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Emerging evidence indicates that myeloid cells are essential for
promoting new blood vessel formation by secreting various angio-
genic factors. Given that hypoxia-inducible factor (HIF) is a critical
regulator for angiogenesis, we questioned whether HIF in myeloid
cells also plays a role in promoting angiogenesis. To address this
question, we generated a unique strain of myeloid-specific knockout
mice targeting HIF pathways using human S100A8 as a myeloid-spe-
cific promoter. We observed that mutant mice where HIF-1 is tran-
scriptionally activated in myeloid cells (by deletion of the von Hippel–
Lindau gene) resulted in erythema, enhanced neovascularization in
matrigel plugs, and increased production of vascular endothelial
growth factor (VEGF) in the bone marrow, all of which were com-
pletely abrogated by either genetic or pharmacological inactivation
of HIF-1. We further found that monocytes were the major effector
producing VEGF and S100A8 proteins driving neovascularization in
matrigel. Moreover, by using a mouse model of hindlimb ischemia
we observed significantly improved blood flow in mice intramuscu-
larly injected with HIF-1–activated monocytes. This study therefore
demonstrates that HIF-1 activation in myeloid cells promotes angio-
genesis through VEGF and S100A8 and that this may become an
attractive therapeutic strategy to treat diseases with vascular defects.

Although angiogenesis has been characterized as endothelial
cell proliferation and sprouting (1), much of recent evidence

suggest that myeloid cells (cells that give rise to monocytes and
macrophages) also play an essential part of this process. Many
studies have demonstrated that myeloid cells produce various
angiogenic factors including vascular endothelial growth factor
(VEGF) (2), interleukin 8 (IL-8) (3), basic fibroblast growth factor
(bFGF) (4), and Bv8 (5).
Many of these factors such as VEGF (6), IL-8 (7), and bFGF

(8) are in fact downstream targets of hypoxia-inducible factor
(HIF), a basic helix–loop–helix transcription factor of the Per-
ARNT-Sim superfamily. HIF is a heterodimeric complex com-
posed of a constitutively expressed HIF β-subunit and an oxygen-
sensitive HIF α-subunit (6), in which all three α-subunits known
to date (HIF-1α, -2α, and -3α) are targeted for rapid proteasomal
degradation by the von Hippel–Lindau tumor suppressor pVHL,
which acts as the substrate recognition component of an E3
ubiquitin ligase complex (9).
HIF has been extensively characterized in cancer cells as a

master regulator for hundreds of genes involved in cell survival,
adaptation to hypoxia, metabolism, and angiogenesis (6). Pre-
vious studies have reported myeloid-specific HIF knockout (KO)
mice generated by using LysM as the myeloid promoter, dem-
onstrating the role of HIF in myeloid cells in inflammatory
responses (10, 11). For instance, mice deficient for HIF-1α in
myeloid cells are more susceptible to the bacterial challenge
resulting from defects in ATP generation, which results in impaired
intracellular killing of the bacteria in macrophages (10). Mice de-
ficient for HIF-2α in myeloid cells, are on the other hand more
resistant to endotoxic shock due to altered chemokine receptor

expression on macrophages affecting their chemotactic migration
and invasion properties (11). Although these studies have under-
scored the importance of HIF in myeloid cells for inflammation, it
is still poorly understood whether HIF in myeloid cells contributes
to angiogenesis.
Here, we generated a unique strain of myeloid-specific KO

mice targeting HIF pathways, in which we used the human
S100A8 (hS100A8) promoter and found that HIF-1, but not
HIF-2, transcriptional activation in myeloid cells can promote
new blood vessel formation. S100A8, also known as myeloid-
related protein-8, is an intracellular calcium-binding protein
whose expression has been detected in myeloid cells (including
common myeloid progenitors, granulocytes/macrophage pro-
genitors, monocytes, and granulocytes) but not in hematopoietic
stem cells, cells of the lymphoid lineage, erythrocytes, or mega-
karyocytes (12). By using our unique strain of mice, we found
that monocytes, among cells of the myeloid lineage, were the
major effector driving the angiogenic effects through HIF-1–
activated VEGF and S100A8 production and that these cells
were sufficient to promote angiogenesis in matrigel and to im-
prove blood flow in a mouse model of hindlimb ischemia. Based
on our findings, we believe that HIF-1 activation in myeloid cells
may become a therapeutic strategy to treat various human dis-
eases of abnormal vascularity, such as peripheral arterial disease
and diabetic wounds.

