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a b s t r a c t

In this paper we study some geometrical properties of certain classes of uniform algebras,
in particular the ball algebra Au(BX ) of all uniformly continuous functions on the closed
unit ball and holomorphic on the open unit ball of a complex Banach space X . We prove
thatAu(BX ) has k-numerical index 1 for every k, the lushness and also the AHSP. Moreover,
the disk algebra A(D), and more in general any uniform algebra whose Choquet boundary
has no isolated points, is proved to have the polynomial Daugavet property. Most of those
properties are extended to the vector valued version AX of a uniform algebra A.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Several geometrical properties of the space of real or complex continuous functions C(K) (respectively, C(K , X)) on
a Hausdorff compact set K (respectively, with values in a Banach space X) have been obtained, related to the numerical
index [11,14,16,18–20], Daugavet property [7,15,21,22], Bishop–Phelps–Bollobás property [1–3,8], etc. Most of the results
at one point or another use the classical Urysohn lemma, that states that a Hausdorff topological space is normal if and only
if given two disjoint closed subsets can be separated by a continuous function with values on [0, 1] and taking the value 1
on one closed set and 0 on the other set.

Many of those results could not be extended to a uniform algebra (i.e. to a closed subalgebra of a complex C(K)
that separates points) up to now since the Urysohn lemma cannot be true, in general, if we ask the function to be in
a given uniform algebra, for example its most representative case, the disk algebra A(D) of functions continuous on
the closed unit complex disk D and holomorphic in the open disk D of C. But very recently B. Cascales, A.J. Guirao and
V. Kadets in [5, Lemma 2.8 and 2.12] have constructed Urysohn type lemmas in order to extend some results on the
Bishop–Phelps–Bollobás property to uniform algebras, and the functions obtained in those lemmas satisfy completely the
‘‘spirit’’ of ‘‘separating’’ the closed sets.

In this paperwe are going to show thatmost of the aforementioned properties can be proven for uniform algebras, thanks
to those Urysohn type lemmas. In particular, it is deduced from our results that the disk algebraA(D) has k-numerical index
1 for every k (Corollary 2.3), it is lush (Corollary 2.13) and has the AHSP (Corollary 2.17). Actually those results are obtained
for any uniform algebra A. Moreover, A(D), and more in general any uniform algebra whose Choquet boundary has no
isolated points, has the polynomial Daugavet property (Corollaries 2.9 and 2.10). Most of those properties are extended to
the vector valued version AX of a uniform algebra A.
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Here, C(K) stands for the space of complex-valued continuous functions defined on a compact Hausdorff space K
equipped with the supremum norm ∥ · ∥∞ and a uniform algebra is a closed subalgebra A ⊂ C(K) that separates the
points of K . We say that the uniform algebra A ⊂ C(K) is unital if the constant function 1 belongs to A. More precisely, the
complex version of Urysohn lemma is stated as follows.

Given x ∈ K , we denote by δx : A → C the evaluation functional at x given by δx(f ) = f (x), for f ∈ A. The natural
injection i : K → A∗ defined by i(t) = δt for t ∈ K is a homeomorphism from K onto (i(K), w∗), where w∗ denotes the
weak-star topology. A set S ⊂ K is said to be a boundary for the uniform algebra A if for every f ∈ A there exists x ∈ S such
that |f (x)| = ∥f ∥∞.

For a unital uniform algebra A of C(K), if

S = {x∗
∈ A∗

: ∥x∗
∥ = 1, x∗(1) = 1},

then the set Γ0(A) of all t ∈ K such that δt is an extreme point of S is a boundary for A that is called the Choquet boundary
of A.

Lemma 1.1 ([5, Lemma 2.2]). Let A ⊂ C(K) be a unital uniform algebra for some compact Hausdorff space K and Γ0 = Γ0(A).
Then, for every open set U ⊂ K with U ∩ Γ0 ≠ φ and 0 < ϵ < 1, there exist f ∈ A and t0 ∈ U ∩ Γ0 such that
f (t0) = ∥f ∥∞ = 1, |f (t)| < ϵ for every t ∈ K \ U and f (K) ⊂ Rϵ = {z ∈ C : |Re(z) − 1/2| + (1/

√
ϵ)|Im(z)| ≤ 1/2}. In

particular,

|f (t)| + (1 − ϵ)|1 − f (t)| ≤ 1, for all t ∈ K .

Given an algebra A, bym(A)we denote its spectrum. It is well known that A ⊂ C(K) is a uniform algebra if and only if the
Gelfand transform: A −→ A ⊂ C(m(A), w(A∗, A)) defined bya(φ) = φ(a) for every φ ∈ m(A) and a ∈ A is an injective
isometry. Moreover, if A is a unital uniform algebra, thenA is also a unital uniform algebra.

For a non-unital uniform algebra B ⊂ C(S), that is, a uniform algebra without 1, unless otherwise stated in the remainder
of this paper, we let K = (m(B), w∗) and identify Bwith a subalgebra of C(m(B)) by using the Gelfand transform.We denote
by A = {c1 + f : c ∈ C, f ∈ B} the ∥ · ∥∞-closed subalgebra generated by B ∪ {1}. Consider the Choquet boundary Γ0(A).
Since B is a maximal ideal of A, the Gelfand–Mazur theorem ensures that there exists v ∈ K such that B = {f ∈ A : δv = 0}.
Denote Γ0 = Γ0(A) \ {v}, then Γ0 is a boundary for B.

