Effects of Alloying Elements on High-Temperature Oxidation
and Sticking Occurring During Hot Rolling of Modified Ferritic

STS430J1L Stainless Steels
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In the present study, mechanisms of sticking that occurs during hot rolling of modified
STS430J1L ferritic stainless steels were investigated by using a pilot-plant-scale rolling machine,
and the effects of alloying elements on sticking were analyzed by the high-temperature oxidation
behavior. The hot-rolling test results indicated that the Cr oxide layer formed in a heating
furnace was broken off and infiltrated the steel, thereby forming Cr oxides on the rolled steel
surface. Because the surface region without oxides underwent a reduction in hardness rather
than the surface region with oxides, the thickness of the surface oxide layer favorably affected
the resistance to sticking. The addition of Zr, Cu, and Ni to the ferritic stainless steels worked in
favor of the decreased sticking, but the Si addition negatively affected the resistance to sticking.
In the Si-rich steel, Si oxides were continuously formed along the interfacial area between the Cr
oxide layer and the base steel, and interrupted the formation and growth of the Cr oxide layer.
Because the Si addition played a role in increasing sticking, the reduction in Si content was

desirable for preventing sticking.
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I. INTRODUCTION

STICKING occurring during hot rolling of steels
represents surface defects formed when fragments of the
rolled steel are stuck to the work roll, and deteriorates
surface properties of both the rolled steel and the roll.t"!
It often makes serious problems such as reduction in
hot-rolling productivity, roll life, and surface quality of
the rolled steel.”™ However, it is difficult to solve
sticking problem because sticking varies with several
rolling conditions of temperature, load, speed, and
lubrication and with variety of rolled steels and rolls.

Ferritic stainless steels are ferromagnetic, and have
excellent cold-deformability and resistance to stress
corrosion cracking, although their corrosion resistance
is worse than that of austenitic stainless steels. They can
also be hardened by heat treatments, and the phase
transformation does not occur during hot rolling
because of their stable microstructures at room and

DAE JIN HA, Post Doctoral Research Associate, is with the Center
for Advanced Aerospace Materials, Pohang University of Science and
Technology, Pohang 790-784, Korea. JONG SEOG LEE, Principal
Researcher, is with the Research Planning Group, Technical Research
Lab., POSCO, Pohang 790-785, Korea. NACK J. KIM, Professor, is
with the Graduate Institute of Ferrous Technology, Pohang University
of Science and Technology, and also with the Center for Advanced
Aerospace Materials, Pohang University of Science and Technology.
SUNGHAK LEE, Professor, is with the Center for Advanced
AeroSpace Materials, Pohang University of Science and Technology,
and also with the Department of Materials Science and Engineering
Pohang University of Science and Technology. Contact e-mail:
shlee@postech.ac.kr

Manuscript submitted February 9, 2011.

Article published online July 20, 2011

74—VOLUME 43A, JANUARY 2012

high temperatures. Although austenitic stainless steels
contain 8 to ~10 wt pct of Ni, ferritic stainless steels
contain a small amount of Ni (less than 1 wt pct). Ni is
expensive (about ten times more expensive than any
other alloying clements of stainless steels) because the
extraction of Ni from Ni ores containing Cu requires
many complicated processing steps. Recently, efforts to
replace expensive austenitic stainless steels with reason-
ably priced ferritic stainless steels whose corrosion
resistance is improved by adding alloying elements have
been actively attempted.

Sticking occurs more seriously in ferritic stainless
steels than in austenitic stainless steels.”) Ferritic
stainless steels have excellent hardness and strength at
room temperature, but their high-temperature hardness
drastically decreases at about 1173 K to ~1373 K
(900 °C to 1100 °C) where the actual hot rolling starts,
which can result in sticking during hot rolling. Because
high-temperature oxidation hardens the surface of the
rolled steel as oxide layers or oxide particles are formed
on the surface, it can favorably affect sticking.!'>'"! This
finding indicates that sticking is determined by the
mutual interaction of the roll and rolled steel, and that
the high-temperature oxidation behavior during hot
rolling plays an important role. The sticking amount is
also varied with the kind of ferritic stainless steels
because their alloying elements affect the high-temper-
ature hardness and oxidation.'”'¥ Furthermore, the
addition or modification of alloying elements is required
to replace austenitic stainless steels, which can cause the
serious sticking and consequent reduction in productiv-
ity of ferritic stainless steels. Therefore, the effects of
alloying elements on sticking are essentially needed to
prevent or minimize sticking and the development of
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advanced ferritic stainless steels with improved corro-
sion resistance, but only limited information is available.

