αk. We have that

Re
∑

k∈E

αk

α
y∗k(y0) > (1− b)

∑

k∈E

αk

α
= 1− b > 1− η.

By using that (Y, Y ∗) has the AHSP, there are C ⊂ E, {z∗k : k ∈ C} ⊂ SY ∗ and
z0 ∈ SY satisfying

∑

k∈C

αk

α
> 1− δ, ‖z0 − y0‖ < ε, ‖z∗k − y∗k‖ < ε and z∗k(z0) = 1 ∀k ∈ C. (2.7)

Consider the function h1 defined by

h1 =
∑

k∈C

χAk
z∗k +

∑

k∈N\C
χBk

y∗k.

Since h1 ∈ BL∞(µ,Y ∗), this mapping induces an operator S ∈ BL(L1(µ),Y ∗) that can be
identified with a continuous bilinear form Ψ ∈ BL(2L1(µ)×Y ).

In view of (2.7) we also obtain that

‖Ψ− Φ‖ = ‖S − T‖ = ‖h1 − h‖∞
= max

k∈C
‖z∗k − y∗k‖ < ε.

By using again (2.7) and (2.6), the measurable subset AC :=
⋃

k∈C Ak satisfies

‖s0χAC
‖1 =

∑

k∈C

αk > (1− δ)α > (1− δ)
(

1− ε

8

)
> 0. (2.8)

We define g0 := s0χAC
/‖s0χAC

‖1 ∈ SL1(µ). Then we obtain that

‖g0 − f0‖1 ≤ ‖g0 − s0‖1 + ‖s0 − f0‖1

<

∥∥∥∥
s0χAC

‖s0χAC
‖1 − s0

∥∥∥∥
1

+ ε (by (2.5))
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≤
∥∥∥∥

s0χAC

‖s0χAC
‖1 − s0χAC

∥∥∥∥
1

+ ‖s0χΩ\AC
‖1 + ε

= 1− ‖s0χAC
‖1 + ‖s0χΩ\AC

‖1 + ε

< 2
(

1− (1− δ)
(

1− ε

8

))
+ ε (by (2.8))

= 2δ − δε

4
+

5ε

4
<

13
4

ε.

Let us notice that β(ε) := (13/4)ε satisfies limt→0 β(t) = 0.
Finally we have that

Ψ(g0, z0) = S(g0)(z0) =
( ∫

Ω

h1g0 dµ

)
(z0) =

( ∫

AC

h1g0 dµ

)
(z0)

=
1

‖s0χAC
‖1

∑

k∈C

αkz∗k(z0) =
1

‖s0χAC
‖1

∑

k∈C

αk = 1.

We proved that the pair (L1(µ), Y ) does have the BPBP for bilinear forms with
β(ε) = (13/4)ε. ¤

Acosta et al [7] showed that the pair (X, X∗) has the AHSP in the following cases:

(1) X is finite dimensional.
(2) X is uniformly smooth.
(3) X is C0(Ω), where Ω is any Hausdorff and locally compact topological space (either

real or complex case).
(4) X is K(H), the space of compact operators on a Hilbert space H.

They also showed the following facts:

(1) (L1(µ), L1(µ)∗) fails to have the AHSP if µ is any measure such that L1(µ) is infinite
dimensional.

(2) If X is smooth and (X, X∗) has the AHSP, then X is uniformly smooth.

From these we deduce the following result:

Corollary 2.7. Let µ be a σ-finite measure.

(1) Assume that X is a finite dimensional normed space. Then (L1(µ), X) has the BPBP
for bilinear forms. As a consequence, (X, L∞(µ)) has the BPBP for operators.

(2) (L1(µ), c0) has the BPBP for bilinear forms, so (c0, L∞(µ)) and (L1(µ), `1) have the
BPBP for operators.

(3) Assume that dimL1(µ) = ∞ and X is a smooth Banach space. Then (L1(µ), X) has
the BPBP for bilinear forms if and only if X is uniformly smooth.

(4) If µ1 and µ2 are measures such that L1(µ1) and L1(µ2) are infinite dimensional
spaces, the pair (L1(µ1), L1(µ2)) fails the BPBP for bilinear forms.

The statement (4) in the previous corollary generalizes the fact that (`1, `1) does
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not have the BPBP for bilinear forms [23]. It is worth to remark that Y. S. Choi [20]
proved that there is no Bishop-Phelps Theorem for bilinear forms on L1[0, 1]× L1[0, 1].
Afterwards Saleh [38] showed that the set of norm attaining bilinear forms on L1(µ) is
dense in the set of all bounded bilinear forms on L1(µ) if and only if µ is purely atomic
(see also [37]).