Lemma 1.2 ([5, Lemma 2.12]). Let B be a non-unital uniform algebra and consider K = m(B). Then, for every open set U ⊂ K
with U ∩Γ0 ≠ φ and 0 < ϵ < 1, there exist f ∈ B and t0 ∈ U ∩Γ0 such that f (t0) = ∥f ∥∞ = 1, |f (t)| < ϵ for every t ∈ K \U
and

|f (t)| + (1 − ϵ)|1 − f (t)| ≤ 1, for all t ∈ K .

We apply this Urysohn type lemma to extend results on C(K) or C(K , X) to AX concerning the numerical index, Daugavet
equation, lushness and the approximate hyperplane series property (in short AHSP). If A is a uniform algebra, then AX is
defined to be a subspace of C(K , X) such that

AX
= {f ∈ C(K , X) : x∗

◦ f ∈ A for all x∗
∈ X∗

}.

Given f ∈ A and x ∈ X , we define f ⊗ x ∈ C(K , X) by (f ⊗ x)(t) = f (t)x for t ∈ K . We write

A ⊗ X = {f ⊗ x; f ∈ A, x ∈ X}.

From the definition of AX we note that A ⊗ X ⊂ AX .
For a Banach space X , we write Π(X) to denote the subset of X × X∗ given by

Π(X) :=

(x, x∗) : x ∈ SX , x∗

∈ SX∗ , x∗(x) = 1

.

Given a bounded function Φ : SX → X , its numerical range is defined by

V (Φ) := {x∗(Φ(x)) : (x, x∗) ∈ Π(X)}

and its numerical radius is defined by

v(Φ) := sup{|λ| : λ ∈ V (Φ)}.

Let us comment that for a bounded function Φ : Ω → X , where SX ⊂ Ω ⊂ X , the above definitions are applied by just
considering V (Φ) := V (Φ|SX ).

For k ∈ N, we define

n(k)(X) = inf{v(P) : P ∈ P (kX; X), ∥P∥ = 1},

whereP (kX; X) is the space of all continuous k-homogeneous polynomials fromX intoX , and call it the polynomial numerical
index of order k of X [6]. When k = 1, it is the numerical index of X which was first suggested by G. Lumer in 1968.
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Given two complex Banach spaces X and Y , by Au(BX , Y ) we denote the space of all uniformly continuous mappings on
the closed unit ball BX and holomorphic on the open unit ball BX of X with values in Y . If X is finite dimensional since the
continuous mappings on the closed unit ball BX are uniformly continuous then we will use the standard notation A(BX , Y )
instead of Au(BX , Y ).

If we consider elements of Au(BX , X) instead of continuous k-homogeneous polynomials, we can define, as done in [17],
the analytic numerical index of X by

na(X) = inf{v(f ) : f ∈ Au(BX , X), ∥f ∥ = 1}.

Since the space P (X; X) of all continuous polynomials from X into X is dense in Au(BX , X) we have that

na(X) = inf{v(P) : P ∈ P (X; X), ∥P∥ = 1},

i.e. na(X) can be called the ‘‘non-homogeneous polynomial numerical index of X ’’. Clearly,

na(X) ≤ n(k)(X)

for every k ∈ N. We also denote by P (X) the space of scalar-valued polynomials on X .

2. The results

We first study the polynomial numerical index of order k of AX .

Theorem 2.1. Suppose that A is a uniform algebra. Then n(k)(AX ) ≥ n(k)(X) for every k ≥ 1 and na(AX ) ≥ na(X).

Proof. We prove only n(k)(X) ≤ n(k)(AX ) for every k ≥ 1, because the other case can be proved in the sameway.We assume
that n(k)(X) > 0, since otherwise the result is trivial.

Let P ∈ SP (kAX ,AX ) and 0 < ϵ < 1 be given. Choose f0 ∈ SAX so that ∥P(f0)∥ > 1 −
ϵ
6 . Find t1 ∈ Γ0 such thatP(f0)(t1)

 > 1−
ϵ
6 . Since P is continuous at f0, there exists 0 < δ < 1 such that ∥P(f0) − P(g)∥ < ϵ

6 for every g ∈ AX with
∥f0 − g∥ < δ.

Let

W = {t ∈ K : ∥f0(t) − f0(t1)∥ < δ/6, ∥P(f0)(t) − P(f0)(t1)∥ < ϵ/3}.

This set is open in K and t1 ∈ W ∩ Γ0.
From Lemmas 1.1 and 1.2, there exist a function φ : K → D and t0 ∈ W ∩ Γ0 such that φ ∈ A, φ(t0) = 1, |φ(w)| < δ

6
for every w ∈ K \ W , and

|φ(t)| +


1 −

δ

6


|1 − φ(t)| ≤ 1

for every t ∈ K .
Define Ψ : X → AX by Ψ (x) =


1 −

δ
6


(1 − φ)f0 + φx for all x ∈ X .

