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Abstract. For a o-finite measure p and a Banach space Y we study
the Bishop-Phelps-Bollobds property (BPBP) for bilinear forms on Lq(u) XY,
that is, a (continuous) bilinear form on L1 () X Y almost attaining its norm at
(fo,yo0) can be approximated by bilinear forms attaining their norms at unit
vectors close to (fo,y0). In case that Y is an Asplund space we characterize
the Banach spaces Y satisfying this property. We also exhibit some class of
bilinear forms for which the BPBP does not hold, though the set of norm
attaining bilinear forms in that class is dense.

1. Introduction.

The Bishop-Phelps Theorem states the denseness of the set of norm attaining func-
tionals in the (topological) dual of any Banach space [16]. Bollobds proved a quantita-
tive version of this result, known nowadays as the Bishop-Phelps-Bollobds Theorem [17],
which is very useful to study numerical ranges of operators (see for instance [18]). As
usual, Bx and Sx denote the closed unit ball and the unit sphere of a Banach space
X, respectively; X* denotes the (topological) dual of X. The Bishop-Phelps-Bollobds
Theorem can be stated as follows:

Let X be a Banach space and 0 < ¢ < 1. Given x € Bx and x* € Sx- with
|1 — 2*(x)] < €2/4, there are elements y € Sx and y* € Sx+ such that y*(y) = 1,
ly — x| < e and ||ly* — z*| < e.

The study of both results in the vector valued case has attracted the interest of
many authors. In his pioneering work [34] Lindenstrauss studied versions of the Bishop-
Phelps Theorem for operators. He gave the first counterexample of Banach spaces X
and Y such that the subset NA(X,Y') of norm attaining operators between X and Y is
not dense in L(X,Y), the Banach space of all (bounded and linear) operators from X
into Y. He also provided either isomorphic or isometric properties of the Banach spaces
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X and Y to obtain positive results. Bourgain generalized one of these results proving
that for each Banach space X with the Radon-Nikodym property, NA(X,Y) is dense
in L(X,Y) for every Banach space Y [19]. Many other interesting results along the
same line for classical Banach spaces have been shown (see [1], [2], [9], [26], [28], [29],
[31], [39], [40]). For bilinear forms the study of similar results was initiated by Aron,
Finet and Werner [13]. In this case there are also interesting positive results and some
counterexamples (see [4], [10], [13], [20], [21], [30], [36]). The survey [3] contains the
most relevant achievements in the field until 2006.

For versions of the Bishop-Phelps-Bollobas Theorem the situation is quite different.
For instance, let us mention that the Radon-Nikodym property on X does not imply a
version of the Bishop-Phelps-Bollobas Theorem for operators from X into any Banach
space Y. Even in the case of ¢; this result fails. Actually in [6] it is characterized the
Banach spaces Y for which the Bishop-Phelps-Bollobds Theorem holds for operators from
/1 into Y.

If v is a o-finite measure and m is the Lebesgue measure on the unit interval, it was
shown in [12] that the Bishop-Phelps-Bollobds Theorem holds for operators from Lq(u)
into Lo, (m). Another positive results can be found in [11] for operators from an Asplund
space X into C(K) (K is a compact Hausdorff space) and in [32] for operators from ¢
into a uniformly convex space. There is also a version of the Bishop-Phelps-Bollobas
Theorem for operators from a uniformly convex space into any Banach space [33] and
[7].

For the space of bilinear forms the parallel problem was initiated by Choi and Song
[23]. In this case there are only a few results and the answers are quite different from
the operator case. For two Banach spaces X and Y, by using the usual identification of
the continuous bilinear forms on X x Y and the space L(X,Y™) it holds that a version
of the Bishop-Phelps-Bollobas Theorem for bilinear forms on X x Y implies the parallel
result for the space L(X,Y™). The converse is no longer true even for X =Y = {; in
view of [23] and [6, Theorem 4.1]. However, Dai [24] proved that the converse holds if ¥’
is uniformly convex (see also [7]). In [7] the authors proved that there is a version of the
Bishop-Phelps-Bollobas Theorem for bilinear forms on a product of uniformly convex
Banach spaces. They also gave a characterization of the Banach spaces Y such that
the same results holds for bilinear forms on ¢; X Y. As a consequence, they obtained a
positive result when the space Y is finite dimensional, uniformly smooth, C'(K) or K(H)
(the space of compact operators on a Hilbert space H). Also in the case X = ¢; the
mentioned characterization shows the difference between the operator and the bilinear
cases.

Our intention now is to list the results proved in this paper. Throughout the paper,
X and Y denote Banach spaces over the (same) scalar field K (K = R or C). By
L(3X x Y) we denote the space of continuous bilinear forms on X x Y.

In order to be more precise, we recall the following definition:

DEFINITION 1.1 ([23], [7]). The pair (X,Y) has the Bishop-Phelps-Bollobds prop-
erty for bilinear forms (BPBP for bilinear forms), if given & > 0 there exist 3(¢) > 0 and
n(e) > 0 with lim._,o+ B(¢) = 0 such that for any A € Spzxxy), if (zo,90) € Sx x Sy is
such that [A(zo,y0)| > 1 — (), then there exist (ug,v0) € Sx x Sy and B € Spexxy)
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satisfying the following conditions:
|B(uo,vo)| =1, [luo — ol < B(e), [lvo —yoll < B(e) and ||B — Al| <e.

The outline of the paper is the following. In Section 2 we give a necessary condition
on a Banach space Y in order that (Li(u),Y) has the BPBP for bilinear forms, when
Li() is infinite dimensional. This condition is called the approximate hyperplane series
property for the pair (Y,Y™*) and it was introduced in [7]. In case that the measure u
is o-finite and Y is Asplund, we prove that the mentioned condition is also sufficient,
obtaining a complete characterization. We deduce several consequences:

(1) (L1(p), X) has the BPBP for bilinear forms for X finite dimensional and for a o-finite
measure L.