Results
Enhanced Angiogenic Phenotypes in Mice Deficient for pVHL in Myeloid
Cells. The mice deficient for pVHL in myeloid cells using the
hS100A8 promoter (hS100A8Cre + Vhlfl/fl) exhibited erythema
particularly noticeable in the snouts, paws, ears, and the tail starting
from ∼4 wk of age (Fig. 1A). Erythema was not observed in wild-
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type (WT) mice not carrying the Cre-transgene (Fig. 1A) nor in
another myeloid-specific Vhl KO mouse strain using the LysM
promoter (LysMCre + Vhlfl/fl; Fig. S1A), previously reported by
other investigators (13). To test the possibility of whether erythema
in our hS100A8Cre + Vhlfl/fl mice (hereafter denoted as “Vhl
mutant”) was due to elevated red blood cells resulting from HIF
activation leading to erythropoietin (EPO) production (9), we
performed blood cell counts in these animals. We found that there
was no significant difference in the red blood cell numbers or he-
moglobin levels between the WT and Vhl mutant mice (Fig. 1B).
We then examined whether erythema was associated with en-

hanced angiogenesis. To do this, we first performed an antibody
array using bone marrow lysates obtained from WT or Vhl mu-
tant mice. We observed that there was a significant increase in
Vegf protein expression in Vhlmutant compared with that in WT
mice (Fig. 1C and Table S1). Based on the antibody array results,
only Vegf and a couple of others including IL-1α and PlGF
seemed to show HIF-1 dependency (Tables S1–S3), hence we
focused on Vegf protein in the following studies.
To determine whether the increase in Vegf protein would

result in increased angiogenesis in Vhl mutant mice, we s.c.
implanted matrigel plugs (14) and examined vessel formation by
immunostaining the matrigel for endothelial cells using CD31

antibodies. We found that there was a significant increase in
CD31 area densities in matrigel implanted in Vhl mutants
compared with that in WT mice (Fig. 1D). To investigate VEGF
signaling in matrigel of Vhl mutant mice in more details, we
performed Western blots using matrigel lysates that had been
implanted without VEGF supplement (but still supplemented
with bFGF). Omitting VEGF supplement still exhibited similar
vessel formation in matrigel (Fig. S1C). We observed that Vegf
and phosphorylated (therefore activated) VEGF receptor-2
(Vegfr-2), the prominent VEGF receptor on endothelial cells
(15), were significantly increased in Vhl mutant mice compared
with WT mice (Fig. 1E). Furthermore, increased S100A8 and
Hif-1α protein levels were detected in matrigel implanted in Vhl
mutant mice (Fig. 1E). We found no statistical difference in
CD11b area densities between WT and Vhl mutant mice (Fig.
1F), suggesting that monocyte infiltration to matrigel was similar
in these mice. In contrast to our Vhl mutant mice, such enhanced
neovascularization in matrigel was not observed LysMCre +
Vhlfl/fl mice (Fig. S1B).
We then blocked VEGF–VEGFR2 signaling in the matrigel

implanted in Vhl mutant mice by injecting DC101, rat anti-
mouse Vegfr-2 antibodies. We observed that DC101 significantly
abolished blood vessel formation in matrigel in a dose-dependent
manner (Fig. S1 D and E).