Related to the assertions (1) and (2) above, it is also worthwhile to notice that Aron,
Cascales and Kozhushkina [11] studied the BPBP for operators for the case Y = C0(L)
(where L is a locally compact Hausdorff space) and showed that the pair (X, C0(L))
has the BPBP if X is Asplund, and so (c0, C0(L)) has the BPBP for operators. We also
remark that (c0, Y ) has the BPBP for operators for every uniformly convex space Y [32].

3. The Bishop-Phelps-Bollobás Theorem for polynomials.

Let X1, . . . , Xn and Y be either real or complex Banach spaces. As usual, L(nX1 ×
· · · × Xn;Y ) will be the subset of (continuous) n-linear mappings from X1 × · · · × Xn

into Y . We will say that the space L(nX1× · · ·×Xn;Y ) has the Bishop-Phelps-Bollobás
property (BPBP) if the following condition is satisfied: Given ε > 0 there exist β(ε) > 0
and η(ε) > 0 with limε→0+ β(ε) = 0 such that if ‖A(x1, . . . , xn)‖ > 1 − η(ε) for A ∈
SL(nX1×···×Xn;Y ) and (x1, . . . , xn) ∈ SX1 × · · · × SXn , then there exist both an n-linear
mapping B ∈ SL(nX1×···×Xn;Y ) and (u1, . . . , un) ∈ SX1 × · · · × SXn

such that

‖B(u1, . . . , un)‖ = 1, ‖B −A‖ < ε, and ‖ui − xi‖ < β(ε) for all 1 ≤ i ≤ n.

We say that P (nX;Y ) has the Bishop-Phelps-Bollobás property (BPBP) when the
following condition is satisfied: Given ε > 0 there exist β(ε) > 0 and η(ε) > 0 with
limε→0+ β(ε) = 0 such that if ‖Px0‖ > 1 − η(ε) for P ∈ SP (nX;Y ) and x0 ∈ SX , then
there exist both Q ∈ SP (nX;Y ) and u0 ∈ SX such that

‖Qu0‖ = 1, ‖u0 − x0‖ < β(ε) and ‖Q− P‖ < ε.

In [7], [33] it was shown that if X is uniformly convex, the pair (X, Y ) has the
BPBP for operators for any Banach space Y, and the arguments of the proofs in those
papers are different. In fact, in [7] it was shown that if X1, . . . , Xn are uniformly convex,
then L(nX1 × · · · × Xn;Y ) has the Bishop-Phelps-Bollobás property for every Banach
space Y . Modifying the argument in [33] we will also show this result for the space of
homogeneous polynomials.

Theorem 3.1. Let X be a uniformly convex Banach space. Then P (nX;Y ) has
the BPBP for every Banach space Y .

Proof. We will denote by δ the modulus of convexity of the space X. Given
0 < ε < 1, P ∈ SP (nX;Y ) and x1 ∈ SX satisfying that

‖Px1‖ > 1− ε

24
δ

(
ε

2

)
,
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we can choose x∗1 ∈ SX∗ and y∗1 ∈ SY ∗ satisfying x∗1(x1) = 1 and

|y∗1(Px1)| > 1− ε

24
δ

(
ε

2

)
.

We take P1 := P and define a sequence (xk, x∗k, y∗k, Pk)k in SX × SX∗ × SY ∗ × SP (nX;Y )

inductively. We already have (x1, x
∗
1, y

∗
1 , P1). If we assume that (xk, x∗k, y∗k, Pk) was

defined and it satisfies that

x∗k(xk) = 1, |y∗k(Pkxk)| > 1− ε

2k+3
δ

(
ε

2k

)
.

Set

P̃k+1(x) := Pk(x) +
ε

2k+2
x∗k(x)nPk(xk) (x ∈ X).

Clearly P̃k+1 ∈ P (nX;Y ) and we also have that

∥∥P̃k+1

∥∥ ≥
∣∣y∗k(P̃k+1xk)

∣∣

=
∣∣y∗k(Pkxk)

∣∣
(

1 +
ε

2k+2

)

>

(
1− ε

2k+3
δ

(
ε

2k

))(
1 +

ε

2k+2

)

≥
(

1− ε

2k+3

)(
1 +

ε

2k+2

)

> 1.

In view of the previous estimate and the definition of P̃k+1 we clearly have that

1 <
∥∥P̃k+1

∥∥ ≤ 1 +
ε

2k+2
. (3.1)

We can write Pk+1 := P̃k+1/‖P̃k+1‖ and choose xk+1 ∈ SX , x∗k+1 ∈ SX∗ and
y∗k+1 ∈ SY ∗ satisfying the following conditions

∣∣y∗k+1(P̃k+1xk+1)
∣∣ >

∥∥P̃k+1

∥∥− ε

2k+4
δ

(
ε

2k+1

)
,

Re x∗k(xk+1) = |x∗k(xk+1)| and x∗k+1(xk+1) = 1.