(2) (L1(p),co) has the BPBP for bilinear forms whenever p is o-finite.

(3) (L1(p1), L1(p2)) cannot have the BPBP for bilinear forms when pq and o are arbi-
trary measures such that Li(u1) and Lq(usg) are infinite dimensional.

In Section 3 we prove that the space of (continuous) n-homogeneous polynomials
P("X;Y) has the BPBP for every Banach space Y, when X is uniformly convex. Finally,
in Section 4 we provide classes of Banach spaces X and Y for which the pair (X*,Y*)
does not have the BPBP for separately w*-continuous bilinear forms, but the BPBP is
satisfied for the corresponding operators, which are w*-w-continuous operators from X*
into Y. Nevertheless, we show that every separately w*-continuous bilinear form can be
approximated by norm attaining bilinear forms in the same class, i.e. this class satisfies
the Bishop-Phelps Theorem for bilinear forms.

2. The Bishop-Phelps-Bollobas Theorem for bilinear forms.
To be precise and to understand related results well, we recall the following definition.

DEFINITION 2.1 ([6]). The pair (X,Y) has the Bishop-Phelps-Bollobds property
for operators (BPBP for operators), if given € > 0 there exist 5(e) > 0 and n(e) > 0 with
lim._o+ 3(e) = 0 such that for any T' € Sr,(xy), if 7o € Sx is such that || Tzo[| > 1—n(e),
then there exist a point ug € Sx and an operator S € Sp(x,y) satisfying the following
conditions:

ISuoll = 1, lluo — 2ol < Be) and ||S — Tl < e.

In general, it is clear that (X, Y*) has the BPBP for operators if (X, Y’) has BPBP for
bilinear forms. As we already mentioned in the introduction, the pair (L1 (1), Loo([0,1]))
satisfies the BPBP for operators, for every o-finite measure p [12]. However, the subset
of norm attaining bilinear forms on Ly ([0, 1]) x L1 ([0, 1]) is not dense in the whole class,
i.e. this class does not satisfy the Bishop-Phelps Theorem for bilinear forms [20].

At the beginning of the section we will give a necessary isometric condition on a
Banach space Y in order that the pair (L;(r),Y) has the BPBP for bilinear forms.
Under this condition we will obtain later a characterization by assuming also some extra
isomorphic assumption on Y.
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Acosta et al [7] characterized the Banach spaces X such that the pair (¢, X) has the
BPBP for bilinear forms. They introduced the approximate hyperplane series property
(AHSP) for a pair (X, X*), and showed that (¢1, X) has the BPBP for bilinear forms if
and only if the pair (X, X*) has the AHSP.

DEFINITION 2.2 ([7]). For a Banach space X, the pair (X, X*) has the approzimate
hyperplane series property (AHSP) if for every € > 0 there exist 0 < §, n < € such that
for every convex series ) «, and for every sequence (z}) C Sx- and xo € Sx with

Re Z anzy (zg) >1—n
n=1

there exist a subset A C N, {2} : k € A} C Sx- and zy € Sx satistying

(1) Dpeau >1-0,
(2) llzo — @o|| < € and ||z — z;]| < e for all k € A,
(3) zi(20) =1 for all k € A.

It is easy to check that we may assume in Definition 2.2 that the sequence (z}) is
contained in Bx=.

Next we show that if (L;1(u),Y) has the BPBP for bilinear forms, then the pair
(Y,Y*) has the AHSP. The converse is not true in general. Further, we characterize the
BPBP for bilinear forms on (L1 (u),Y) when Y is an Asplund space.

The following simple result will be useful.

LEMMA 2.3 ([7, Lemma 3.5]). Let z be a complex number with |z| < 1 and 0 <
r<1. IfRez>r then |z — 1] <2(1 —r).

THEOREM 2.4. Let Y be a Banach space and suppose that Ly(u) is infinite di-
mensional. If the pair (L1 (w),Y") has the BPBP for bilinear forms, then (Y,Y™) has the
AHSP.

PROOF. Given 0 < ¢ < 1, choose 0 < s < 1 so that 0 < 2(1 — s) < £2/9. Let n(¢)
and ((g) be the positive numbers that appear in the definition of the BPBP for bilinear
forms. We next choose § > 0 small enough such that 0 < § < ¢/3, 5(6)/(1 —s) < &/3
and n(8) + 6 + 26(5) < €2/18.

Let yo € Sy, (y) C Sy« and > a,, be a convex series satisfying

Re Y any;(yo) > 1 —n(9).

n=1

Since Li(u) is infinite dimensional, there is a disjoint sequence {E,,} of measurable
subsets of €2 such that 0 < u(E,) < oo for all n. Let

2 (f) = /E fdu, (fe L)
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for each n € N. Clearly we have that 372 |25, (f)] = [fxyz, g.lli < [If]l1 for every
[ € Li(p).

We define the continuous bilinear form A € Sp2r, () xy) by

=S (M) (F € L), yeY).
n=1

Clearly ||A]| = 1. Let fo = > .71 on(xE,/1(En)) € St (u)- We can see that

Re A(fo,y0) > 1 —mn(3).