Angiogenic Phenotypes in Mice Deficient for pVHL Require HIF-1
Activation in Myeloid Cells. To determine whether the above an-
giogenic phenotype in Vhlmutant mice is due to HIF-1 activation
(because pVHL targets both HIF-1α and -2α for proteasomal
degradation) (16), we further disrupted the Hif-1α gene in these
mice thereby creating Vhl/Hif-1α double mutant mice (hS100A8-
Cre + Vhlfl/fl/Hif-1αfl/fl). Vhl/Hif-1α double mutant mice exhibited
significantly reduced erythema (Fig. 2A) and decreased Vegf
protein expression in the bone marrow lysate (Fig. 2B) compared
with Vhl mutant mice. Significantly increased serum levels of Vegf
in Vhl mutant mice were notably reduced in Vhl/Hif-1α double
mutant mice and this level was similar to that in WT mice
(Fig. 2C).
We then implanted matrigel in Vhl mutant mice and treated

these animals with NSC 134754, an HIF-1 inhibitor (17). NSC
134754 significantly reduced CD31 area densities along with Hif-1α,
Vegf, and S100A8 protein levels in matrigel (Fig. 2D). Matrigel
implanted in Vhl/Hif-1α double mutant mice revealed very similar
results (Fig. 2D), suggesting that neovascularization in matrigel in
Vhl mutant mice was due to HIF-1 activation in myeloid cells.
To confirm that HIF-1, but not HIF-2, activation in myeloid

cells drives blood vessel formation in matrigel, we further gener-
ated the myeloid-specificHif-1α (hS100A8Cre +Hif-1αfl/fl), Hif-2α
(hS100A8Cre +Hif-2αfl/fl), orHif-1α/Hif-2α double (hS100A8Cre +
Hif-1αfl/fl/Hif-2αfl/fl) mutant mice and implanted matrigel in these
mice. We found that CD31 area densities were significantly re-
duced in Hif-1α mutant or Hif-1α/Hif-2α double mutant mice
compared with their corresponding WT mice (Fig. 2E). On the
other hand, CD31 area densities were comparable between Hif-
2α mutant and WT mice (Fig. 2E). These results thus indicate
that HIF-1, not HIF-2, activation in myeloid cells is a major
determinant for blood vessel formation in matrigel. By per-
forming the antibody array, we observed similar Vegf protein
levels in bone marrow lysates of Hif-1α mutant and WT mice
(Fig. S2A and Table S3).

Monocytes Are the Major Effector Responsible for HIF-1–Mediated
VEGF and S100A8 Production. We first determined whether neo-
vascularization in matrigel in Vhlmutant mice derived from bone
marrow-derived cells. To do this, we performed bone marrow
transplantation (BMT) in which WT mice were reconstituted
with Vhl mutant (WT + Vhl BMT) or WT (WT + WT BMT)
bone marrow cells, or Vhl mutant mice were reconstituted with
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Fig. 1. Enhanced angiogenic phenotypes in mice deficient for pVHL in
hS100A8 myeloid cells. (A) Vhl mutant mice exhibited erythema (black
arrowheads) compared with WT mice. (B) Red blood cell (RBC) or hemo-
globin (HGB) levels in WT (n = 4) or Vhl mutant (n = 10) mice. Data are the
mean ± SEM. (C) Antibody array analyses of the Vhl mutant or WT mice
using bone marrow lysates. Note that Vegf levels (red arrowhead) were in-
creased approximately twofold in Vhl mutant mice. Quantitative results are
shown in Table S1. (D) Immunostaining of matrigel implanted in WT or Vhl
mutant mice for CD31 endothelial cells (red). Hoechst 33342 (blue) was i.v.
administered immediately before the matrigel harvest. (Scale bar: 100 μm.)
Quantification of CD31 area density is shown in the bar graph. Data are the
mean ± SEM (n = 7 for WT; n= 18 for Vhlmutant mice). *P < 0.05 determined
by unpaired Student t test. (E) Western blot of matrigel lysates obtained
from Vhl mutant or WT mice. (F) Immunostaining of matrigel in D for CD11b
(red) or CD31 (green). (Scale bar and n numbers are as in D.)
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WT (Vhl + WT BMT) bone marrow cells. Four weeks later, we
implanted matrigel in these mice and examined CD31+ endo-
thelial cells, as previously described. We observed that matrigel
harvested from WT + Vhl BMT had significantly higher CD31
area densities, Hif-1α, and S100A8 protein levels compared with
those from WT +WT BMT (Fig. 3). In contrast, Vhl +WT BMT
exhibited significantly reduced CD31 area densities compared
with WT + Vhl BMT (Fig. 3B), indicating that neovascularization
in matrigel is driven by bone marrow-derived cells. CD11b area
densities in matrigel were similar in all groups (Fig. 3B) and are
consistent with our previous results without BMT (Fig. 1F).
The hS100A8 promoter is known to target various subsets of

