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The temporal evolution of edge-localized modes (ELMs) has been studied using a 2-D electron

cyclotron emission imaging system in the KSTAR tokamak. The ELMs are observed to evolve in

three distinctive stages: the initial linear growth of multiple filamentary structures having a net

poloidal rotation, the interim state of regularly spaced saturated filaments, and the final crash

through a short transient phase characterized by abrupt changes in the relative amplitudes and

distance among filaments. The crash phase, typically consisted of multiple bursts of a single

filament, involves a complex dynamics, poloidal elongation of the bursting filament, development

of a fingerlike bulge, and fast localized burst through the finger. Substantial alterations of the ELM

dynamics, such as mode number, poloidal rotation, and crash time scale, have been observed under

external magnetic perturbations with the toroidal mode number n ¼ 1. VC 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.3694842]

I. INTRODUCTION

High-confinement mode (H-mode) in tokamak plasmas, a

promising operation mode for future burning plasma devices

such as ITER, relies on an edge transport barrier for confine-

ment enhancement.1 The transport barrier region (also called

pedestal) is prone to the filamentary perturbations called edge

localized modes (ELMs) (Ref. 2) due to the excess pressure

built in that region. Understanding and control of the ELMs

are considered essential for impurity transport and safety of

the first wall in H-mode based operations because the ELM

instabilities are terminated with a rapid ejection of the pedes-

tal particles and heat onto localized regions of the first wall. In

particular, the heat load on the impacted wall, projected to be

up to tens of MJ per event on ITER, can be detrimental well

beyond the tolerable limit of the wall material.3

The onset and subsequent evolution of ELMs have been

investigated extensively since the discovery of H-mode. The

observed onset thresholds of ELMs are generally in good

agreement with theoretical predictions based on linear magne-

tohydrodynamic (MHD) instabilities, i.e., pressure-driven bal-

looning modes modified by current-driven kink modes.4

Substantial details of ELM dynamics have also been revealed

experimentally in multiple tokamaks:5–10 (1) prior to the

crash, the ELMs are filamentary perturbation of the electron

density formed along the local magnetic field lines in the ped-

estal, (2) during the crash phase, the ELM filaments suddenly

detach or burst at different times from the pedestal and expand

radially into the scrape-off layer (SOL), and (3) the ELM

crash induces a rapid ejection of heat and particles from the

pedestal out to the SOL.

During recent experiments in the KSTAR tokamak,11

the details of the entire ELM evolution process have been

observed in real-time 2D images via a 2D electron cyclotron

emission imaging (ECEI) system,12 revealing nonlinear and

nonuniform nature of the ELM growth and burst process

with sufficient temporal and spatial resolutions.13 This paper

summarizes the ELM dynamics observed in typical KSTAR

H-mode plasmas and reports new observations on altered

ELM dynamics under external magnetic perturbations fol-

lowing a brief introduction of the KSTAR ECEI system.

II. ELECTRON CYCLOTRON EMISSION IMAGING IN
KSTAR

The ECEI is a 2D extension of the established radiometry

for the local measurements of electron cyclotron emission

(ECE) intensity (Trad), which is proportional to the electron

temperature (Te) in optically thick plasmas.14 The ECEI sys-

tems recently launched in multiple tokamaks have provided

high-resolution 2D Te fluctuation images inside the tokamak

plasmas where the optical depth (s) for ECE is large (s> 1),

making substantial contributions to the physics understanding

of sawteeth,15 tearing modes,16 and Alfvén eigenmodes.17

The KSTAR ECEI system12 consists of a pair of inde-

pendent detector arrays and a large aperture optics as illus-

trated in Fig. 1(a), providing a simultaneous measurement of

two regions in the same poloidal crosssection. The two view-

ing areas, which correspond to the individual detector arrays as

denoted by HFS (high-field side) and LFS (low-field side) in

the figure, can be placed anywhere in the poloidal crosssection

a)Paper YI2 5, Bull. Am. Phys. Soc. 56, 359 (2011).
b)Invited speaker.
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with a variable vertical coverage from �30 to �90 cm owing

to the wide-band (85–145 GHz) microwave heterodyne detec-

tion technologies18 and the optimized zooming and focusing

capabilities of the optics. This flexibility has allowed various

combinations of HFS and LFS view positions, providing excel-

lent opportunities in studying a variety of plasma instabilities

and turbulence phenomena in 2D such as sawteeth, tearing

modes, ELMs, and turbulent fluctuations during H-mode

transition.