Since the pair (L1(p),Y) has the BPBP for bilinear forms, there exist a bilinear form
Be SL(2L1(H)><Y) and (g,Zo) € SLl(M) x Sy such that

|Bll = |B(g,20)| = 1, |B—=A| <4, lg— foll < B(9) and [|z0 — yoll < B(5).  (2.1)
Thus

|B(g,20) — A(fo,y0)|
< |B(g,Z0) - A(g,Zo)| + |A(97ZO) - A(97y0)| + |A(97y0) - A(any0)|
< 1B = Allllgllllzoll + [IAllllgllllz0 — yoll + [IAllllg — folllloll

< &+ 206(9).
Therefore
2
€
REB(gaZO) > RGA(fo,Z()) - |B(9720) - A(f()?yo)' >1- 77(5) —0— 25(5) >1- T8a
and by Lemma 2.3 we have that
€
|1 — B(g,20)| < 3 (2.2)
Since we know that >0 |z%(g)| < |lg|| < 1, and
<>>Hfo—g||>2/ folt) — 9(8)] diu(®)
an
-3 [ [y o >\du< 2> foRe(@@), @9

n=1

we obtain

> _Re(z5(9)) > 1 B(6).
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Defining C' = {n € N: Re(z}(g9)) > sz} (lg])}, we have that

1-B(8) <> Re(z;(9) = Y _ Re(zi(9) + Y. Re(zh(g))

neC neN\C

< Z Re (7 (9)) + s Z z;,(lgl)

neC neN\C
< S Re (i) +5(1- X wila)
necC neC

<Y Re(z}(9) + s<1 ~—> Re (x;;(g))>,

neC

SO

Z Re (7 (9)) > 1 5E)

1—s
neC

From this, we can see that C # 0 and 27 (g) # 0 for all n € C.
Therefore, it follows from (2.3) that

S an > 3 Re(ah(9) - 66)

neC neC

BO)

>1-—
1—s

where we take v(9) := (5) + 5(5)/(1 — s) < e.
Again by Lemma 2.3 we have for all n € C' that
2 52

<2(1-s)< 9 (2.4)

‘1 _ 7(9)

By (2.1) there is a real number ¢ such that B(g,z) = e®. For each n € N we set
2zt = e "B(gxg, /75 (l9]), ) if 27 (lg]) # 0, and 2 = 0 otherwise. Clearly it is satisfied
that 2z € By~ for every n € N. We have

1=e"B(g,2) = 6itB<9XQ\(U$f=1 B, Tt Z QXEmZo)

n=1

= e "B(gxa\Uz, By 20) + Y 2n(lg])zn(20)
n=1

D IEAESED]

n=1

< llgxevuz, £4)
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< lgxanuz, g ll, + D =n(lgl) < 1.
n=1

*

| = 1 for every n with «7;(|g|) # 0. Since A(gxg, /}(9),") = vi;
it * I:L(g)

9XE 9XE €
e’z =||B no —A( "’,~)H§ B-A|<d<=.
‘ 2 (lg)) H <x:;<|g|> ) 2 (lg)) 15 -4l <o <3

Therefore, in view of (2.2) and (2.4), for every n € C' it is satisfied that

Thus, 2% (z0) = 1 and ||2};]
for every n € C, we have

n

*
n

* * * it % it x;(g) * .’17:;(9) * * € € €
Zn T Yn < Zn_etzn +‘et’zn— * Yn|| + * Yn —Wn|| <53 T35 t576

| <! 3, (191) 3 (191) 333
which implies that (Y,Y*) has the AHSP. O

LEMMA 2.5 ([7, Lemma 3.2]). Let {c,} be a sequence of complex numbers with
len] < 1 for every n, let n > 0 and {a,} be a sequence of nonnegative real numbers
such that 07, an < 1 and assume also that Re .- | anc, > 1 —1n. Then for every
0<r<1, the set A:={i € N:Rec; > r} satisfies the estimate

n
Zai>1—1_r.

i€A

If Ly(p) is finite dimensional and N = dim L; (1), by looking carefully the proof of
Theorem 2.4 and [7, Theorem 3.6], it can be obtained that the pair (L;(u),Y’) has the
BPBP for bilinear forms if and only if (Y,Y™) has the AHSP only for finite sums of N
elements (instead of any convex series). In case that L;(u) is infinite dimensional we
will prove a characterization for Asplund spaces Y of the pairs (L1(u),Y") satisfying the
BPBP for bilinear forms under a mild assumption on the measure p. The argument used
to prove this characterization is inspired by the proof of [22, Theorem 2.2].

THEOREM 2.6. Let p be a o-finite measure such that L1 (u) is infinite dimensional
and Y an Asplund space. Then the pair (L1(n),Y) has the BPBP for bilinear forms if
and only if (Y,Y™) has the AHSP.

PrROOF. It is enough to prove that if Y is an Asplund space such that (Y,Y™)
satisfies the AHSP, then the pair (Li(u),Y") has the BPBP for bilinear forms. In order
to do this, we will denote by (2, .4, i) the measure space.

Since (Y, Y™*) does have the AHSP, given 0 < € < 1, there are 0 < §, 1 < ¢ satisfying
the conditions in Definition 2.2.

We choose 0 < b < min{#, 2} and take a = be/8. Given ® € Sp21,(u)xy), assume
that (fo,y0) € Sr,(u) X Sy satisfies that |®(fo,y0)| > 1 — a. By using some appropriate
linear surjective isometry (say ¢) on Lj(u) and changing the bilinear form ® by the
mapping (f,y) — ®(¢71(f),y) we can assume that fo(t) > 0 for every t € Q. By
rotating also the bilinear form ®, if necessary, we can also assume that ®(fo,y0) =
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|®(fo,y0)| > 1 —a. Let T denote the operator from Lj(p) to Y* associated to the
bilinear form ®. Hence we know that T' € Sp(r,(.),y+) and it is also satisfied that

T(fo)(vo) = ®(fo,%0) = [®(fo,%0)| > 1 — a.