It follows that

|y∗k+1(Pk+1xk+1)| > 1− ε

2k+4
δ

(
ε

2k+1

)
.
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Hence

‖Pk+1 − Pk‖ ≤
∥∥Pk+1 − P̃k+1

∥∥ +
∥∥P̃k+1 − Pk

∥∥

≤
∥∥∥∥

P̃k+1

‖P̃k+1‖
− P̃k+1

∥∥∥∥ +
ε

2k+2

=
∣∣1− ‖P̃k+1‖

∣∣ +
ε

2k+2
<

ε

2k+1
(by (3.1)).

As a consequence, (Pk)k is a Cauchy sequence and so it converges to some P∞ ∈ SP (nX;Y )

that satisfies ‖P∞ − P‖ < ε.
Now we will show that (xk) is a Cauchy sequence. In order to do this let us notice

that

∥∥P̃k+1

∥∥− ε

2k+4
δ

(
ε

2k+1

)
<

∣∣y∗k+1

(
P̃k+1xk+1

)∣∣

=
∣∣∣∣y∗k+1(Pkxk+1) +

ε

2k+2
x∗k(xk+1)ny∗k+1(Pkxk)

∣∣∣∣

≤ 1 +
ε

2k+2

∣∣x∗k(xk+1)n
∣∣

= 1 +
ε

2k+2

(
Re x∗k(xk+1)

)n
.

On the other hand, we have the following lower estimate

∥∥P̃k+1

∥∥ ≥
∣∣y∗k

(
P̃k+1xk

)∣∣

=
∣∣∣∣y∗k(Pkxk) +

ε

2k+2
x∗k(xk)n · y∗k(Pkxk)

∣∣∣∣

=
(

1 +
ε

2k+2

)∣∣y∗k(Pkxk)
∣∣

>

(
1 +

ε

2k+2

)(
1− ε

2k+3
δ

(
ε

2k

))
.

From the previous upper and lower estimates it follows that

1− ε

2k+3
δ

(
ε

2k

)
+

ε

2k+2
− ε2

22k+5
δ

(
ε

2k

)
< 1 +

ε

2k+2

(
Re x∗k(xk+1)

)n +
ε

2k+4
δ

(
ε

2k+1

)
,

that is,

1 ≥ (
Re x∗k(xk+1)

)n
> 1− 1

2
δ

(
ε

2k

)
− 1

22
δ

(
ε

2k+1

)
− 1

2k+3
δ

(
ε

2k

)

> 1− δ

(
ε

2k

)
.
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Since Re x∗k(xk+1) is a nonnegative real number, we obtain that

∥∥∥∥
xk + xk+1

2

∥∥∥∥ ≥ Re
(

x∗k(xk + xk+1)
2

)

≥ 1− 1
2
δ

(
ε

2k

)
> 1− δ

(
ε

2k

)
.

This implies that ‖xk+1 − xk‖ < ε/2k and so (xk)k is a Cauchy sequence in SX , that is,
converges to some element x∞ ∈ SX that satisfies ‖x∞ − x1‖ < ε.

Since limk ‖Pkxk‖ = 1, by taking into account that both (Pk)k and (xk)k converge
in norm, it follows that ‖P∞x∞‖ = 1. ¤

Let us notice that a similar argument also gives the analogous result for n-linear
mappings defined on a product of uniformly convex spaces (see also [7, Theorem 2.2]).
However, we do not know if the analogous result holds for symmetric n-linear forms on
a uniformly convex space.

Now we recall an isometric condition, called property β that was introduced by
Lindenstrauss [34].

Definition 3.2. A Banach space Y is said to have property β (of Lindenstrauss)
if there are two sets {yi : i ∈ I} ⊂ SY , {y∗i : i ∈ I} ⊂ SY ∗ and 0 ≤ ρ < 1 such that the
following conditions hold:

(1) y∗i (yi) = 1, ∀i ∈ I.
(2) |y∗i (yj)| ≤ ρ < 1 if i, j ∈ I, i 6= j.
(3) ‖y‖ = supi∈I{|y∗i (y)|}, for all y ∈ Y .