Each detector array provides 24 (vertical)� 8 (radial)

¼ 192 local Trad measurements with a spatial resolution

�1–2 cm and a time resolution �1 ls. The detector arrays

are optimized for the extraordinary (X-) mode 2nd harmonic

ECE at B0 ¼ 2 T (the magnetic field at the major radius

R0 ¼ 1.8 m), which is a linearly polarized wave perpendicu-

lar to the magnetic field. For high field operations B0> 3 T,

the X-mode 2nd harmonic ECE exceeds the detectable

range. Instead, the detection of the parallel-polarized ordi-

nary (O-) mode fundamental ECE has been recently demon-

strated using a pair of large-aperture polarization rotators.19

Fig. 1(b) shows an example of simultaneous measurement

of core and edge instabilities, demonstrating the unprecedented

diagnostic capability of the ECEI system. Here, the HFS image

shows an internal kink mode in the central region, while the

LFS image shows the ELM filaments in the edge. Both images

are plotted in the same dTrad=hTradi scale, where hTradi denotes

a time average and dTrad � Trad � hTradi. Note that the

observed rotation of the ELM filaments is counterclockwise

(electron diamagnetic drift direction) in the ECEI view in oppo-

site to the clockwise rotation of the core, indicating a strong

flow shear.

The ECE localization as well as the relation dTrad=hTradi
¼ dTe=hTei (or equivalently Trad / Te) will hold true in the

central region where s� 1. The ECE localization is presum-

ably still valid for the filamentary region as implied by the

high contrast and coherent poloidal rotation of the filaments.

This assertion can be substantiated by considering the radial s
profile in the edge region for a typical KSTAR H-mode20

according to the approximate formula s � 2:5neð½1019m�3�Þ
Teð½keV�Þ(Ref. 14) for the 2nd harmonic X-mode ECE propa-

gating perpendicular to the magnetic field. Even with the con-

servative values ne& 1� 1019m�3 and Te& 0:5 keV for the

pedestal top, the estimated optical depth is s > 1 at the left side

of the filamentary region, i.e., the pedestal top region because

the ELMs are generally believed to develop at the steepest pres-

sure gradient.2,4 Combined with the observed coherent rotation

of the entire filaments in the poloidal direction, this supports the

validity of the ECE local measurement for all filament regions.

On the other hand, the fluctuation dTrad=hTradi will contain the

finite density effect in the case of marginal optical depth,12,13

i.e.,dTrad=hTradi ¼ ð1þ A2ÞdTe=hTei þ A2dne=hnei, where A2

¼ ð1� rÞse�s=ð1� e�sÞð1� re�sÞ and r is the wall reflection

coefficient. For example, A2 � 0:3 using s ¼ 1 and

r ¼ 0.6, and the ne fluctuation of �30% will result in the Trad

fluctuation of �9%. A precise physical interpretation of

dTrad=hTradi is difficult at present due to the uncertainty in the

density fluctuation level and the wall reflection coefficient. Near

the last closed flux surface (LCFS) and outside, the ECE is not

localized any longer and the ECEI measurements become

invalid.

III. ELM DYNAMICS—UNPERTURBED CASE

In 2010 KSTAR campaign, ELMy H-mode plasmas

were obtained with a moderate auxiliary heating �1 MW

and a strong shaping (elongation �1.8 and triangularity

�0.6),20 where a typical sequence of ELM behaviors was

observed, i.e., initially small-amplitude ELMs following the

H-mode transition, a quiescent period, and large-amplitude

ELMs. Fig. 2(a) shows the time traces of the Balmer alpha

(Da) emission, core and edge ECEI signals, and line-

averaged electron density (ne;l) for a typical H-mode deute-

rium discharge with co-current neutral beam injection (NBI)

�1 MW (beam energy �70 keV) and perpendicular electron

cyclotron resonance heating (ECRH) �250 kW (frequency

¼ 110 GHz). The plasma parameters during the H-mode

phase were B0 ¼ 2 T, plasma current Ip ¼ 600 kA, core

Te �1 keV, ne;l � 3:5� 1019m�3, and q95 �6. The H-mode

transition as indicated by a large Da drop at t �1.23 s was

slow due to the marginal heating power compared to typical

transitions observed in other tokamaks. Nonetheless, the for-

mation of pedestal was clearly observed in both Te and Ti

profiles, which measured a steep temperature gradient from

�1 keV to �200 eV in a narrow edge region of �5 cm.