By the denseness of the simple functions in L (u), there is a simple positive function
S0 € Sp,(u) satistying

||80 — fOHl < e and also RQT(SQ)(yo) = Re @(So,yo) >1—a. (25)

So there are a positive integer N, a subset of positive real numbers {«; : i < N}
and a family of pairwise disjoint subsets {4; : i < N} C A satisfying 0 < p(4;) < oo for
all ¢ such that

N N
=Y S -

k=1 k=1

Since Y is an Asplund space, Y* has the Radon-Nikodym property. Also p is o-finite,
so every operator from L (p) into Y* can be represented by a function in L (1, Y*) (see
[25, Theorem 5, p. 63, Corollary 3, p.42]). Hence there is h € Sp__(,,y~) such that

T(f) = /Q W du, Vf e Li().

Since the range of h is essentially separable, up to an arbitrarily small perturbation, we
can also assume that there are a sequence {B,,} of pairwise disjoint measurable subsets

of Q such that (J,, .y B = Q and functionals {y;; : n € N} C By~ such that

o0
h = Z XB,Yn-
n=1

If one considers the family of sets {A; N B, : 1 <i< N,ne N, u(A;NB,) >0tU{B,N
(Q\ U<y Ak) : n € N}, after writing the functions so and A in terms of the above sets
and indexing them, we may assume that A, = By, for 1 < k < N.

We denote by E the set given by

E :={k < N :Reyj;(yo) > 1—b}.
From the assumption (2.5) we have that

1—a < ReT(s0)(yo)

—Re< [ hso du) (0)
(e i)
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N
=Re Y i (o).

k=1
By using Lemma 2.5 for n = a, r = 1 — b, we obtain that
a_

5
llsoxaglli = Zak>1— > 1—§ >0 andso |soxo\aglh <
kEE

S
o)

- (2.6)

where Ap = J,cp Ak
We denote by o := 3, - ap. We have that

o a
Re Y TEyr(yo)>(1-0)Y E=1-b>1-1
ker ke &

By using that (Y,Y™) has the AHSP, there are C C E, {2} : k € C} C Sy~ and
zp € Sy satisfying

Z%>1—6, lzo —woll <&, |lzk—vill <e and zi(z)=1 VkeC. (2.7)

Consider the function h; defined by

hi=> Xazi+ Y. XB.Yi-

keC kEN\C

Since hy € Br,__(u,y~), this mapping induces an operator S € Brr,(,),y+) that can be
identified with a continuous bilinear form ¥ € Br e, (u)xy)-
In view of (2.7) we also obtain that
W =@ =[S =T = [lh1 — Rlloo

_ * ok
= max ||z — yill <e.

By using again (2.7) and (2.6), the measurable subset Ac := J,c Ax satisfies

Isoxaclls =Y x> (18> (1- 5)(1 - ;) > 0. (2.8)

keC

We define go := soxac/lsoxaclli € Sty (- Then we obtain that

llgo — foll1 < llgo — sollx + llso — follx
- ‘ S0X Ac

—_— + e (by (2.5
lsoxacll1 (by (25))

1

S0
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S ’

=1 —llsoxacl + llsoxaracll +¢

<2<1_(1_5)<1—§>> +e (by (2.8))

be  He 13

S0XAc

T — SoXA
lsoxacll1 c

+ llsoxanaclli +¢
1

Let us notice that () := (13/4)e satisfies lim;_,o 5(¢) =
Finally we have that

¥ (g0, 20) = S(g0)(20) = (/ h1go dﬂ) (20) = ( " h1go d#) (20)

E ozkzk Zo E aE =

keC |SOXAC (3 keC

|30XAC || 1

We proved that the pair (Li(u),Y) does have the BPBP for bilinear forms with
B(e) = (13/4)e. O

Acosta et al [7] showed that the pair (X, X*) has the AHSP in the following cases:

(1) X is finite dimensional.

(2) X is uniformly smooth.

(3) X is Cp(Q?), where Q is any Hausdorff and locally compact topological space (either
real or complex case).

(4) X is K(H), the space of compact operators on a Hilbert space H.

They also showed the following facts:

(1) (L1(p), L1(p)*) fails to have the AHSP if u is any measure such that L; () is infinite
dimensional.
(2) If X is smooth and (X, X*) has the AHSP, then X is uniformly smooth.

From these we deduce the following result:

COROLLARY 2.7. Let u be a o-finite measure.

(1) Assume that X is a finite dimensional normed space. Then (L1(u), X) has the BPBP
for bilinear forms. As a consequence, (X, Loo (1)) has the BPBP for operators.

(2) (L1(p),co) has the BPBP for bilinear forms, so (co, Loo(pt)) and (L1 (p), ¢1) have the
BPBP for operators.

(3) Assume that dim Ly (p) = 0o and X is a smooth Banach space. Then (Li(u), X) has
the BPBP for bilinear forms if and only if X is uniformly smooth.

(4) If p1 and po are measures such that Ly(p1) and Li(ue) are infinite dimensional
spaces, the pair (L1(p1), L1(pe2)) fails the BPBP for bilinear forms.

The statement (4) in the previous corollary generalizes the fact that (¢1,¢;) does
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not have the BPBP for bilinear forms [23]. It is worth to remark that Y. S. Choi [20]
proved that there is no Bishop-Phelps Theorem for bilinear forms on L0, 1] x L;[0,1].
Afterwards Saleh [38] showed that the set of norm attaining bilinear forms on L (p) is
dense in the set of all bounded bilinear forms on L;(u) if and only if p is purely atomic
(see also [37]).

Related to the assertions (1) and (2) above, it is also worthwhile to notice that Aron,
Cascales and Kozhushkina [11] studied the BPBP for operators for the case Y = Cy(L)
(where L is a locally compact Hausdorff space) and showed that the pair (X,Co(L))
has the BPBP if X is Asplund, and so (cg, Co(L)) has the BPBP for operators. We also
remark that (cg,Y’) has the BPBP for operators for every uniformly convex space Y [32].