In this study, mechanisms of sticking occurring during
hot rolling of ferritic stainless steels were investigated by
analyzing their high-temperature oxidation behavior.
Modified STS430J1L stainless steels, which are repre-
sentative ferritic stainless steels, were used for the rolled
steels, and hot-rolling tests that could effectively simu-
late actual hot-rolling stands were conducted on these
steels. Thermogravimetric analysis (TGA) tests were
also conducted to investigate the high-temperature
oxidation behavior. Based on the test results, mecha-
nisms of sticking were clarified by correlating with
microstructures, including oxide layer, formed on the
steel surface.

II. EXPERIMENTAL

Five ferritic stainless steels (21 wt pct Cr-based mod-
ified STS430J1L grade) were fabricated by a vacuum
induction melting method, and their chemical composi-
tions are provided in Table I.

The basic composition is (£0.015)C-(£0.2)Si-
(£0.3)Mn-21.0Cr-0.3Ni-(£0.015)N-0.4Cu-0.3Ti (wt pct).
They are referred to as steel A through E, respectively,
as shown in Table I. In the ferritic stainless steels, Zr
favorably affects the grain refinement, deformability,
and weldability as a ferrite-stabilizing element.!'>) Cu
improves the corrosion resistance, formability, and
weldability, whereas Ni improves the corrosion resis-
tance and toughness.'®'®! Si is a good element for
excellent corrosion and thermal resistance.!'”!

The stainless steels were sectioned, polished, and
etched in a Viellela’s etchant (glycerol 45 mL + nitric
acid 15 mL + hydrochloric acid 30 mL) for 1 minute,
and observed by an optical microscope. The oxide layer
formed on the steel surface was identified by back-
scattered electron images in a scanning electron micro-
scope (SEM, JSM-6330F, JEOL, Tokyo, Japan), and its
average thickness was measured by an image analyzer.
Hardness was measured under a 50-g load in the
temperature range from room temperature to 1173 K
(900 °C) by a high-temperature Vickers hardness tester
(FM-700, Future-Tech, Kawasaki Japan).

TGA tests were conducted with a thermogravimetric
analyzer (TherMax 700, Thermo Cahn Co., Madison,
WI). The TGA specimen with dimensions 15 x 10 x
5 mm was prepared with an electrodischarge machine,
and was cleaned in acetone for 5 minutes with an
ultrasonic cleaner. The test temperature and amounts of
O, and SO, present in a heating furnace were 1533 K

(1260 °C), 3 pct, and 100 ppm, respectively, which could
simulate the heating furnace conditions in actual pro-
duction lines. The specimen was heated at a rate of
50 K/min from room temperature to 1073 K (800 °C),
heated at a rate of 8.3 K/min from 1073 K to 1533 K
(800 °C to 1260 °C), held at 1533 K (1260 °C) for
90 minutes, and cooled inside the thermogravimetric
analyzer. The specimen weight and weight gain were
automatically recorded every minute.

A pilot-plant-scale rolling machine was used for the
hot-rolling test (Hitachi Metals Co., Tokyo Japan). Its
major specifications and rolling conditions are shown in
Table II.

The hot-rolling test was conducted on plate specimens
of 120 x 120 x 15 mm in size. The specimen was
heated at 1373 K (1100 °C) for 30 minutes in a heating
furnace of argon gas atmosphere, and then rolled at a
rolling speed of 70 m/min. Two rolling passes were
performed, and the reduction ratios were 33.3 pct and
40 pct in the first and second passes, respectively. Before
and after the rolling test, the rolled specimens were
sectioned, polished, and etched in a Viellela’s etchant,
and their cross-sectional area near the surface was
observed by an SEM.

III. RESULTS

A. Microstructure and Hardness of Ferritic Stainless
Steels

Optical micrographs of the five ferritic stainless steels
are shown in Figures 1(a) through (e). Their grain size is
about 130 to ~140 um, and their microstructure com-
prised ferrite, with a small amount of etch pits.

Table 11T shows the room- and high-temperature
hardness test results of the steels.