The spaces c0 and `∞ satisfy the above property. In both cases ρ = 0.
Given a family F of mappings defined on a Banach space and bounded on its unit

ball, by NA(F) we will denote the subset of norm attaining elements of F . In case that
Y has property β, the following results are shown in [21]:

(1) If NA(L(nX)) is dense in L(nX), then NA(L(nX;Y )) is dense in L(nX;Y ).
(2) If NA(Ls(nX)) is dense in Ls(nX), then NA(Ls(nX;Y )) is dense in Ls(nX;Y ),

where Ls(nX;Y ) stands for the symmetric n-linear mappings from X into Y .
(3) If NA(P (nX)) is dense in P (nX), then NA(P (nX;Y )) is dense in P (nX;Y ).

In what follows we can show similar results for the Bishop-Phelps-Bollobás property.

Proposition 3.3. Suppose that the Banach space Y has property β.

(1) If L(nX1 × · · · ×Xn) has the BPBP, then L(nX1 × · · · ×Xn;Y ) has the BPBP.
(2) If P (nX) has the BPBP, then P (nX;Y ) has the BPBP.

Proof. The proofs of parts (1) and (2) are almost the same, hence we show only
the proof of (1). Assume that L(nX1 × · · · × Xn) has the BPBP. Given 0 < ε < 1/2,
let η(ε) and β(ε) be the functions in the definition of the BPBP. Take 0 < ε′ < ε(1− ρ)
and put η′(ε) = min{η(ε′), ((1− ρ)ε− ρε′)/(1 + ε)}, where ρ is the positive real number
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satisfying Definition 3.2.
Let A ∈ SL(nX1×···×Xn;Y ) and (x0

1, . . . , x
0
n) ∈ ∏n

j=1 SXj
satisfying that

∥∥A(x0
1, . . . , x

0
n)

∥∥ > 1− η′(ε).

Choose one of the functionals y∗i0 appearing in Definition 3.2 so that

∣∣y∗i0A(x0
1, . . . , x

0
n)

∣∣ > 1− η′(ε) ≥ 1− η(ε′).

By the assumption, there exist ϕ ∈ L(nX1 × · · · ×Xn) and (x̃1, . . . , x̃n) satisfying

1− η′(ε) ≤ ‖ϕ‖ ≤ 1, ‖y∗i0A− ϕ‖ < ε′,

sup
j

∥∥x̃j − x0
j

∥∥ < β(ε′) and |ϕ(x̃1, . . . , x̃n)| = ‖ϕ‖.

Define

B(x1, . . . , xn) = A(x1, . . . , xn) +
[
((1 + ε)ϕ− y∗i0A)(x1, . . . , xn)

]
yi0 ,

for all (x1, . . . , xn) ∈ X1 × · · · ×Xn. It is clear that B ∈ L(nX1 × · · · ×Xn;Y ). We can
see that

‖B −A‖ ≤ ε‖ϕ‖+ ‖y∗i0A− ϕ‖ < ε + ε′ < 1.

Hence B 6= 0 and
∥∥∥∥

B

‖B‖ −A
∥∥ < 4ε.

Moreover, we obtain for every i 6= i0

‖y∗i B‖ ≤ ‖A‖+ |y∗i (yi0)|
(
ε‖ϕ‖+ ‖y∗i0A− ϕ‖)

< 1 + ρ(ε + ε′),

and

‖y∗i0B‖ = (1 + ε)‖ϕ‖ ≥ (1 + ε)(1− η′(ε))

≥ 1 + ρ(ε + ε′).

The following inequality implies that B attains its norm at (x̃1, . . . , x̃n)

‖B‖ = ‖y∗i0B‖ = (1 + ε)‖ϕ‖ =
∣∣(1 + ε)ϕ(x̃1, . . . , x̃n)

∣∣

=
∣∣y∗i0B(x̃1, . . . , x̃n)

∣∣ ≤ ‖B(x̃1, . . . , x̃n)‖
≤ ‖B‖.
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Hence, η′(ε/4) and β(ε′/4) are the functions that we have found. ¤

Remark 3.4. An analogous argument used in the above proof also works for the
symmetric case. However we do not know of any infinite dimensional Banach space X

such that the Bishop-Phelps-Bollobás property is satisfied for the symmetric n-linear
forms on X.

4. Results for bilinear forms that are separately w∗-continuous on the
product of dual Banach spaces.

In this section we will provide classes of Banach spaces X and Y for which the pair
(X∗, Y ∗) does not have the BPBP for separately w∗-continuous bilinear forms, though the
BPBP is satisfied for the corresponding operators, which are w∗-w-continuous operators
from X∗ into Y . Nevertheless, we will show that every separately w∗-continuous bilinear
form can be approximated by norm attaining bilinear forms in the same class.

For x∗ ∈ SX∗ and 0 < ε < 1, the set of the form

S(A, x∗, ε) =
{

x ∈ BX : Re x∗(x) > sup
x∈A

Re x∗(x)− ε
}

is called a slice of A ⊂ X.
The following technical result appears implicitly in [15, Proposition 3.1, Claim]. We

isolate the statement and include its proof.