3. The Bishop-Phelps-Bollobas Theorem for polynomials.

Let X1,...,X,, and Y be either real or complex Banach spaces. As usual, L("X; X
-o- x Xp,;Y) will be the subset of (continuous) n-linear mappings from X; x -+ x X,
into Y. We will say that the space L("X; x -+ x X,,;Y) has the Bishop-Phelps-Bollobds
property (BPBP) if the following condition is satisfied: Given ¢ > 0 there exist 3(c) > 0
and n(e) > 0 with lim._,g+ B(¢) = 0 such that if [|[A(z1,...,2,)| > 1 —n(e) for A €
SLer Xy xxXn;y) and (z1,...,2,) € Sx, X --- x Sx,, then there exist both an n-linear
mapping B € Spnx, x..xx,;v) and (u1,...,u,) € Sx, X --- x Sx, such that

|1B(u1,...,un)||=1, ||B—A| <e, and ||u; — z;|| < B(g) for all 1 < i < n.

We say that P("X;Y) has the Bishop-Phelps-Bollobds property (BPBP) when the
following condition is satisfied: Given € > 0 there exist S(¢) > 0 and n(e) > 0 with
lim._o+ B(e) = 0 such that if |[Pzo| > 1 —n(e) for P € Sprnx.y) and xg € Sx, then
there exist both Q) € Sp(nx,y) and up € Sx such that

[Quoll =1, lluo — zol < B(e) and [|Q— Pl <e.

In [7], [33] it was shown that if X is uniformly convex, the pair (X,Y") has the
BPBP for operators for any Banach space Y, and the arguments of the proofs in those
papers are different. In fact, in [7] it was shown that if Xy, ..., X, are uniformly convex,
then L("X; x -+ x X,,;Y) has the Bishop-Phelps-Bollobas property for every Banach
space Y. Modifying the argument in [33] we will also show this result for the space of
homogeneous polynomials.

THEOREM 3.1.  Let X be a uniformly convexr Banach space. Then P("X;Y) has
the BPBP for every Banach space Y .

Proor. We will denote by ¢ the modulus of convexity of the space X. Given
0<e<1, PeSprx,y) and z1 € Sx satistying that

3 e
P 1— =40 =
Pead > 1 50(5):
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we can choose =} € Sx« and yj € Sy~ satisfying 25 (z1) =1 and

% 3 g

We take Py := P and define a sequence (xy, ), yj, Pr)r in Sx X Sx- X Sy« X Sprnx;y)
inductively. We already have (z1,z7,y7,P1). If we assume that (zx,z}, s, Pe) was
defined and it satisfies that

* * € €
zip(k) =1, |yp(Pexe)| > 1— 2k+35(2k>

Set

Pesa(2) i= Pule) + 3504 (@)" Pelan) (@ € X).

Clearly Pyy1 € P("X;Y) and we also have that

HPkJrIH > ’yk Pty |

)
= it | 1+ 55 )

(e s2)55)
(s ()

> 1.

In view of the previous estimate and the definition of PkH we clearly have that

Ve Pl < 14 555 61
We can write Pry1 = Pk+1/||]5k+1|| and choose zry1 € Sx, 7., € Sx- and
Yp41 € Sy~ satisfying the following conditions
* > €
s Penrzien)] > [P | - 520 507 )

Rewj(eh41) = [af(zrg1)] and 2f g (2pp) = 1.

It follows that

* € <
Va1 (Pry12pg1)| > 1 — 2k+45<2k+1>'
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Hence

[ Pes1 — Pell < || Prs1 = Prsa|| + || Prsr — Bi|

Piyi =
Poyi|| + 55
H 1Peral 2k
5
= 1= || Peyall| + 2k+2 < o571 (by (3.1)).

969

As a consequence, (Py )y is a Cauchy sequence and so it converges to some Py, € Sp(nx.y)

that satisfies | Ps — P|| < .

Now we will show that (xy) is a Cauchy sequence. In order to do this let us notice

that

Pl = geed (e ) < s (Prssnn)|

< 1+ g [ (o)
—1+ 2,%(Re i (@rg)) "
On the other hand, we have the following lower estimate
1Pl = 9 (Parrz) |

* € * *
= Y (Proay) + mwk(ww” Y (Prr)

= (1 + 2,32) |yr (Pr)|

() l2)

From the previous upper and lower estimates it follows that

2
€ € € € € ; n
N 2k+3§<2k) + ok+2 22k+55<2k> <1+ 2k+2 (Rexj(zx+1))" + 55

that is,

. 1 € 1
1> (Rewj(zps))" > 1 - 5(2k> - 226(2k+1) ~ R0

3
(5)

* € * n, ok
= Wrs1(PeTrs1) + ka(xk-i-l) Yip1 (Prr)

)
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Since Rex (zr41) is a nonnegative real number, we obtain that

> Re (ﬁ(% ;$k+1)>

1 € €
>1—=-0l 7 ) >1=0( 57 )-
This implies that ||zy11 — 7x|| < /2% and so (zy)x is a Cauchy sequence in Sx, that is,
converges to some element o, € Sx that satisfies |[zoo — 21| < €.

Since limyg, || Pyzg| = 1, by taking into account that both (Py)r and (xg); converge
in norm, it follows that ||Pxzoo|| = 1. O

Tr + Trt1
2

Let us notice that a similar argument also gives the analogous result for n-linear
mappings defined on a product of uniformly convex spaces (see also [7, Theorem 2.2]).
However, we do not know if the analogous result holds for symmetric n-linear forms on
a uniformly convex space.

Now we recall an isometric condition, called property B that was introduced by
Lindenstrauss [34].