We note that ifµ ∈ A and g ∈ AX , thenµg ∈ AX . In fact, [x∗
◦(µg)](t) = µ(t)x∗(g(t)) =


µ(x∗

◦g)

(t) andµ(x∗

◦g) ∈ A
for x∗

∈ X∗.
Therefore, Ψ is well-defined and ∥Ψ (x)∥ ≤ 1 for every x ∈ BX . Put x0 = f0(t0) ∈ BX .
Then,f0 − Ψ (x0)

 = sup
t∈K

f0(t) −


1 −

δ

6


1 − φ(t)


f0(t) − φ(t)f0(t0)


≤ sup

t∈K


δ

6
∥f0(t)∥ + |φ(t)|∥f0(t) − f0(t0)∥ +

δ

6
|φ(t)|∥f0(t)∥



<
δ

6
+

δ

3
+

δ

6
= δ.

Hence,P(Ψ (x0))(t0)
 ≥

P(Ψ (x0))(t1)
−

P(Ψ (x0))(t1) − P(Ψ (x0))(t0)


≥
P(f0)(t1)

−
P(f0)(t1) − P(Ψ (x0))(t1)

−
P(f0)(t1) − P(f0)(t0)


−
P(Ψ (x0))(t1) − P(f0)(t1)

−
P(f0)(t0) − P(Ψ (x0))(t0)


> 1 −

ϵ

6
−

ϵ

6
−

ϵ

3
−

ϵ

6
−

ϵ

6
= 1 − ϵ.
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Choose x∗

0 ∈ SX∗ so that

x∗

0


P

Ψ (x0)


(t0)


> 1 − ϵ.

Write x0 = z0x̃0 for suitable z0 ∈ D and x̃0 ∈ SX .
Consider an entire function

z ∈ C −→ x∗

0


P

Ψ (zx̃0)


(t0)


∈ C.

By themaximummodulus theorem, there exists z1, |z1| = 1where the above function attains its maximum on D. Hence,PΨ (z1x̃0)

(t0)

 ≥
x∗

0


P

Ψ (z1x̃0)


(t0)


≥
x∗

0


P

Ψ (z0x̃0)


(t0)

 > 1 − ϵ.

Put x1 = z1x̃0 ∈ SX and consider x∗

1 ∈ SX∗ with x∗

1(x1) = 1.
Define Φ(x) = x∗

1(x)

1 −

δ
6


(1 − φ)f0 + φx ∈ AX for x ∈ X .

Note that Φ(x1) = Ψ (x1) = Ψ (z1x̃0), hencePΦ(x1)

(t0)

 > 1 − ϵ.

Define Q ∈ P (kX; X) by

Q (x) = P

Φ(x)


(t0), (x ∈ X). (2.1)

Then 1 ≥ ∥Q∥ ≥ ∥Q (x1)∥ =
PΦ(x1)


(t0)

 > 1 − ϵ.
For 0 < ϵ < n(k)(X), we can choose (x2, x∗

2) ∈ Π(X) so that

|x∗

2(Q (x2)/∥Q∥)| > v(Q/∥Q∥) − ϵ ≥ n(k)(X) − ϵ > 0.

Then |x∗

2(Q (x2))| > ∥Q∥(n(k)(X) − ϵ) > (1 − ϵ)(n(k)(X) − ϵ).
Note that

(Φ(x2), x∗

2 ◦ δt0) ∈ Π(AX ) because Φ(x2)(t0) = x2.

v(P) ≥
(x∗

2 ◦ δt0)(P(Φ(x2)))
 =

x∗

2


[P(Φ(x2))](t0)


= |x∗

2(Q (x2))| > (1 − ϵ)(n(k)(X) − ϵ).

Hence, we get that n(k)(AX ) ≥ (1 − ϵ)

n(k)(X) − ϵ


. Since ϵ is arbitrary, n(k)(AX ) ≥ n(k)(X). In the above, we do not use the

homogeneity of k-homogeneous polynomials. Therefore, it is true for the analytic numerical index. �

Theorem 2.2. Let A be a uniform algebra and X be a Banach space. Assume that AX has the following property: For every
P ∈ P (kX; X) and t ∈ K ,Q : AX

−→ C(K , X) where Q (f )(t) = P(f (t)) satisfies that Q (f ) ∈ AX for every f ∈ AX . Then
n(k)(AX ) = n(k)(X).

Proof. By Theorem 2.1 we only have to prove that n(k)(AX ) ≤ n(k)(X).
Consider

L =

(f , x∗

◦ δt) : f ∈ SAX , t ∈ K , x∗
∈ SX∗ and x∗(f (t)) = 1


.

For the projection π1 : AX
× (AX )∗ → AX we have π1(L) = SAX , hence for every Q ∈ P (kAX

; AX ) we can see that

v(Q ) = sup
x∗(Q (f )(t))

 : (f , x∗
◦ δt) ∈ L


(see [12]).

Let P ∈ P (kX; X), ∥P∥ = 1. Define Q ∈ P (kAX
; AX ) by Q (f )(t) = P(f (t)). Then ∥Q∥ = 1 and v(Q ) ≥ n(k)(AX ). For every

ϵ > 0, there exists (f , x∗
◦ δt) ∈ L such that

n(k)(AX ) − ϵ ≤ v(Q ) − ϵ <
(x∗

◦ δt)Q (f )
 =

x∗(P(f (t)))
 ≤ v(P),

therefore n(k)(AX ) ≤ n(k)(X). �

We do not use the homogeneity of k-homogeneous polynomials in the above proof. Hence, na(AX ) ≤ na(X) under the
similar condition for every F ∈ Au(BX , X) and t ∈ K to that of Theorem 2.2.