cells within the myeloid lineage (12). To identify which subset(s) of
the myeloid cells was responsible for the angiogenic effects in Vhl
mutant mice, we isolated myeloid subsets targeted by the hS100A8
promoter, namely common myeloid progenitors (CMPs), gran-
ulocyte-macrophage progenitors (GMPs), pregranulocytes (PreGs),

granulocytes (Grs), and monocytes by FACS. Immunophenotyping
analysis revealed that the frequency of each myeloid population
did not differ between WT and Vhl mutant mice (Fig. 4A and
Fig. S2B). The absolute numbers of whole bone marrow cells
were also similar in these animals [WT mice, (1.4 ± 0.1) × 107

cells (n = 4); Vhl mutant mice, (1.5 ± 0.2) × 107 cells (n = 4)].
By performing quantitative real-time PCR (qRT-PCR) with

20,000 cells isolated from each subset, we found that the mRNA
levels of Hif-1α and Vegf were significantly increased only in
monocytes obtained from Vhl mutant mice (Fig. 4B). Consistent
with this finding, other HIF-1 downstream target genes including
Glut-1 and Pgk were also increased only in monocytes of Vhl
mutant mice (Fig. S2C). Hif-2α or Epo transcripts were not de-
tectable in any of the myeloid populations of Vhl mutant mice
examined. Vhl mRNA levels were low in PreGs, granulocytes,
and monocytes of the Vhl mutant mice (Fig. 4B).
By performing Western blots using monocytes isolated by

FACS, we confirmed that Hif-1α, Vegf, and S100A8 proteins
were significantly increased in Vhl mutant mice, whereas these
proteins were, in turn, significantly decreased in Vhl/Hif-1α
double mutant mice (Fig. 4C). Together, these results suggest
that monocytes mediate HIF-1–induced VEGF and S100A8
production.

VEGF and S100A8 Cooperatively Act to Promote Neovascularization.
To further dissect the role of VEGF and S100A8 in monocytes,
we inactivated the Vegf gene thereby generating Vhl/Vegf double
mutant mice (hS100A8Cre + Vhlfl/fl/Vegffl/fl), and implanted
matrigel in these animals. To our surprise, we observed similar
neovascularization in matrigels implanted in Vhl/Vegf double
mutant mice compared with that in Vhl mutant mice (Fig. 5A).
To further interrogate this finding, we sorted monocytes from
Vhl or Vhl/Vegf double mutant mice and performed Western blot
and qRT-PCR analyses. We found that although VEGF was
efficiently inactivated in Vhl/Vegf double mutant mice, S100A8
expression in monocytes was similar between Vhl/Vegf dougle
and Vhl mutant mice (Fig. 5B). Because we observed higher
S100A8 protein expression in sorted monocytes of Vhl mutant
mice compared with WT (Fig. 4C), we then measured serum
S100A8 levels in these animals. We found that serum S100A8
was significantly higher in Vhl mutant mice than WT and that
S100A8 remained elevated in Vhl/Vegf double mutant mice (Fig.
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5B). This is consistent with an increased gene expression of
S100A8 in sorted monocytes of Vhl or Vhl/Vegf double mutant
mice (Fig. S2E). To test the possibility whether S100A8 pro-
duction is regulated by HIF-1, we measured serum S100A8 levels
in Vhl or Vhl/Hif-1α double mutant mice and found that the el-
evated S100A8 in Vhl mutant was significantly reduced in Vhl/
Hif-1α double mutant mice (Fig. 5C), indicating that HIF-1
regulates S100A8.
We then examined neovascularization efficiency of S100A8 in