DEFINITION 3.2. A Banach space Y is said to have property 5 (of Lindenstrauss)
if there are two sets {y; : 4 € I} C Sy, {y; :9 € I} C Sy» and 0 < p < 1 such that the
following conditions hold:

(1) yi(y;) =1,Viel
2) lyf () < p<lifi,jel,i#j.
(3) llyll = sup;e {lvi (y)|}, for all y € Y.

The spaces ¢y and ¢, satisfy the above property. In both cases p = 0.

Given a family F of mappings defined on a Banach space and bounded on its unit
ball, by NA(F) we will denote the subset of norm attaining elements of F. In case that
Y has property [, the following results are shown in [21]:

(1) If NA(L("X)) is dense in L("X), then NA(L("X;Y)) is dense in L("X;Y).

(2) If NA(Ls("X)) is dense in Ls("X), then NA(Ls("X;Y)) is dense in Ls("X;Y),
where Ls("X;Y) stands for the symmetric n-linear mappings from X into Y.

(3) I NA(P("X)) is dense in P("X), then NA(P("X;Y)) is dense in P("X;Y).

In what follows we can show similar results for the Bishop-Phelps-Bollobés property.

PROPOSITION 3.3.  Suppose that the Banach space Y has property 3.

(1) If L("X1 % -+ x X,,) has the BPBP, then L("X1 x --- x Xn;Y) has the BPBP.
(2) If P("X) has the BPBP, then P("X;Y) has the BPBP.

PRrROOF. The proofs of parts (1) and (2) are almost the same, hence we show only
the proof of (1). Assume that L("X; x -+ x X,,) has the BPBP. Given 0 < ¢ < 1/2,
let n(e) and B(g) be the functions in the definition of the BPBP. Take 0 < &’ < £(1 — p)
and put n'(¢) = min{n(e’), (1 — p)e — pe’) /(1 + &)}, where p is the positive real number
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satisfying Definition 3.2.
Let A € Sp(nx,x...xx,;v) and (29,...,29) € H;—;l Sx; satisfying that

|A@Y,...,20)]| > 1—n'(e).
Choose one of the functionals y; appearing in Definition 3.2 so that
|yi, A, aD)| > 1=n'(e) = 1 —n(e).
By the assumption, there exist ¢ € L("X; x -+ x X)) and (Z1,...,T,) satisfying

L—7n'(e) <llell <1, |lyiA—ell <€,

sup HQE] — x?H < B(') and |p(Z1,...,7Z.)| = ||lell-
J

B(z1,...,xy) = A(z1,...,20) + [((1—|—£)<p—y;‘0A)(x1,...,xn)]yio,

for all (x1,...,2,) € X1 X -+ x X,,. Tt is clear that B € L("X; X --- X X,;;Y). We can
see that

IB— Al <celloll + llyi, A —¢ll <e +¢" < 1.
Hence B # 0 and

B
—— — Al|l < 4e.
H i~ Al <4

Moreover, we obtain for every i # ig

s BIl < 1Al + 197 (i )| (ellell + llyi, A — )

<1l+ple+ée),

and
ly5, Bl = (L+e)llell = (L+2)(1 —n'(e))
>1+p(e+¢€).
The following inequality implies that B attains its norm at (Z1,...,Z,)

1Bl = lly;, Bll = (1 +e)llell = |(1+ &)e(E, - . -, in)|
= |y; B(@1,..., &) < ||B(F1,..., %)

<[B.
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Hence, 1'(e/4) and 3(e'/4) are the functions that we have found. O

REMARK 3.4. An analogous argument used in the above proof also works for the
symmetric case. However we do not know of any infinite dimensional Banach space X
such that the Bishop-Phelps-Bollobds property is satisfied for the symmetric n-linear
forms on X.

4. Results for bilinear forms that are separately w*-continuous on the
product of dual Banach spaces.

In this section we will provide classes of Banach spaces X and Y for which the pair
(X*,Y™*) does not have the BPBP for separately w*-continuous bilinear forms, though the
BPBP is satisfied for the corresponding operators, which are w*-w-continuous operators
from X* into Y. Nevertheless, we will show that every separately w*-continuous bilinear
form can be approximated by norm attaining bilinear forms in the same class.

For 2* € Sx~ and 0 < € < 1, the set of the form

S(A,x*,e) = {x € Bx : Rez*(z) > sup Rez™(z) — 5}
€A

is called a slice of A C X.
The following technical result appears implicitly in [15, Proposition 3.1, Claim]. We
isolate the statement and include its proof.

LEMMA 4.1.  Let A be a subset of X* such that Bx. =" (A), and let 0 < e < 1
and x € Sx. For every x* € S(Bx~,x,e%), there exists z* € co(S(A,x,€)) such that
|z* —z*|| < 3e.

PrROOF. Fix 0 < € < 1 and =z € Sx. First we will show that for every z* €
S(co(A), x,e?), there is y* € co(S(A,x,¢)) such that ||y* — 2*| < 2e.

If 2* € S(co(A),z,e?), there exist n € N, {af : 1 <i<n}CAand {t;,:1<i<
n} C [0,1] with Y"1 | ¢; = 1 such that z* =" | t;a;. Now let

B:={i<n:Rea;(z)>1—-¢}, C:={1,...,n}\B.

By Lemma 2.5 we have that

2
= ti>1— =1-—=¢.
e Z > Fp g £

i€B

If we define y* := (1/r) >, g tiaj, then y* € co(S(4,z,¢)) and

||y*—w*||=H St —Zta
i€B
Zta

<(-lg

Z tiaf

i€C
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<2(1—1r) < 2e.