Fig. 2(b) is the zoomed time traces showing a mix of

two different types of ELM events, i.e., small and large

crashes. The small crashes, corresponding to the semiperi-

odic (�2 ms) bumps in the Da trace, are a single burst of one

ELM filament in the ECEI view with negligible change in

the pedestal region. In contrast, the large crashes involve a

FIG. 1. (a) KSTAR ECEI system. An example combination of high- and

low-field side views (HFS and LFS, respectively) are overlaid on the equilib-

rium flux surfaces for typical H-mode discharges. (b) An example of simul-

taneous measurement of HFS and LFS (shot# 4362, t ¼ 1.741863s). Arrows

indicate the direction of apparent rotations. The red curve is the approximate

position of the last closed flux surface (LCFS) estimated from an equilibrium

reconstruction. The cross marks indicate the positions of the ECEI channels

in the time trace of Fig. 2(a).
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sharp increase in Da trace and a significant drop of the pedes-

tal ECE intensity (�5–10%), indicating loss of the edge con-

finement. In general, a large crash consists of a series of

filament bursts, which are similar to the phenomenology of

the primary and secondary filaments observed in NSTX

(Ref. 9) and C-Mod.10 The present paper is focused on the

ELM evolution and the crash dynamics of large ELM events,

which are described by the 2D ECEI images of Figs. 3 and 4.

Fig. 3(a) is the time trace of an ECEI channel at the fila-

ment region, illustrating the three distinct evolution phases

observed in typical KSTAR ELMy H-mode plasmas: the ini-

tial growth stage (time marks 1–4), the interim saturated

state (time marks 4–5), and the final crash stage (highlighted

time window starting from the time mark 7) through a short

transient phase (around the time mark 6).

In the linear growth stage shown in Fig. 3(b), the indi-

vidual filaments grow in amplitude and extend radially out-

ward across the flux surfaces on the average. The average

growth rate estimated by the integrated ECE amplitude of

the filament regions (defined by an arbitrary intensity con-

tour level) is semiexponential, implying that the perturba-

tion, presumably the peeling-ballooning mode,2 is in a linear

state. However, the observed growth has substantial fluctua-

tions in both the amplitude and radial extent, which may

suggest a toroidal nonuniformity or temporal variation of the

growth rate. The apparent poloidal rotation of the filaments,

V	pol � þ1km=s, is counterclockwise (i.e., in the electron dia-

magnetic drift direction) from the moment of birth. Note that

the effect of the toroidal plasma flow ðVtorÞ on the apparent

filament rotation is clockwise, which implies a net poloidal

plasma flow ðVpolÞ or phase velocity of the filamentary mode

ðVphÞ because V	pol ¼ Vpol þ Vph � Vtortana, where a is the

pitch angle of the filaments. Clockwise V	pol was rarely

observed, which may imply a critical Vpol (or radial electrical

field Er (Refs. 1 and 21)) for the onset of the linear instabil-

ity. In some cases, V	pol was intermittent instead of being con-

tinuous and the cause of this intermittency is unknown at

present.

In the interim saturated state (see frame 4 of Fig. 3(b)),

the filamentary instability has grown to a large radial size

(�5 cm; the radial span of the deformed contour dTrad=
hTradi ¼ 0). The filamentary structure is regular and quasi-

stable without any average growth although individual fila-

ments still maintain the level of fluctuations similar to the

growth phase. The time duration of this stage is highly ran-

dom from being almost absent to several 100 ls. The large

FIG. 2. (a) Time evolution of Da (lower divertor), core and edge ECEI sig-

nals (the channel positions are indicated in Fig. 1(b)), and ne;l for shot#

4362. (b) Detailed time traces of Da and ECEI channels from near the pedes-

tal top (ch. 5) and the filament region (ch. 2). (c) Examples of small and

large ELM crash images.