Corollary 2.3. For any Banach space X, and k ≥ 1, the following hold.

(1) For a uniform algebra A we have n(k)(A) = 1 for every k ≥ 1 and na(A) = 1.
(2) n(k)(A(Dn, X)) = n(k)(X) and na(A(Dn, X)) = na(X) for every n ∈ N.
(3) n(k)


Au(BX )


= 1 for every k ≥ 1 and na


Au(BX )


= 1.
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Proof. (1) follows from Theorem 2.1 and the fact that n(k)(C) = 1 for every k ≥ 1. (2) follows from Theorems 2.1 and 2.2,
because A(Dn, X) = A(Dn)X . We note here that every weakly holomorphic function is holomorphic. (3) follows from the
fact that Au(BX ) is identified with a uniform algebra Au(BX ) of C(K), where

K =


{δx : x ∈ BX }

w∗

, w

Au(BX )

∗, Au(BX )


by using the Gelfand transform. �

By Aw∗u(BY∗ , X) we denote the space of all w∗-uniformly continuous mappings on the closed unit ball and holomorphic
on the open unit ball of the dual Y ∗ of a complex Banach space Y with values in X and by Awu(BY , X) we denote the space
of all weakly uniformly continuous mappings on the closed unit ball and holomorphic on the open unit ball of a complex
Banach space Y with values in X .

Corollary 2.4. Let X and Y be Banach spaces.

(1) n(k)

Aw∗u(BY∗ , X)


= n(k)(X) for every k ≥ 1 and na


Aw∗u(BY∗ , X)


= na(X).

(2) n(k)

Awu(BY , X)


= n(k)(X) for every k ≥ 1 and na


Awu(BY , X)


= na(X).

Proof. (1) We note that (BY∗ , w∗) is compact and Aw∗u(BY∗ , X) = Aw∗u(BY∗)X .
(2) It is enough to see that Awu(BY , X) is isometrically isomorphic to Aw∗u(BY∗∗ , X). For each f ∈ Cwu(BY , X) we find

a unique extensionf ∈ Cw∗u(BY∗∗ , X) of f , because BY is w∗ dense in BY∗∗ and X is complete. Since it is obvious that if g
is a polynomial, theng is also a polynomial, and the weakly continuous polynomials on the open unit ball are dense in
Awu(BY , X) we get thatf ∈ Aw∗u(BY∗∗ , X) for every f ∈ Awu(BY , X). Conversely, for any g ∈ Aw∗u(BY∗∗ , X) we can see that
g|BY ∈ Awu(BY , X), and so g|BY = g by the uniqueness. Hence the mapping T : Awu(BY , X) −→ Aw∗u(BY∗∗ , X) defined by
T (f ) =f is an isometric isomorphism. �

Remark 2.5. Corollary 2.4 actually shows that if X or Y is finite dimensional, then n(k)

Au(BY , X)


= n(k)(X) for every k ≥ 1

and na

Au(BY , X)


= na(X). If Y is finite dimensional, we note that Au(BY , X) = Awu(BY , X).

Suppose that X is n-dimensional. If we identify X with Cn then g = (g1, . . . , gn) ∈ Au(BY )
X
if and only if g ∈

C(m(Au(BY )), X) and x∗
◦ g ∈ Au(BY ) for every x∗

∈ X∗, and this happens if and only if g1, . . . , gn ∈ Au(BY ). Hence

gj =fj, fj ∈ Au(BY ) for every j = 1, . . . , n. Clearly the mapping T : Au(BY )
X

−→ Au(BY , X) defined by T (g) = (f1, . . . , fn)
provides an isometric isomorphism.

The problem appears when X and Y are both infinite dimensional. In this case it is not clear at all that Au(BY , X) can be
included in C(K , X) for a suitable compact set K .

We next see the application of the Urysohn type lemmas to show the polynomial Daugavet property of AX . A Banach
space X is said to have the Daugavet property if the norm identity, the so called Daugavet equation,

∥Id + T∥ = 1 + ∥T∥

holds for every rank-one operator (and hence for every weakly compact operator) T ∈ L(X). If this happens for every weakly
compact polynomial, we say that X has the polynomial Daugavet property.

Lemma 2.6 ([7, Proposition 1.3 and Corollary 2.2]). Let X be a real or complex Banach space. Then the following are equivalent.

(1) X has the polynomial Daugavet property, that is, every weakly compact P ∈ P (X; X) satisfies the Daugavet equation.
(2) For every p ∈ P (X) with ∥p∥ = 1, every x0 ∈ SX , and every ϵ > 0, there exist ω ∈ T and y ∈ BX such that

Reωp(y) > 1 − ϵ and ∥x0 + ωy∥ > 2 − ϵ.

(3) Every weakly compact P ∈ P (X, X) satisfies sup ReV (P) = ∥P∥.

The next theorem shows that a result by Werner [21, Theorem 3.3] on the Daugavet equation is actually true for the
polynomial Daugavet equation.