Lemma 4.1. Let A be a subset of X∗ such that BX∗ = cow∗(A), and let 0 < ε < 1
and x ∈ SX . For every x∗ ∈ S(BX∗ , x, ε2), there exists z∗ ∈ co(S(A, x, ε)) such that
‖z∗ − x∗‖ ≤ 3ε.

Proof. Fix 0 < ε < 1 and x ∈ SX . First we will show that for every x∗ ∈
S(co(A), x, ε2), there is y∗ ∈ co(S(A, x, ε)) such that ‖y∗ − x∗‖ ≤ 2ε.

If x∗ ∈ S(co(A), x, ε2), there exist n ∈ N, {a∗i : 1 ≤ i ≤ n} ⊂ A and {ti : 1 ≤ i ≤
n} ⊂ [0, 1] with

∑n
i=1 ti = 1 such that x∗ =

∑n
i=1 tia

∗
i . Now let

B := {i ≤ n : Re a∗i (x) > 1− ε}, C := {1, . . . , n}\B.

By Lemma 2.5 we have that

r :=
∑

i∈B

ti > 1− ε2

1− (1− ε)
= 1− ε.

If we define y∗ := (1/r)
∑

i∈B tia
∗
i , then y∗ ∈ co(S(A, x, ε)) and

‖y∗ − x∗‖ =
∥∥∥∥

1
r

∑

i∈B

tia
∗
i −

n∑

i=1

tia
∗
i

∥∥∥∥

≤
(

1
r
− 1

)∥∥∥∥
∑

i∈B

tia
∗
i

∥∥∥∥ +
∥∥∥∥

∑

i∈C

tia
∗
i

∥∥∥∥
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≤ 2(1− r) ≤ 2ε.

Now let x∗ ∈ S(BX∗ , x, ε2). Since co(A) is w∗-dense in BX∗ , there is a net {x∗λ}λ∈Λ

in S(co(A), x, ε2) such that {x∗λ}λ∈Λ
w∗→ x∗. We know that for each λ, there is y∗λ ∈

co(S(A, x, ε)) such that ‖y∗λ − x∗λ‖ ≤ 2ε. Now, let y∗ ∈ BX∗ be a w∗-cluster point
of the net {y∗λ}λ∈Λ. Clearly y∗ ∈ cow∗(S(A, x, ε)). Since the dual norm is w∗-lower
semi-continuous, we conclude that ‖y∗ − x∗‖ ≤ lim infλ ‖y∗λ − x∗λ‖ ≤ 2ε. By using again
the w∗-lower semicontinuity of the dual norm, there is z∗ ∈ co(S(A, x, ε)) such that
‖z∗ − x∗‖ ≤ 3ε. ¤

If X and Y are Banach spaces, we will denote by Lw∗(2X∗ × Y ∗) the Banach space
of all separately w∗-continuous bilinear forms on the product X∗ × Y ∗.

Proposition 4.2. Let X and Y be Banach spaces. Then the set of norm attaining
bilinear forms in Lw∗(2X∗ × Y ∗) is dense.

Proof. Let A ∈ Lw∗(2X∗ × Y ∗) and 0 < ε < 1/3 be given. Since the subset
of norm attaining bilinear forms is stable under product by scalars, we may assume
that ‖A‖ = 1. We choose a decreasing sequence {εk} of positive numbers satisfying the
following conditions:

2
∞∑

i=1

εi < ε, 2
∞∑

i=k+1

εi < ε2
k, and εk < 1/10k, ∀k ∈ N.

We next construct inductively a sequence (Ak)∞k=1 ⊂ Lw∗(2X∗ × Y ∗) as follows.
Take A1 = A; if we assume that we have already defined Ak ∈ Lw∗(2X∗ × Y ∗), we
choose functionals x∗k ∈ SX∗ and y∗k ∈ SY ∗ , satisfying

A1 = A, Re Ak(x∗k, y∗k) = |Ak(x∗k, y∗k)| ≥ ‖Ak‖ − ε2
k

and we define

Ak+1(x∗, y∗) := Ak(x∗, y∗) + εkAk(x∗, y∗k)Ak(x∗k, y∗), (x∗ ∈ X∗, y∗ ∈ Y ∗).

Clearly we construct by this procedure a sequence (Ak) in Lw∗(2X∗ × Y ∗). In [14,
Theorem 2.2(2)] it is proved that the sequence (Aj) converges in norm to a bilinear form
B satisfying ‖B −A‖ ≤ ε and also

∣∣B(x∗k, y∗j )
∣∣ ≥ ‖B‖ − 1

j
, ∀k > j.