matrigel. To do this, we implanted matrigel in WT mice that had
been supplemented with VEGF alone, S100A8 alone, or VEGF
in combination with S100A8, all of which had been supple-
mented with bFGF. We observed that although S100A8 exhibi-
ted similar CD31 area densities to VEGF, when combined
together with VEGF there was a significant increase in vessel
formation in matrigel (Fig. 5D), and this level was comparable to
that in Vhl mutant mice (Fig. 1D).

HIF-1–Activated Monocytes Promote Angiogenesis in Matrigel and
Improve Blood Flow in a Mouse Model of Hindlimb Ischemia. To
test whether HIF-1–activated monocytes are sufficient to pro-
mote neovascularization in vivo, we next sorted 100,000 mono-
cytes from WT or Vhl mutant mice, admixed them directly with
matrigel, and s.c. implanted in WT mice for 2 wk. We observed
a profound level of neovascularization in matrigel admixed with
Vhl mutant monocytes compared with that admixed with WT
monocytes, whereas CD11b levels were similar (Fig. 6A).
We then investigated if HIF-1–activated monocytes can im-

prove blood perfusion in a mouse model of hindlimb ischemia.
To do this, we isolated 50,000 monocytes from WT or Vhl mu-
tant mice by FACS, and injected them intramuscularly in the
quadrate and adductor muscle of the thigh, and gastrocnemius
muscle of WT animals 24 h after femoral artery ligation. We
observed a significant improvement in blood flow of the ligated
limb in mice injected with Vhl mutant monocytes compared with
WT monocytes (Fig. 6B). Histology of the muscle at day 14 when
the blood flow was maximally improved for both groups (Fig. 6B
and Fig. S2F) revealed an increase in CD31 area densities in mice

injected with Vhl mutant monocytes, whereas the CD11b area
densities did not differ between Vhl mutant- and WT monocyte-
injected groups (Fig. 6C). Overall these data indicate that
transcriptional activation of HIF-1 in monocytes increases
neovascularization in matrigel and improves blood flow in
hindlimb ischemia in mice.

Discussion
Here we report our findings that transcriptional activation of
HIF-1 in myeloid cells can promote angiogenesis by using our
unique strain of myeloid-specific KO mice targeting HIF path-
ways. By inactivating pVHL in hS100A8 myeloid cells, we ob-
served an erythema phenotype (Fig. 1A), enhanced blood vessel
formation in matrigel (Fig. 1D), increased VEGF production in
the bone marrow lysate (Fig. 1C), all of which were significantly
suppressed by genetic or pharmacological inhibition of HIF-1
(Fig. 2), suggesting that HIF-1 is a major mediator in myeloid
cells driving this effect. We further found that monocytes were
the major effector in cells of the myeloid lineage for VEGF and
S100A8 production (Fig. 4 B and C), promoting blood vessel
formation in matrigel and improving blood flow in the mouse
model of hindlimb ischemia (Fig. 6).
Despite the well-described myeloid-specific HIF KO mice of