Now let 2* € S(Bx+,z,£?). Since co(A) is w*-dense in By-, there is a net {z}}rea
in S(co(A),z,e%) such that {z}}rea Y, 2*. We know that for each A, there is y§ €
co(S(A,z,e)) such that [y} — 2} < 2¢. Now, let y* € Bx- be a w*-cluster point
of the net {yi}rea. Clearly y* € @" (S(A,z,¢)). Since the dual norm is w*-lower
semi-continuous, we conclude that ||y* — z*|| < liminf) ||y} — z}|| < 2e. By using again
the w*-lower semicontinuity of the dual norm, there is z* € co(S(A,x,¢)) such that
[lz* — a*|| < 3e. O

If X and Y are Banach spaces, we will denote by L« (?X* x Y*) the Banach space
of all separately w*-continuous bilinear forms on the product X* x Y*.

PROPOSITION 4.2.  Let X andY be Banach spaces. Then the set of norm attaining
bilinear forms in Ly« (2X* x Y*) is dense.

PROOF. Let A € L,«(3X* x Y*) and 0 < € < 1/3 be given. Since the subset
of norm attaining bilinear forms is stable under product by scalars, we may assume
that ||A|| = 1. We choose a decreasing sequence {ej} of positive numbers satisfying the
following conditions:

22& <eg 2 Z g < si, and e < 1/10k, Vk € N.
i=1 i=k+1

We next construct inductively a sequence (Ag)72; C Ly (*X* x Y*) as follows.
Take A; = A; if we assume that we have already defined Ay € L,-(2X* x Y*), we
choose functionals z} € Sx- and y;, € Sy~, satisfying

Ar=A, ReAp(zy,yr) = [Au(eg, yi)| = [|Ak] — &k
and we define
Apa(27,y7) = Ar(e”,y") + endi (2", yip) A (2, y7), (27 € XTy" € V7).
Clearly we construct by this procedure a sequence (Ay) in L, (?X* x Y*). In [14,

Theorem 2.2(2)] it is proved that the sequence (A;) converges in norm to a bilinear form
B satistying ||B — A|| < e and also

|B(z, ;)

1
2 1Bl = =, k> .

It is also clear in this case that B is w*-separately continuous, since it is the uniform
limit on bounded sets of X* x Y* of a sequence in L« (?X* x Y*). By Banach-Alaoglu’s
theorem there is a w*-cluster point x§ € By~ of the sequence (z}). Applying that B is
w*-separately continuous, we obtain
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| (x07yj)| = ” ”7}a VJGN~

An analogous argument shows that there exists y; € By~ such that
[B(xg,90)| = 1B,

and so B attains its norm. O

If X and Y are Banach spaces, we denote by Ly «.,(X*,Y) the Banach space of
all w*-w-continuous linear operators from X* into Y, which can be identified with
Ly (2X*xY™). Actually, given ¢ € L, (?X*xY*), we define an operator T : X* — Y**
by T(x*)(y*) := (z*,y*). Since ¢ is separately w*-continuous, for every z* € X*,
T(xz*) is a w*-continuous functional on Y*, hence T(z*) € Y. Again by using that ¢ is
separately w*-continuous on the first variable, it follows that T is w*-w-continuous. Con-
versely, given T € Ly« (X*,Y), we define ¢ € Ly« (PX* x Y*) by p(a*,y*) = y*(Tz*).
Since T is w*-w-continuous, ¢ is separately w*-continuous.

Since an operator attains its norm whenever the corresponding bilinear form does,
we obtain the next Bishop-Phelps result for operators, that was already proved by Manuel
Ruiz Galan in a similar way.

COROLLARY 4.3. Let X and Y be Banach spaces. Then the set of norm attaining
operators in Ly« (X*,Y) is dense. In fact, we have that an operator in Ly .,(X*)Y)
attains its norm if and only if the associate separately w*-continuous bilinear form attains
1ts morm.

The next result improves the Bishop-Phelps result stated above for Ly, (X™*,Y)
under some additional assumption on Y.

PROPOSITION 4.4. Let X andY be Banach spaces, and assume thatY has property
B. If T € Sp,.. x=y), € >0, and x§ € Sx- satisfy ||T(xf)|| > 1 — /4, then for each
real number n such thatn > (p/(1—p))(e+(e%/4)), there are S € Ly« (X*,Y), 2§ € Sx~
such that

82

1SCo)l = 1IS1, - llzg — ol <&, and S =T <n+e+

PROOF. Since Y has property 3, there is ag € A such that |y} (T'(x5))] > 1 —
(¢2/4). Since T is w*-w-continuous, we have that T*(y ) € X. By the Bishop-Phelps-
Bollobds Theorem, there exist 2§ € Sx« and zg € Sx such that |28 (z0)| = 1, |25 —z§]| < e
and [|z0 — (7™ (y5,)/IIT* (ya,) )| < &. For a real number 7 satisfying n > (p/(1 —p))(e +
(€2/4)), we define an operator S € L(X*,Y) by

S(a") =T(") + (L +n)a"(20) — 2" (T"(Y3,)) Yoo, (27 € X7),

that is clearly w*-w-continuous. The proof can be finished if one follows the same steps
as in the proof of [6, Theorem 2.2]. O
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However, we will show that in general the BPBP is not satisfied for the space of
w*-separately continuous bilinear forms.

THEOREM 4.5. Let X and Y be infinite dimensional Banach spaces having prop-
erty B with p = 0. Then the pair (X*,Y™*) does not satisfy the Bishop-Phelps-Bollobds
property for separately w*-continuous bilinear forms.