It is also clear in this case that B is w∗-separately continuous, since it is the uniform
limit on bounded sets of X∗×Y ∗ of a sequence in Lw∗(2X∗×Y ∗). By Banach-Alaoglu’s
theorem there is a w∗-cluster point x∗0 ∈ BX∗ of the sequence (x∗k). Applying that B is
w∗-separately continuous, we obtain
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∣∣B(x∗0, y
∗
j )

∣∣ ≥ ‖B‖ − 1
j
, ∀j ∈ N.

An analogous argument shows that there exists y∗0 ∈ BY ∗ such that

|B(x∗0, y
∗
0)| = ‖B‖,

and so B attains its norm. ¤

If X and Y are Banach spaces, we denote by Lw∗-w(X∗, Y ) the Banach space of
all w∗-w-continuous linear operators from X∗ into Y , which can be identified with
Lw∗(2X∗×Y ∗). Actually, given ϕ ∈ Lw∗(2X∗×Y ∗), we define an operator T : X∗ → Y ∗∗

by T (x∗)(y∗) := ϕ(x∗, y∗). Since ϕ is separately w∗-continuous, for every x∗ ∈ X∗,
T (x∗) is a w∗-continuous functional on Y ∗, hence T (x∗) ∈ Y . Again by using that ϕ is
separately w∗-continuous on the first variable, it follows that T is w∗-w-continuous. Con-
versely, given T ∈ Lw∗-w(X∗, Y ), we define ϕ ∈ Lw∗(2X∗×Y ∗) by ϕ(x∗, y∗) := y∗(Tx∗).
Since T is w∗-w-continuous, ϕ is separately w∗-continuous.

Since an operator attains its norm whenever the corresponding bilinear form does,
we obtain the next Bishop-Phelps result for operators, that was already proved by Manuel
Ruiz Galán in a similar way.

Corollary 4.3. Let X and Y be Banach spaces. Then the set of norm attaining
operators in Lw∗-w(X∗, Y ) is dense. In fact, we have that an operator in Lw∗-w(X∗, Y )
attains its norm if and only if the associate separately w∗-continuous bilinear form attains
its norm.

The next result improves the Bishop-Phelps result stated above for Lw∗-w(X∗, Y )
under some additional assumption on Y .

Proposition 4.4. Let X and Y be Banach spaces, and assume that Y has property
β. If T ∈ SLw∗-w(X∗,Y ), ε > 0, and x∗0 ∈ SX∗ satisfy ‖T (x∗0)‖ > 1 − ε2/4, then for each
real number η such that η > (ρ/(1−ρ))(ε+(ε2/4)), there are S ∈ Lw∗-w(X∗, Y ), z∗0 ∈ SX∗

such that

‖S(z∗0)‖ = ‖S‖, ‖z∗0 − x∗0‖ < ε, and ‖S − T‖ < η + ε +
ε2

4
.

Proof. Since Y has property β, there is α0 ∈ Λ such that |y∗α0
(T (x∗0))| > 1 −

(ε2/4). Since T is w∗-w-continuous, we have that T ∗(y∗α0
) ∈ X. By the Bishop-Phelps-

Bollobás Theorem, there exist z∗0 ∈ SX∗ and z0 ∈ SX such that |z∗0(z0)| = 1, ‖z∗0−x∗0‖ < ε

and ‖z0− (T ∗(y∗α0
)/‖T ∗(y∗α0

)‖)‖ < ε. For a real number η satisfying η > (ρ/(1− ρ))(ε +
(ε2/4)), we define an operator S ∈ L(X∗, Y ) by

S(x∗) = T (x∗) +
(
(1 + η)x∗(z0)− x∗(T ∗(y∗α0

))
)
yα0 , (x∗ ∈ X∗),

that is clearly w∗-w-continuous. The proof can be finished if one follows the same steps
as in the proof of [6, Theorem 2.2]. ¤
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However, we will show that in general the BPBP is not satisfied for the space of
w∗-separately continuous bilinear forms.

Theorem 4.5. Let X and Y be infinite dimensional Banach spaces having prop-
erty β with ρ = 0. Then the pair (X∗, Y ∗) does not satisfy the Bishop-Phelps-Bollobás
property for separately w∗-continuous bilinear forms.