LysM promoter (10, 11), we did not observe the erythema phe-
notype in Vhl mutant mice using such a promoter (Fig. S1A).
Furthermore, vessel formation in matrigel (Fig. S1B) and Hif-1α
and Vegf protein levels in sorted monocytes (Fig. S1G) were
similar between Vhl KO mice of LysM promoter and WT mice,
suggesting that the LysM promoter may differ in efficiency of
targeting subpopulations of myeloid cells. Indeed, the deletion
efficiency of Vhl was approximately three times higher in mono-
cytes of Vhl mutant mice using the hS100A8 promoter compared
with the LysM promoter (Fig. S1F).
S100A8 expression is detected in fetal myeloid progenitors as

early as at 11 d of gestation as well as immature myeloid cells in
the bone marrow, myeloid cells in the splenic red pulp and
marginal zone, and blood-borne monocytes and neutrophils in the
adult mouse (12). The hS100A8 promoter has been previously
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Fig. 4. Monocytes are the major effector mediat-
ing angiogenic effects. (A) Immunophenotyping
analyses of CMPs, GMPs, PreGs, granulocytes (Gr),
and monocytes (Mono) of WT or Vhl mutant mice.
(B) qRT-PCR analyses in 20,000 cells sorted from each
myeloid subpopulation for Hif-1α, Vhl, and Vegf.
Results are quantified as fold changes of mRNA in
Vhl mutant over WT mice. *P < 0.05, **P < 0.01, and
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used by other investigators and shown to successfully target cells
in the myeloid lineage creating mouse models of acute myeloid
leukemia (18, 19), which faithfully mimicked the human disease
in mice.
Known as the endogenous Toll-like receptor 4 agonist (20),

S100A8 has been shown to be regulated by glucocorticoids upon
LPS stimulation (21). In our study, we found that transcriptional
activation of HIF-1 in myeloid cells regulates S100A8 (Fig. 4C).
Indeed a couple of recent reports have demonstrated that the
hypoxia-independent stabilization of HIF-1α in mouse epidermis
resulted in a dramatic increase in S100A8 gene expression (22)
and that the S100A8 promoter contains HRE at the promoter
sequence upstream of the transcription start site where HIF-1
binds and transcriptionally activates S100A8 expression (23).
Although the role of S100A8 in inflammation is extensively

documented (24), its role in angiogenesis is still poorly un-
derstood. It has been demonstrated that S100A8 is secreted by
myeloid cells (25) and that prerequisite for its secretion is the
contact of myeloid cells with an inflamed endothelium (26) via
heparin sulfate proteoglycans (27). Whereas low concentrations
of S100A8 (10 ∼ 25 μg/mL) have shown to promote migration and
proliferation of endothelial cells (28) and increased vascular per-
meability (25), higher concentrations of S100A8 (200 μg/mL) have
shown to result in endothelial apoptosis (29). Other mechanisms
including S100A8/9-mediated increase in the binding capacity of
CD11b/CD18 myeloid cells onto the endothelium (30) or nitric

oxide production in myeloid cells (31) leading to vasodilation may
also participate in S100A8 myeloid cell-driven angiogenesis.
HIF-1α and -2 α, being extensively characterized for their tight

regulation by molecular oxygen via posttranslational modifica-
tion (32). Previously published studies using primary human
macrophages have demonstrated that in normoxic macrophages
HIF-2α but not HIF-1α plays a dominant role in regulating
VEGF transcription (33) whereas hypoxic macrophages rely on
both HIF-1α and -2α for VEGF expression (34). This is in
contrast to our study where we detected a significant increase in
Vegf and Glut-1 transcripts, but no detectable levels of Hif-2α or
Epo transcripts in monocytes of our myeloid-specific Vhl KO
mice (Fig. 4B), indicating HIF-1 predominance in our model
system. It is possible that the difference in subsets of myeloid
lineage (macrophage vs. monocytes) or technologies of gene
expression (transfection vs. somatic gene deletion) could have
contributed to this discrepancy.
Chronic critical limb ischemia (CLI) is characterized by