Theorem 2.7. Suppose that A is a uniform algebrawhose Choquet boundary has no isolated points. For every P ∈ SP (AX ), f0 ∈ SAX
and ϵ > 0, there exist some ω ∈ SC and g ∈ BAX such that ReωP(g) > 1 − ϵ and ∥f0 + ωg∥ > 2 − ϵ.

Proof. Let 0 < ϵ < 1 be given, and fix P ∈ SP (AX ) and f0 ∈ SAX .
Choose h ∈ SAX so that |P(h)| > 1 − ϵ/2, and |ω| = 1 such that ReωP(h) = |P(h)| > 1 − ϵ/2. Choose t0 ∈ Γ0 so that

∥f0(t0)∥ > 1 − ϵ/8.
Let

U = {t ∈ K : ∥f0(t) − f0(t0)∥ < ϵ/8, ∥h(t) − h(t0)∥ < ϵ/8}.
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We have two possible cases.
Case 1.
There exists a sequence (ti)∞i=1 ⊂ U such that ∥ω−1f0(ti) − h(ti)∥ goes to 0. Then, we get

∥f0 + ωh∥ ≥ sup
i

∥f0(ti) + ωh(ti)∥

≥ sup
i

(2∥f0(t0)∥ − 2∥f0(t0) − f0(ti)∥ − ∥f0(ti) − ωh(ti)∥)

≥ 2 −
ϵ

4
−

ϵ

4
−

ϵ

4
> 2 − ϵ

which completes our proof.
Case 2.
There exists α > 0 such that ∥ω−1f0(t)− h(t)∥ > α for every t ∈ U . Since t0 is not an isolated point of Γ0 and belongs to

the open set U , there exist nonempty disjoint open subsets Ui ⊂ K such that ∪
∞

i=1 Ui ⊂ U and Ui ∩ Γ0 ≠ ∅ for every i. Thus
Lemmas 1.1 and 1.2 imply that there exist φi ∈ A and ti ∈ Γ0 ∩ Ui such that φi(ti) = ∥φi∥∞ = 1, |φi(t)| < ϵ

2i+3 for every
t ∈ U c

i and

1 −

ϵ

2i+3


|1 − φi(t)| + |φi(t)| ≤ 1 for every t ∈ K .

Put

h̃i = h + φi

ω−1f0(ti) − h(ti)


∈ AX .

For every t ∈ ∪
∞

i=1 Ui, we get that

∥h̃i(t)∥ = ∥h(t) + φi(t)ω−1f0(ti) − φi(t)h(ti)∥
≤ ∥h(t) − h(ti)∥ + ∥h(ti) − φi(t)h(ti)∥ + ∥φi(t)ω−1f0(ti)∥
≤ ∥h(t) − h(t0)∥ + ∥h(t0) − h(ti)∥ + |1 − φi(t)| + |φi(t)|

<
ϵ

4
+


1 −

ϵ

2i+3


|1 − φi(t)| + |φ(t)| +

ϵ

2i+3
|1 − φi(t)|

≤
ϵ

4
+ 1 +

ϵ

2i+2
< 1 +

ϵ

2
.

For every t ∈ K \ ∪
∞

i=1 Ui

∥h̃i(t)∥ ≤ ∥h(t)∥ + |φi(t)|
ω−1f0(ti) − h(ti)


≤ 1 +

ϵ

2i+2
< 1 +

ϵ

2
.

Moreover,

∥h̃i∥ ≥ ∥h̃i(ti)∥ = ∥ω−1f0(ti)∥ = ∥f0(ti)∥
≥ ∥f0(t0)∥ − ∥f0(t0) − f0(ti)∥

≥ 1 −
ϵ

8
−

ϵ

8
> 1 −

ϵ

2
.

Put gi = h̃i/∥h̃i∥. We get

∥h̃i − gi∥ =
1 − ∥h̃i∥

 ≤
ϵ

2
.

On the other hand, we see that for any (βi) ∈ ℓ∞

sup
n

 n
i=1

βiφi

ω−1f0(ti) − h(ti)

 ≤ sup
n

sup
t∈K

n
i=1

2|βi|
φi(t)


≤ 2


1 +

ϵ

8


sup

i
|βi|.

It follows from [9, Theorem V.6] that


∞

i=1 φi

ω−1f0(ti) − h(ti)


is weakly unconditionally Cauchy.

Since
φk(ω

−1f0(tk) − h(tk))
 > α for every k ∈ N, the Bessaga–Pełczyński selection principle allows us to extract

a basic subsequence

φσ(k)(ω

−1f0(tσ(k)) − h(tσ(k)))

, which is equivalent to the unit vector basis of c0 [9, p. 45]. It then

follows from the weak continuity of polynomials on a bounded subset of real or complex c0 that ReωP(h̃σ(k)) converges to
ReωP(h) [10, Proposition 1.59] as k → ∞.
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Choose i ∈ N so that ReωP(h̃i) > 1 − ϵ/2. It follows that ReωP(gi) > 1 − ϵ.
Finally,

∥f0 + ωgi∥ ≥ ∥f0 + ωh̃i∥ − ∥gi − h̃i∥

≥ ∥f0(ti) + ωh̃i(ti)∥ − ϵ/2 = 2∥f0(ti)∥ − ϵ/2
≥ 2∥f0(t0)∥ − 2∥f0(t0) − f0(ti)∥ − ϵ/2

> 2 −
ϵ

4
−

ϵ

4
−

ϵ

2
= 2 − ϵ. �

Corollary 2.8. The argument of the above proof is true for any closed subspace B of AX with A


X ⊂ B, that is, every weakly
compact P ∈ P (B; B) satisfies the Daugavet equation which means that B has the polynomial Daugavet property.