Proof. We will argue by contradiction, so assume that the pair (X∗, Y ∗) satisfies
the Bishop-Phelps-Bollobás property for separately w∗-continuous bilinear forms. Given
ε > 0, there are η(ε) > 0 and β(ε) > 0 with limε→0 β(ε) = 0 such that for all A ∈
SLw∗ (2X∗×Y ∗) and x∗0 ∈ SX∗ , y∗0 ∈ SY ∗ with |A(x∗0, y

∗
0)| > 1− η(ε), there exist elements

u∗0 ∈ SX∗ , v∗0 ∈ SY ∗ , and B ∈ SLw∗ (2X∗×Y ∗) satisfying the following conditions:

|B(u∗0, v
∗
0)| = 1, ‖u∗0 − x∗0‖ < β(ε), ‖v∗0 − y∗0‖ < β(ε) and ‖B −A‖ < ε.

We fix ε ∈ (0, 1) such that β(ε) < 1/2, and n ∈ N such that 1/2n2 < η(ε). Since the
Banach spaces X and Y have property β with ρ = 0, there exist sets {xα : α ∈ Λ} ⊂ SX

and {x∗α : α ∈ Λ} ⊂ SX∗ , and sets {yγ : γ ∈ Γ} ⊂ SY and {y∗γ : γ ∈ Γ} ⊂ SY ∗ satisfying
the conditions of Definition 3.2. Since X and Y are infinite dimensional spaces, Λ and
Γ are infinite sets. So we can choose 2n2 elements of the subsets {xα : α ∈ Λ} and
{yγ : γ ∈ Γ}, that we will simply denote by {xi : i = 1, . . . , 2n2} and {yj : j = 1, . . . , 2n2},
respectively. We will also denote by {x∗i : 1 ≤ i ≤ 2n2} and {y∗j : 1 ≤ j ≤ 2n2} the
functionals appearing in Definition 3.2 associated to the previous subsets of elements in
X and Y , respectively.

Now we define a bilinear form A ∈ L(2X∗ × Y ∗) by

A(x∗, y∗) :=
2n2∑

i=1

x∗(xi)
( 2n2∑

j=1,j 6=i

y∗(yj)
)

((x∗, y∗) ∈ X∗ × Y ∗),

that clearly belongs to Lw∗(2X∗×Y ∗). Since {x∗α : α ∈ Λ} and {y∗γ : γ ∈ Γ} are norming
sets for X and Y , respectively, and A is separately w∗-continuous, we have that

‖A‖ = sup
{|A(x∗α, y∗γ)| : α ∈ Λ, γ ∈ Γ

}
.

By assumption X and Y have property β with ρ = 0 and so ‖A‖ = 1.
We consider the elements x∗0 :=

∑2n2

i=1(1/2n2)x∗i ∈ SX∗ and y∗0 :=
∑2n2

i=1(1/2n2)y∗i ∈
SY ∗ . It is immediate to check that A(x∗0, y

∗
0) = 1− (1/2n2) and so |A(x∗0, y

∗
0)| > 1− η(ε).

By using the assumption, there exist elements u∗0 ∈ SX∗ , v∗0 ∈ SY ∗ , and a bilinear form
B ∈ SLw∗ (2X∗×Y ∗) such that

|B(u∗0, v
∗
0)| = 1, ‖u∗0 − x∗0‖ < β(ε), ‖v∗0 − y∗0‖ < β(ε) and ‖B −A‖ < ε.

We choose a scalar λ0 with modulus one such that B(u∗0, λ0v
∗
0) = 1. Since B is

separately w∗-continuous and ‖B‖ = 1, there exists x0 ∈ BX such that
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x∗(x0) = B(x∗, λ0v
∗
0), ∀x∗ ∈ X∗.

Let 0 < δ < 1 − ε and C := {λx∗α : λ ∈ K, |λ| ≤ 1, α ∈ Λ}. Since Re B(x∗, λ0v
∗
0) >

1 − δ for every x∗ in S(C, x0, δ) and ‖B − A‖ < ε, we obtain A(x∗, λ0v
∗
0) 6= 0 for each

x∗ ∈ S(C, x0, δ). This implies that

S(C, x0, δ) ⊆ {λx∗i : λ ∈ K, |λ| ≤ 1, 1 ≤ i ≤ 2n2}. (4.1)

Since B(u∗0, λ0v
∗
0) = 1, it is immediate that u∗0 ∈ S(BX∗ , x0, δ

2). By assumption X

has property β and in view of condition (3) in Definition 3.2 we know that the subset
C satisfies BX∗ = cow∗(C). By Lemma 4.1 there exists u∗ ∈ co(S(C, x0, δ)) such that
‖u∗ − u∗0‖ ≤ 3δ.