FIG. 3. ELM evolution images (shot# 4431). (a) Time trace of an ECEI

channel at the filament region (indicated by the cross mark in the frame 1).

(b) Initial growth (frames 1–3) and saturation (frame 4) of multiple ELM

filaments. The short arrows identifying individual filaments illustrate the

apparent counterclockwise rotation of the filaments (also indicated by the

long dashed arrow in frame 1). (c) Changes of the filament structure through

a short transient period. All frames are plotted in the same color scale.
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radial extent, quasistability, and random duration indicate

that the initial linear instability has evolved into a meta-

stable nonlinear state22 with the presence of random pertur-

bations although the underlying stabilization mechanism is

not understood yet. As shown in Fig. 3(c), a very short tran-

sient period (. 50 ls) has been frequently observed near the

end of the saturated state prior to the final crash. The fila-

ments almost disappear from the ECEI view and then ree-

merge with an irregular structure: usually one filament

becomes dominant and the spacing between filaments

becomes irregular and larger. The abrupt change in the poloi-

dal mode structure may be important for the crash trigger

mechanism, which needs further investigation.

The observed ELM crash process is essentially localized

and nonlinear in nature. Fig. 4(a) is a phenomenological

model for the crash as a series of localized filament bursts.

The highlighted flux tube is the bursting filament where each

localized bulge indicates the bursting zone at a specific time.

The rotation of the filaments is indicated by an arrow in the

laboratory frame. Note the ECEI can capture the exact pro-

cess of the ELM filament burst only when the localized burst

enters the ECEI view, which is located at a single toroidal

location as illustrated in the model figure. The detailed

sequence of the observed crash process is illustrated by two

such examples in Figs. 4(b) and 4(c), which were the first

and third bursts in a series of four bursts of the same fila-

ment. The two events were clearly isolated events because

they were separated in time by �150 ls, which is much

longer than the parallel transport time scale of the thermal

electrons once around the torus (�1 ls) and the toroidal Alf-

vénic time scale (�1 ls).

The crash phase starts with the poloidal elongation of

the filaments as shown in the first frame of each example.

Then, a narrow fingerlike structure develops at one of the fil-

aments as indicated by the arrow in the third frame. This fin-

ger corresponds to the localized bulges in the model figure in

Fig. 4(a). As this finger extends radially and touches the

LCFS, the ECE intensity along the finger and outside the

LCFS increases rapidly. This is a clear indication of a

particle-heat flux through the finger. The dominant flux in

the radial direction, lasting for �50 ls or less, is localized

and convective rather than diffusive, which suggests that the

underlying mechanism of the ELM filament eruption may be

similar to the pressure-driven localized burst and collective

heat transport in the sawtooth crashes.15 Interestingly, the

poloidal rotation of the bursting filament slows down at the

finger location as indicated by the dashed line in each exam-

ple, while the rest of the filament keeps moving at the same

speed. A magnetic reconnection may be responsible for this

slowing-down or braking of the finger as well as the collec-

tive heat transport. The existence of magnetic reconnection

is supported by a preliminary observation of broadband low

frequency rf radiation in the range of Alfvén-whistler waves

(< 3 GHz) synchronized with individual filament bursts.23,24

Note that the toroidally and poloidally localized filament

burst, consistent with the finger-initiated crash, is also sup-

ported by other seemingly different observations character-

ized by a sudden heat pulse appearing from outside the

LCFS and spreading over the entire filament region within

10 ls, which would correspond to the ELM filament bursts

occurring away from the ECEI view.