Corollary 2.9. If A is a uniform algebra whose Choquet boundary has no isolated points, then every weakly compact P ∈

P (AX
; AX ) satisfies the Daugavet equation which means that AX has the polynomial Daugavet property.

Since given a ball U in Cn or the polydisk Dn the Choquet boundary of A(U) does not have isolated points, we have the
following corollary, that extends a result by Wojtaszczyk [23, Remark after Corollary 3].

Corollary 2.10. If U is a ball in Cn or the polydisk Dn, then A(U, X) has the polynomial Daugavet property for every complex
Banach space X. In particular, A(U) has the polynomial Daugavet property.

Theorem 2.11. Let A be a uniform algebra and X be a Banach space with the polynomial Daugavet property. Then AX has the
polynomial Daugavet property.

Proof. Let P ∈ P (AX
; AX ) be a weakly compact polynomial. We follow the proof of Theorem 2.1. Define Q ∈ P (X; X) to

satisfy the Eq. (2.1) and use the same notations as in Theorem 2.1. Since Q ∈ P (X; X) is a weakly compact polynomial, we
apply Lemma 2.6 and get that sup ReV (Q ) = ∥Q∥ > 1 − ϵ.

Choose (x2, x∗

2) ∈ Π(X) so that Rex∗

2(Q (x2)) > ∥Q∥ − ϵ > 2 − ϵ.
Note that

(Φ(x2), x∗

2 ◦ δt0) ∈ Π(AX ) and ∥Q∥ > 1 − ϵ.

We get

Re(x∗

2 ◦ δt0)(P(Φ(x2))) = Rex∗

2([P(Φ(x2))](t0))
= Rex∗

2(Q (x2)) > 1 − 2ϵ.

Since ϵ is arbitrary, we get sup ReV (P) = 1 = ∥P∥. This implies that AX has the polynomial Daugavet property. �

The concept of lushness was introduced to study an infinite dimensional Banach space with the numerical index 1 [4].
The fact that a Banach space X has numerical index 1 means that the norm of any operator on X is the same as its numerical
radius. Lushness has been known to be the weakest among quite a few isometric properties in the literature which are
sufficient conditions for a Banach space to have the numerical index 1.

A Banach space X is said to be lush if for every x, y ∈ SX and for every ϵ > 0 there is a slice

S = S(BX , x∗, ϵ) = {x ∈ BX : Rex∗(x) > 1 − ϵ}, x∗
∈ SX∗

such that x ∈ S and dist(y, aconv(S)) < ϵ.

Theorem 2.12. Suppose that A is a uniform algebra.

(1) If X is lush, then AX is lush. In particular, A is lush.
(2) If A is unital and AX is lush, then X is lush.

Proof. (1) Assume that X is lush. By using [13, Proposition 2.1], it is enough to show that for every f ∈ SAX , g ∈ BAX , n ∈ N
and ϵ > 0, there exist positive numbers (λk)

n
k=1,


λk = 1 and functions (fk)nk=1 ⊂ BAX such thatf +

n
k=1

fk

 > n + 1 − ϵ,

g −

n
k=1

λke2π ik/nfk

 ≤ ϵ +
2π
n

.

Choose t1 ∈ Γ0 so that f (t1) ∈ SX . Apply [13, Proposition 2.1] to f (t1) and g(t1) and get positive numbers
(λk)

n
k=1,

n
k=1 λk = 1 and vectors (xk)nk=1 ⊂ BX such thatf (t1) +

n
k=1

xk

 > n + 1 −
ϵ

3
,

g(t1) −

n
k=1

λke2π ik/nxk

 ≤
ϵ

3
+

2π
n

.
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Set

U =

t ∈ K : ∥g(t) − g(t1)∥ < ϵ/3, ∥f (t) − f (t1)∥ < ϵ/3


.

Apply Lemmas 1.1 and 1.2 to find φ ∈ A and t2 ∈ Γ0 ∩U such that φ(t2) = ∥φ∥∞ = 1, |φ(t)| < ϵ/6 for every t ∈ K \U and

|φ(t)| +


1 −

ϵ

6


|1 − φ(t)| ≤ 1, for all t ∈ K .

For each 1 ≤ k ≤ n define

fk(t) = φ(t)xk +


1 −

ϵ

6


(1 − φ(t))e−2π ik/ng(t) ∈ BAX .

We can see thatf +

n
k=1

fk

 ≥

f (t2) +

n
k=1

fk(t2)
 =

f (t2) +

n
k=1

xk


≥

f (t1) +

n
k=1

xk

− ∥f (t1) − f (t2)∥

> n + 1 − ϵ.