marked hypoperfusion of the affected limb, often secondary to
multilevel, atherosclerotic occlusive disease in humans (35).
Although many attempts have been made to restore the blood
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Fig. 5. VEGF and S100A8 act cooperatively to promote neovascularization
in matrigel. (A) Matrigel immunostained for CD31 (red) implanted in Vhl
mutant or Vhl/Vegf double mutant mice. Quantification of CD31 area den-
sities are shown in the bar graph (n = 5 per group). (B) Western blot (Left)
showing Hif-1α, Vegf, S100A8 protein levels in sorted monocytes obtained
from Vhl or Vhl/Vegfmutant mice. qRT-PCR for Vegf (Center) was performed
in these mice and quantified as fold changes compared with WT mice. ***P <
0.001 by unpaired Student t test. Serum S100A8 levels (Right) in WT, Vhl
mutant, or Vhl/Vegf mutant mice. *P < 0.05 and ***P < 0.001, respectively,
determined by one-way ANOVA (n = 6 per group). (C) Serum S100A8 mea-
sured in WT, Vhl mutant, or Vhl/Hif-1α mutant mice. *P < 0.05 (n = 5 per
group). (D) Immunostaining of matrigel implanted in WT that had been
admixed with VEGF alone, S100A8 alone, or VEGF in combination with
S100A8. ***P < 0.001 determined by one-way ANOVA (n = 5 per group). (Scale
bars: 100 μm in A and D.) Data in A–D are the mean ± SEM.
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Fig. 6. HIF-1–activated monocytes promote angiogenesis in matrigel and
improve blood flow in a mouse model of hindlimb ischemia. (A) Immuno-
staining of matrigel implanted in WT mice that had been admixed with
100,000 monocytes isolated from WT (WT mono) or Vhl mutant (Vhl mono)
mice for CD31 and CD11b. (Scale bar: 100 μm.) Area densities of CD31 and
CD11b in matrigel are shown (Right). ***P < 0.001 determined by Student t
test (n = 6 per group). (B) Laser Doppler flowmetry analysis of the blood
perfusion in the femoral artery ligated WT animals injected intramuscularly
with 50,000 monocytes isolated fromWTmice (WT +WTmono) or Vhlmutant
mice (WT + Vhl mono). The data are the mean ± SEM (n = 6 for WT + WT
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flow and improve tissue perfusion in patients with CLI (35), the
therapeutic outcomes have been largely mixed. Recently, autol-
ogous bone marrow-derived mononuclear cell transplantation
has been identified as a potential new therapeutic option to in-
duce therapeutic angiogenesis and there are large randomized,
placebo-controlled, double-blind studies taking place [bone
marrow outcomes trial in critical limb ischemia (BONMOTCLI),
rejuvenating endothelial progenitor cells via transcutaneous intra-
arterial supplementation (JUVENTAS), and national clinical trial
number (NCT) 00498069] to evaluate such strategy in patients with
CLI (36). Based on our results, an ex vivo approach of transcrip-
tional activation of HIF-1 in bone marrow-derived monocytes fol-
lowed by autologous transplantation of these cells to the affected
limb may also offer a highly attractive means to improve blood
flow in CLI patients.
In summary, we report that HIF-1 activation in myeloid cells,

mainly monocytes, promotes angiogenesis through VEGF and
S100A8 production. Our study thus implies that HIF-1 activation
in myeloid cells may offer a unique therapeutic strategy to treat
diseases of abnormal vascularity such diabetic wounds.

Materials and Methods
Cre-mediated inactivation of pVHL, HIF-1α, or HIF-2α in myeloid cells was
accomplished by generating mice that were homozygous for the respective

2-lox alleles as described elsewhere (16). In brief, we cross-bred mice having
lox-P flanking alleles in HIF-1α (Hif-1αfl/fl), HIF-2α (Hif-2αfl/fl), or von Hippel–
Lindau (Vhlfl/fl), with transgenic mice bearing the Cre-recombinase gene
under the hS100A8 or lysozyme (LysM) promoter. Hif-1αfl/fl, Hif-2αfl/fl, Vhlfl/fl,
and LysM-Cre mice were purchased from Jackson Laboratories and
hS100A8Cre mice were obtained from I.L.W. (37). Additional information is
available in SI Materials and Methods.
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