IV. ELM DYNAMICS UNDER n 5 1 MAGNETIC
PERTURBATION

In 2011 KSTAR campaign, ELMy H-mode plasmas

were obtained with higher total auxiliary heating power

(�1.4 MW 90 keV NBI, �300 kW 110 GHz ECRH, and

�300 kW 170 GHz ECRH), resulting in baseline ELMs with

higher crash amplitudes than those of the “large” ELMs in

2010. The effect of external magnetic perturbations (MPs)

with the toroidal mode number n ¼ 1 on the ELM behaviors

have been investigated using three sets of field error correc-

tion coils. Further details on the ELM control experiments

can be found elsewhere.25

Fig. 5(a) is an example of Da time trace for a typical

H-mode discharge with an n ¼ 1 MP, showing that the MP

initially intensifies the ELM crash and then leads to suppres-

sion. Here, the three labels indicate (1) the baseline

period prior to the MP, (2) the intermediate ELM-intensified

period where the MP had both non-resonant and resonant

FIG. 4. ELM crash images corresponding to the time window indicated in

Fig. 3(a). (a) Phenomenological model for multiple bursts of the same fila-

ment. Highlighted is the dominant filament which is undergoing a series of

bursts through localized bulges. (b) The first burst in the series of four bursts.

The fingerlike bulge is indicated by a short arrow. (c) Third burst of the

same filament, 150 ls later.
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components with respect to the local magnetic field lines, and

(3) the ELM-free period where the MP was mostly resonant.

The corresponding ECEI images in Fig. 5(b) shows substan-

tial alterations of ELM dynamics such as filament spacing,

poloidal rotation, and crash pattern. Note the first two ECEI

images show the ELM filaments in the pre-crash phase.

In period 1, the ELM structure and dynamics are identical

to the previous “large” ELM case; the conspicuous ELM fila-

ment structure with similar size and poloidal spacing, the

poloidal rotation of the same order (V	pol�1 km=s), and the

crash through a series of localized filament bursts. The pre-

crash ELM filaments exist for �15 ms, significantly longer

than the previous case (�1 ms), which may be related to the

absence of “small” ELM crashes. In period 2, substantial

changes have been observed in all aspects of the ELM evolu-

tion. The spacing between the filaments has been increased,

suggesting a reduction in the poloidal and toroidal mode num-

bers (m and n, respectively). The estimated mode numbers13

are compared in the figure between the periods 1 and 2. Inter-

estingly, the apparent poloidal rotation of the filaments

(V	pol�10 km=s) is much faster than the previous period by a

factor of 10. The mechanism of the MP-induced V	pol enhance-

ment is important for the ELM dynamics and currently under

investigation. These pre-crash ELM filaments exist only for a

short period time �1 ms with a monotonic decrease both in

the filament amplitude and V	pol. In addition, the crash is a sin-

gle burst with higher amplitude rather than multiple bursts. In

period 3, the ELM filaments have disappeared and the plasma

is free of major transport events leading to a pedestal collapse.

Instead, tiny transport events with no pedestal change have

been observed occasionally with a transient pre-cursor phase

(�10 ls) showing a non-rotating filamentary structure. The

tiny transport events may be critical to the understanding of

the MP-induced ELM suppression.

V. SUMMARY

In summary, the entire nonlinear evolution process of

filamentary ELM structures has been studied in 2D using the

ECEI system. The three-stage ELM evolution consists of the

linear growth, the quasisteady saturated state, and the crash.

The initial growth of the multiple ELM filaments is exponen-

tial in time and strongly localized in the edge region, which

is in qualitative agreement with the linear peeling-ballooning

model.2 The saturated state is meta-stable but eventually

transforms into the final crash phase through a short transient

phase. The large ELM crash event is a series of filament

bursts, which are inherently 3D and nonaxisymmetric events

localized both poloidally and toroidally. Substantial altera-

tions in these ELM dynamics under n ¼ 1 magnetic

FIG. 5. Alteration of ELM dynamics under n¼1 MP (shot# 6123). (a) Time trace of Da emissions [lower divertor (lower thick line) and inboard limiter (thin

green line)] showing the changes in frequency and amplitude of the ELM crash events. The blue and red lines indicate the MP pulses, where the combination

of both produces a resonant perturbation. (b) ECEI images of the edge region, showing (1) typical ELM structure before RMP, (2) altered ELM structure after

the application of MP, and (3) no filamentary structure during the ELM-free phase.
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perturbations have been observed, shedding light into the

ELM suppression mechanism via magnetic perturbations.
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