Table II. Main Specifications of the Pilot-Plant-Scale
Rolling Machine and Hot-Rolling Test Conditions

Classification Specification

cast iron roll
modified STS 430J1L
279~378 ton (average: 330 ton)

Roll material
Mating material
Rolling force

Roll diameter 720 mm
Rolling temperature 1373 K (1100 °C)
Rolling speed 70 m/min

Plate thickness in first
rolling pass

Plate thickness in second
rolling pass

15 mm — 10 mm (reduction
ratio; 33.3 pct)

10 mm — 6 mm (reduction
ratio; 40 pct)

Table I. Chemical Composition of the 21 wt pct Cr-Based Modified STS 430J1L Grade Stainless Steels (Weight Percent)

Steel C Si Mn Cr Ni N Cu Ti Zr Nb
A <0.015 <0.2 <0.3 21.0 0.3 <0.015 0.4 0.3 — —
B <0.015 <0.2 <0.3 21.0 — <0.015 — 0.3 0.02 —
C <0.015 <0.2 <0.3 21.0 — <0.015 0.4 0.3 0.02 —
D <0.015 <0.2 <0.3 21.0 0.3 <0.015 0.4 0.3 0.02 —
E <0.015 0.5 <0.3 21.0 0.3 <0.015 0.4 0.3 — —

METALLURGICAL AND MATERIALS TRANSACTIONS A

VOLUME 43A, JANUARY 2012—75



B ;
"~ C Steel l

(d)

Fig. 1—Optical micrographs of the modified STS430J1L ferritic stainless steels: (a) A, (b) B, (¢) C, (d) D, and (e) E steels. Etched by a Viellela’s

etchant for the stainless steels.

The room-temperature hardness ranges from 150
VHN to 165 VHN, and the A, D, and E steels are
harder than the B and C steels. The hardness continu-
ously decreases with increasing test temperature. The
hardness of the A, D, and E steels drops seriously with
increasing test temperature, and becomes lower than
that of the B and C steels, although the hardness
difference between the steels tends to decrease as the test
temperature increases. At 1173 K (900 °C), the hardness
is highest in the B steel, and decreases in the order of the
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C, D, E, and A steels. Because the overall high-
temperature hardness trend is similar in all the steels,
it is expected that the variation in hi%h-temperature
hardness would hardly affect sticking.!'**"!

B. High-Temperature Oxidation Behavior

The formation behavior of high-temperature oxides
formed during hot rolling was investigated by TGA, and
the results are shown in Figure 2. The weight gain
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Table III. Room-and High-Temperature Hardness Results of the 21 wt pct Cr-Based Modified STS 430J1L Steels (unit: VHN)

Test Temperature [K (°C)] A Steel B Steel C Steel D Steel E Steel
298 (295) 159.2 + 3.3 149.5 £ 0.7 148.6 + 2.0 160.4 £ 2.2 1645+ 1.4
573 (300) 112.0 £ 1.5 1052 +£ 1.9 1054 £ 1.0 106.0 + 1.4 1345+ 1.2
673 (400) 98.1 £ 0.9 96.6 + 0.8 954+ 0.7 97.3 £ 0.8 1174 £ 1.1
773 (500) 90.9 £ 0.8 90.4 £ 1.3 88.5+ 0.9 88.7 £ 2.3 103.8 £ 1.3
873 (600) 70.2 £ 0.8 644+ 1.3 70.0 £ 1.7 61.8 £ 0.6 71.6 £ 1.2
973 (700) 53.1 £ 1.1 53.7+0.7 52.7+ 1.1 489 + 1.6 502 £ 1.2
1023 (750) 359+ 0.6 429 + 0.3 354 £09 356 £ 1.0 329 +£0.8
1073 (800) 233+ 0.7 31.1 £0.5 24.6 £ 0.4 25.8 £ 0.6 22.5+ 0.6
1123 (850) 17.8 £ 0.4 19.7 £ 0.4 17.6 £ 0.7 18.2 £ 0.3 16.8 £ 0.4
1173 (900) 10.5+0.2 13.1 £0.2 129+ 0.2 126 £ 0.3 10.8 £ 0.1
Table IV. Average Weight Gain and Cr Oxide Layer Thick-
S8 —— AStsl - ness of the 21 wt pet Cr-Based Modified STS 430J1L Steels
;g 3.0 I ?:gieeill / - After TGA [Holding Time at 1553 K (1260 °C): 90 min]
| —— D Steel yys
% 25| E Steel : Weight Gain Thickness of Cr Oxide
£ I Ff Steel (mg/cm?) Layer (um)
£ 20t /1
© I /4 A 3.02 57.9
O &l _ Vi /s B 2.59 49.6
-S) : I Time for reaching 1533K(1260°C) / C 3.12 598
D 10} D 3.34 63.9
= ) E 2.05 39.5
05} [/
0.0 | 1 A 1 .
0 50 100 150 200 250

Time (min)

Fig. 2—Weight gain vs time obtained from the TGA test. The arrow
indicates the time for reaching 1533 K (1260 °C).

resulting from the oxidation is not large up to about
130 minutes, after which the test temperature reaches
1533 K (1260 °C), and then increases abruptly during
holding at 1533 K (1260 °C). After the test, a thick
oxide layer is uniformly covered on the specimen
surface. The energy-dispersive spectroscopy (EDS) anal-
ysis data of this oxide layer shows that the oxide layer
mainly comprises Cr oxides (Cr,05).*'*? Zr, Ni, and
Cu oxides are not formed on the specimen surface
because only small amounts of Zr, Ni, and Cu are
included in the present ferritic stainless steels. The
weight gain and average thickness of the oxide layer
were measured, and the results are shown in Table IV.