For t ∈ U , we get from ∥g(t) − g(t1)∥ < ϵ/3 thatg(t) −

n
k=1

λke2π ik/nfk(t)
 =

φ(t)

g(t) −

n
k=1

λke2π ik/nxk


+

ϵ

6
(1 − φ(t))g(t)


≤

g(t) −

n
k=1

λke2π ik/nxk

+

ϵ

6
(1 − φ(t))g(t)


≤ ∥g(t) − g(t1)∥ +

g(t1) −

n
k=1

λke2π ik/nxk

+ ϵ/3

≤
ϵ

3
+

ϵ

3
+

2π
n

+
ϵ

3
= ϵ +

2π
n

,

and for t ∈ K \ U we getg(t) −

n
k=1

λke2π ik/nfk(t)
 =

φ(t)

g(t) −

n
k=1

λke2π ik/nxk


+

ϵ

6


1 − φ(t)


g(t)


≤ |φ(t)|

g(t) −

n
k=1

λke2π ik/nxk

+
ϵ

6
(1 − φ(t))g(t)


≤

ϵ

3
+

ϵ

3
< ϵ.

(2) Assume that A is unital and AX is lush. Similarly to the proof of (i), it is enough to show that for every x ∈ SX , y ∈

BX , n ∈ N and ϵ > 0, there exist positive numbers (λk)
n
k=1,

n
k=1 λk = 1 and vectors (xk)nk=1 ⊂ BX such thatx +

n
k=1

xk

 > n + 1 − ϵ,

y −

n
k=1

λke2π ik/nxk

 ≤ ϵ +
2π
n

.

Since A is unital, we can define f ∈ SAX and g ∈ BAX by f (t) = x and g(t) = y for every t ∈ K .
Since AX is lush, we apply [13, Proposition 2.1] to f and g to get positive numbers (λk)

n
k=1,


λk = 1 and functions

(fk)nk=1 ⊂ BAX such thatf +

n
k=1

fk

 > n + 1 − ϵ,

g −

n
k=1

λke2π ik/nfk

 ≤ ϵ +
2π
n

.

Choose t1 so thatf (t1) +

n
k=1

fk(t1)
 > n + 1 − ϵ,
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then x +

n
k=1

fk(t1)
 > n + 1 − ϵ,

y −

n
k=1

λke2π ik/nfk(t1)
 ≤ ϵ +

2π
n

. �

Corollary 2.13. If X is lush, then for any Banach space Y

(1) Au(BY ) is lush.
(2) Aw∗u(BY∗ , X) is lush.
(3) Awu(BY , X) is lush.

We finally study the applications of the Urysohn type lemmas to the AHSP of AX . A Banach space X is said to have the AHSP
if for every ϵ > 0 there exist γ (ϵ) > 0 and η(ϵ) > 0 with limϵ→0+ γ (ϵ) = 0 such that for every sequence (xk)∞k=1 ⊂ BX and
for every convex series


∞

k=1 αk satisfying ∞
k=1

αkxk

 > 1 − η(ϵ)

there exist a subset A ⊂ N, a subset {zk : k ∈ A} ⊂ SX and x∗
∈ SX∗ such that

(i)


k∈A αk > 1 − γ (ϵ)

(ii) ∥zk − xk∥ < ϵ for all k ∈ A, and
(iii) x∗(zk) = 1 for all k ∈ A.

It is easy to check that the AHSP holds if it is satisfied just for every finite convex combination instead of every infinite
convex series. This property was introduced in [1] to characterize a Banach space X such that the pair (ℓ1, X) has the
Bishop–Phelps–Bollobás property for operators. The following Banach spaces were shown to have the AHSP (see [1,8]):
(a) a finite dimensional space, (b) a real or complex space L1(µ) for a σ -finite measure µ, (c) a uniformly convex space, (d) a
lush space, and (see [2]) (e) the space of continuous mappings C(K , X) defined on a compact Hausdorff topological space K
with values in a uniformly convex Banach space X . Since every lush space has the AHSP, Theorem 2.12 implies the following.

Corollary 2.14. Suppose that A is a uniform algebra.

(1) If X is lush, then AX has the AHSP. In particular, A has the AHSP.
(2) If A is unital and AX is lush, then X has the AHSP.

Now we generalize this corollary.

Theorem 2.15. Suppose that A is a uniform algebra.

(1) If X has the AHSP, then AX has the AHSP.
(2) If A is unital and AX has the AHSP, then X has the AHSP.

Proof. (1) Assume that X has the AHSP with the positive numbers η(ϵ) and γ (ϵ) for ϵ > 0. Let (fk)nk=1 ⊂ BAX and a finite
convex series

n
k=1 αk satisfying n

k=1

αkfk

 > 1 − η(ϵ/3).

Choose t1 ∈ Γ0 so that n
k=1

αkfk(t1)

 > 1 − η(ϵ/3).

Find A ⊂ {1, . . . , n} such that there exist {zk : k ∈ A} ⊂ SX and z∗
∈ Sz∗ such that


k∈A αk > 1−γ (ϵ/3), ∥zk−fk(t1)∥ < ϵ/3

for all k ∈ A and z∗(zk) = 1 for all k ∈ A. Consider an open set

U =


k∈A


t ∈ K : ∥fk(t) − fk(t1)∥ < ϵ


.

From Lemmas 1.1 and 1.2 it follows that given ϵ/6 > 0 there exist φ ∈ A and t2 ∈ Γ0 ∩ U such that φ(t2) = ∥φ∥∞ =

1, |φ(t)| < ϵ/6 for every t ∈ K \ U and

|φ(t)| +


1 −

ϵ

6


|1 − φ(t)| ≤ 1, for all t ∈ K .
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Define for k ∈ A

gk = φzk +


1 −

ϵ

6


(1 − φ)fk ∈ AX .