Since δ can be taken arbitrarily small, in view of (4.1) we conclude that u∗0 ∈ aco{x∗i :
1 ≤ i ≤ 2n2}, where aco(E) means the absolutely convex hull of a subset E of a linear
space. Arguing similarly, we have that v∗0 ∈ aco{y∗i : 1 ≤ i ≤ 2n2}. Hence there
exist scalars ti and si (1 ≤ i ≤ 2n2) with

∑2n2

i=1 |ti| ≤ 1,
∑2n2

i=1 |si| ≤ 1 and such that

u∗0 =
∑2n2

i=1 tix
∗
i and v∗0 =

∑2n2

i=1 siy
∗
i . Since

1 = |B(u∗0, v
∗
0)| =

∣∣∣∣
2n2∑

i,j=1

tisjB(x∗i , y
∗
j )

∣∣∣∣ ≤
2n2∑

i,j=1

|tisj | |B(x∗i , y
∗
j )|

≤
( 2n2∑

i=1

|ti|
)( 2n2∑

j=1

|sj |
)

= 1,

we have that |B(x∗i , y
∗
j )| = 1 for all i ∈ G(u∗0) := {i ≤ 2n2 : ti 6= 0} and for all

j ∈ G(v∗0) := {j ≤ 2n2 : sj 6= 0}. Since A(x∗i , y
∗
i ) = 0 for all i = 1, . . . , 2n2 and

‖B −A‖ < ε, it follows that G(u∗0)∩G(v∗0) is empty. We consider the elements given by

x0 :=
2n2∑
i=1

i/∈G(u∗0)

xi and y0 :=
2n2∑
j=1

j /∈G(v∗0 )

yj .

Clearly x0 ∈ BX and y0 ∈ BY . We obtain that

2n2∑
i=1

i/∈G(u∗0)

1
2n2

= |x∗0(x0)| = |(x∗0 − u∗0)(x0)| ≤ ‖x∗0 − u∗0‖ < β(ε) <
1
2

and

2n2∑
i=1

i/∈G(v∗0 )

1
2n2

= |y∗0(y0)| = |(y∗0 − v∗0)(y0)| ≤ ‖y∗0 − v∗0‖ < β(ε) <
1
2
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and hence the sets G(u∗0) and G(v∗0) contain more than n2 elements. This is impossible,
since G(u∗0)∩G(v∗0) = ∅ and both subsets are contained in a set of 2n2 elements. So the
proof is completed. ¤

There are still many open problems in this field. We finish with presenting some of
them.

Open Problems 4.6. (1) Does the pair (c0, c0) satisfy the Bishop-Phelps-
Bollobás property for bilinear forms?

(2) If X is uniformly convex, then L(nX × · · · ×X;Y ) has the BPBP. Is it true for the
space of bounded symmetric multilinear mappings? Recently it was shown in [27]
that the BPBP holds for symmetric bilinear forms on a Hilbert space.

(3) Lindenstrauss [34] proved in 1963 that the set of operators whose second adjoints
attain their norms is dense in the space of bounded linear operators between Banach
spaces. That result was extended in [8] to multilinear mappings. However it remains
open for symmetric multilinear mappings.

(4) In [14] it was shown that for a Banach space X the set of continuous 2-homogeneous
polynomials whose canonical extensions to X∗∗ attain their norms is dense. What
about the case of continuous n-homogeneous polynomials (n ≥ 3)?
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[ 6 ] M. D. Acosta, R. M. Aron, D. Garćıa and M. Maestre, The Bishop-Phelps-Bollobás theorem for

operators, J. Funct. Anal., 254 (2008), 2780–2799.

[ 7 ] M. D. Acosta, J. Becerra-Guerrero, D. Garćıa and M. Maestre, The Bishop-Phelps-Bollobás
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[14] R. M. Aron, D. Garćıa and M. Maestre, On norm attaining polynomials, Publ. Res. Inst. Math.

http://dx.doi.org/10.1017/S0308210500019296
http://dx.doi.org/10.1017/S0308210500019296
http://dx.doi.org/10.1007/BF02761104
http://dx.doi.org/10.1007/BF02761104
http://dx.doi.org/10.1016/j.jmaa.2004.04.010
http://dx.doi.org/10.1016/j.jfa.2008.02.014
http://dx.doi.org/10.1090/S0002-9947-2013-05881-3
http://dx.doi.org/10.1016/j.jfa.2005.10.002
http://dx.doi.org/10.1016/j.jfa.2005.10.002
http://dx.doi.org/10.1006/jmaa.1998.5913
http://dx.doi.org/10.1006/jmaa.1998.5913
http://dx.doi.org/10.1017/S0017089500032717
http://dx.doi.org/10.1090/S0002-9939-2011-10755-X
http://dx.doi.org/10.1016/j.aim.2011.05.023
http://dx.doi.org/10.2977/prims/1145476151


978 M. Acosta, J. Becerra, Y. S. Choi, D. Garćıa, S. K. Kim, H. J. Lee and M. Maestre

Sci., 39 (2003), 165–172.
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