Proor. We will argue by contradiction, so assume that the pair (X*,Y™) satisfies
the Bishop-Phelps-Bollobés property for separately w*-continuous bilinear forms. Given
e > 0, there are n(¢) > 0 and B(e) > 0 with lim._3(e) = 0 such that for all A €
SLo-x=xy+) and zf € Sx-, yg € Sy~ with |A(xf,y5)| > 1 —n(e), there exist elements
ug € Sx», vy € Sy, and B € S, 2x+xy~) satisfying the following conditions:

|B(ug, vg)l =1, Jlug —agll < B(e),  llvg —yoll <Ble) and [|B— Al <e.

We fix ¢ € (0,1) such that 3(e) < 1/2, and n € N such that 1/2n? < n(e). Since the
Banach spaces X and Y have property 8 with p = 0, there exist sets {z, : o € A} C Sx
and {z}, : @ € A} C Sx«, and sets {y, : vy € '} C Sy and {y} : v € '} C Sy~ satisfying
the conditions of Definition 3.2. Since X and Y are infinite dimensional spaces, A and
[ are infinite sets. So we can choose 2n? elements of the subsets {z, : @ € A} and
{y, : v € '}, that we will simply denote by {z; : i =1,...,2n?} and {y; : j = 1,...,2n?},
respectively. We will also denote by {z} : 1 < i < 2n?} and {y; 11 <5< 2n?} the
functionals appearing in Definition 3.2 associated to the previous subsets of elements in
X and Y, respectively.
Now we define a bilinear form A € L(2X* x Y*) by

A=Y@ X ) (@) ex <)
=1 j=1,7%#1

that clearly belongs to Ly (*X* x Y™*). Since {z}, : @ € A} and {yZ : v € T'} are norming
sets for X and Y, respectively, and A is separately w*-continuous, we have that

|A]| = sup {|A(2%,y5)| c € A,y €T

By assumption X and Y have property 8 with p = 0 and so ||A]| = 1.

We consider the elements z, := Efﬁ(l/ZnQ)xf € Sx~ and yj = Zf:i(l/an)yz* €
Sy«. It is immediate to check that A(xf,y5) = 1 —(1/2n?) and so |A(zd, y5)| > 1 —n(e).
By using the assumption, there exist elements ug € Sx~, vg € Sy~, and a bilinear form
Be SLw*(zX*xY*) such that

|B(ug,vo)l =1, |lug — x5l < Be),  [lvg —woll < Be) and [|B - Al <e.

We choose a scalar Ao with modulus one such that B(ug, Aov§) = 1. Since B is
separately w*-continuous and || B|| = 1, there exists xg € Bx such that
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z*(zo) = B(z™, Aovg), Va©e X™.

Let 0 <d <1l—eand C:={\z} : X € K |\ < 1,a € A}. Since Re B(a*, A\gv§) >
1 — 6 for every z* in S(C,z0,0) and ||B — A|| < €, we obtain A(z*, Agvg) # 0 for each
x* € S(C,xp,9). This implies that

S(C,x0,0) C{Axf : NEK, |\ < 1,1 <4< 2n%}. (4.1)

Since B(u, Aovg) = 1, it is immediate that ufj € S(Bx~,xo,6%). By assumption X
has property § and in view of condition (3) in Definition 3.2 we know that the subset
C satisfies By~ = co” (C). By Lemma 4.1 there exists u* € co(S(C,xo,0)) such that
™ — ugl| < 36.

Since ¢ can be taken arbitrarily small, in view of (4.1) we conclude that u§ € aco{x} :
1 < i < 2n?}, where aco(E) means the absolutely convex hull of a subset E of a linear
space. Arguing similarly, we have that v§ € aco{y} : 1 < i < 2n%}. Hence there
exist scalars t; and s; (1 < i < 2n?) with Zfﬁj Iti] < I,ij |s;] < 1 and such that

* 2n® * * 2n? * .
Uy = Zi:l t;x; and v = Zi:l s;y;. Since

2n? 2n?
1= [B(ug,vg)l = | D tis; B}, y;)| < Y [tiss| B, y5)]
i,j=1 i,j=1

< (;w) (2_]) -1,

we have that |B(z},y;)| = 1 for all i € G(uj) := {i < 2n* : t; # 0} and for all
j € G == 1{j <2n?:s; # 0} Since A(z},y;) = 0 for all i = 1,...,2n? and
|B — Al < ¢, it follows that G(ug) N G(vg) is empty. We consider the elements given by

2n? 2n?
To = Z x; and yo:= Z Yj-

i=1 j=1
i¢G(ug) J¢G(vg)
Clearly zg € Bx and yy € By. We obtain that

2n?

1 . . . . 1
> o2 = lwo(@o) = |(zg — ug)(zo)| < llag — ugll < B(e) < 5
i2Gug)
and
2
1, - - 1
Z oz 1o (o)l = 1(yo — v5) (o)l < [lyg — w5l < B(e) < 3
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and hence the sets G(u$) and G(v$) contain more than n? elements. This is impossible,
since G(ug) N G(vg) = ) and both subsets are contained in a set of 2n? elements. So the
proof is completed. O

There are still many open problems in this field. We finish with presenting some of

them.

14

OPEN PROBLEMS 4.6. (1) Does the pair (cg,co) satisfy the Bishop-Phelps-
Bollobas property for bilinear forms?

If X is uniformly convex, then L("X X --- x X;Y) has the BPBP. Is it true for the
space of bounded symmetric multilinear mappings? Recently it was shown in [27]
that the BPBP holds for symmetric bilinear forms on a Hilbert space.
Lindenstrauss [34] proved in 1963 that the set of operators whose second adjoints
attain their norms is dense in the space of bounded linear operators between Banach
spaces. That result was extended in [8] to multilinear mappings. However it remains
open for symmetric multilinear mappings.

In [14] it was shown that for a Banach space X the set of continuous 2-homogeneous
polynomials whose canonical extensions to X** attain their norms is dense. What
about the case of continuous n-homogeneous polynomials (n > 3)?
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