Then,

∥gk(t)∥ ≤ |φ(t)| +


1 −

ϵ

6


|1 − φ(t)| ≤ 1 and gk(t2) = zk.

We get that for t ∈ Ugk(t) − fk(t)
 =

zk − fk(t)

φ(t) −


1 − φ(t)


fk(t)


≤
zk − fk(t)

+

ϵ

6


1 − φ(t)


fk(t)


<
zk − fk(t1)

+
fk(t1) − fk(t)

+
ϵ

3

≤
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ,

and for t ∈ K \ Ugk(t) − fk(t)
 =

zk − fk(t)

φ(t) −

ϵ

6


1 − φ(t)


fk(t)


≤ |φ(t)|

zk − fk(t)
+

ϵ

6


1 − φ(t)


fk(t)


≤ ϵ.

The fact that

z∗

◦ δt2

(gk) = 1 for every k ∈ A completes the proof.

(2) Assume that AX has the AHSP with the positive numbers η(ϵ) and γ (ϵ) for ϵ > 0. Given a sequence (xk)∞k=1 ⊂ BX and
a convex series


∞

k=1 αk, assume that ∞
k=1

αkxk

 > 1 − η(ϵ).

Since A is unital, for each k ∈ N we define fk ∈ BAX by fk(t) = xk for all t ∈ K . We can get ∞
k=1

αkfk

 > 1 − η(ϵ).

By the assumption there exist A ⊂ N, {gk : k ∈ A} ⊂ SAX and φ ∈ S(AX )∗ such that


k∈A αk > 1− γ (ϵ), ∥gk − fk∥ < ϵ for all
k ∈ A, and φ(gk) = 1 for all k ∈ A. From these it follows that ∥


k∈A αkgk∥ =


k∈A αk. Choose t0 ∈ K so that

k∈A

αkgk(t0)

 =


k∈A

αk.

Choose also x∗
∈ SX so that x∗


k∈A αkgk(t0)


=


k∈A αk. Put zk = gk(t0) for every k ∈ A. Clearly ∥xk − zk∥ < ϵ and
x∗(zk) = 1 for every k ∈ A, hence X has the AHSP. �

For a complex Banach space X , it follows from Theorem 2.15 that C(K , X) has the AHSP if and only if X has the AHSP. In
case of a real Banach space X , it was shown in [8, Theorem 11] that if C(K , X) has the AHSP, then X has the AHSP. The other
implication can be easily proved by modifying the proof of Theorem 2.15(1) with the classical Urysohn lemma. Indeed,
assume that X has the AHSP with the positive numbers η(ϵ) and γ (ϵ) for ϵ > 0. Let (fk)nk=1 ⊂ BC(K ,X) and a finite convex
series

n
k=1 αk satisfying n

k=1

αkfk

 > 1 − η(ϵ).

Choose t0 ∈ K so that n
k=1

αkfk(t0)

 > 1 − η(ϵ).
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We next take an open neighborhood U of t0 such that for every t ∈ U n
k=1

αkfk(t)

 > 1 − η(ϵ) and ∥fk(t) − fk(t0)∥ < ϵ

for every k = 1, . . . , n. Since X has the AHSP, we can find A ⊂ N such that there exist {zk : k ∈ A} ⊂ SX and z∗
∈ Sz∗

satisfying:


k∈A αk > 1 − γ (ϵ), ∥zk − fk(t0)∥ < ϵ for all k ∈ A and z∗(zk) = 1 for all k ∈ A. From the classical Urysohn
lemma, there exists a non-negative function φ ∈ C(K) such that φ(t0) = ∥φ∥∞ = 1, and |φ(t)| = 0 for every t ∈ K \ U .
Define

gk = φzk + (1 − ϵ)(1 − φ)fk ∈ C(K , X).

Then, |gk(t)| ≤ |φ(t)| + (1 − ϵ)|1 − φ(t)| ≤ φ(t) + 1 − φ(t) = 1 and gk(t0) = zk. We also can see that for t ∈ Ugk(t) − fk(t)
 =

zk − fk(t)

φ(t) − ϵ


1 − φ(t)


fk(t)


≤
zk − fk(t)

+ 2ϵ <
zk − fk(t0)

+
fk(t0) − fk(t)

+ 2ϵ
≤ 4ϵ,

and for t ∈ K \ Ugk(t) − fk(t)
 =

zk − fk(t)

φ(t) − ϵ


1 − φ(t)


fk(t)


≤ ϵ,

and

z∗

◦ δt0

(gk) = 1 for every k ∈ A.

Remark 2.16. Theorems 2.1, 2.7, 2.11, 2.12 and 2.15 also hold for every subspace B ⊂ AX which satisfies A


X ⊂ B and
fg ∈ B for every f ∈ A and g ∈ B proven in an analogous way.

Corollary 2.17. If X has the AHSP, then for any Banach space Y

(1) Au(BY ) has the AHSP.
(2) Aw∗u(BY∗ , X) has the AHSP.
(3) Awu(BY , X) has the AHSP.
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