The weight gain and average thickness are largest in
the D steels, and decrease in the order of the C, A, B,
and E steels. The weight gain increases the same way as
the average thickness of the oxide layer in all the steels.

C. Hot-Rolling Test Results

Plate specimens were sectioned before the hot-rolling
test and after each rolling pass, and back-scattered
electron images of the surface region were observed as
shown in Figures 3 through 7. The plate surface is
covered with an oxide layer, and the average thickness
of the layer is measured as shown in Table V.

In the A steel, immediately after the heating furnace
(before the hot-rolling test), the surface is uniformly
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covered with an oxide layer 26-um thick, in which a few
pores and cracks are present (Figure 3(a)). According to
the EDS analysis of this oxide layer, it consists of Cr
oxides whose composition is similar to that of oxides in
the TGA test. After the first pass, the oxide layer
remained 17.5-um thick (Figure 3(b)). However, the
oxide layer is broken into large pieces of 3 to ~5 um in
size and fine debris because of the reduction by rolls.
The thickness of the oxide layer decreases to 10.5 um
after the second pass, and the oxide layer mostly consists
of fine oxide debris (Figure 3(c)). Some oxide fragments
infiltrated the steel surface. The oxide layer is formed on
the surface of the B steel before the test, but its thickness
is thinner than that of the A steel (Figure 4(a)). Like in
the A steel, the oxide layer is fragmented into fine debris,
and its thickness decreases as the rolling proceeds
(Figures 4(b) and (c)). In the C, D, and E steels, similar
processes (i.e., fragmentation of oxide layer into fine
debris and reduction of the oxide layer thickness) are
observed as shown in Figures 5 through 7. Because the
thickness of the oxide layer formed in the heating
furnace is different in each steel, the amounts of oxides
fragmented or spalled off from the surface are varied.
When the reduction in oxide layer thickness caused by
the simple rolling elongation without spallation of
oxides is compared with that caused by the spallation
of oxides during the hot-rolling test, the spallation ratio
of oxides at each pass can be calculated. The parentheses
in Table V show the thicknesses of the oxide layer
theoretically calculated when the simple elongation of
the oxide layer is estimated without the oxide spallation
from the surface, from which the spallation ratios of
oxides are obtained. The thickness of the oxide layer
formed in the heating furnace is largest in the D steel,
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A Steel
0 Pass

Fig. 3—Back-scattered electron images of the cross section of the A steel plates after (a) 0, (b) 1, and (¢) 2 rolling passes, showing Cr oxides.
Insets in (b) and (c) are higher-magnification images of the Cr oxide layer.

Fig. 4—Back-scattered electron images of the cross section of the B steel plates after (a) 0, (b) 1, and (c) 2 rolling passes, showing Cr oxides.
Insets in (b) and (c) are higher-magnification images of the Cr oxide layer.
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C Steel
0 Pass

Fig. 5—Back-scattered electron images of the cross section of the C steel plates after (a) 0, (b) 1, and (¢) 2 rolling passes, showing Cr oxides.
Insets in (b) and (c) are higher-magnification images of the Cr oxide layer.

D Steel
0 Pass

Fig. 6—Back-scattered electron images of the cross section of the D steel plates after (a) 0, (b) 1, and (¢) 2 rolling passes, showing Cr oxides.
Insets in (b) and (c) are higher-magnification images of the Cr oxide layer.
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Fig. 7—Back-scattered electron images of the cross section of the E steel plates after («) 0, (b) 1, and (c) 2 rolling passes, showing Cr and Si
oxides. Insets in (a) through (c) are higher-magnification images of the Cr oxide and Si oxide layers.

Table V. Thickness and Spallation Ratio of the Cr Oxide
Layer Formed After the Hot-Rolling Test

Rolling  Thickness of Cr Spallation Ratio

Steel ~ Pass  Oxide Layer (um) of Cr Oxide Layer (Pct)
A 0 26.3 —

1 14.8 (17.5)* 15.6

2 5.3 (10.5)* 49.6
B 0 21.5 —

1 12.2 (14.3)* 14.9

2 5.6 (8.6) * 34.9
C 0 27.2 —

1 16.1 (18.1)* 11.2

2 8.2 (10.9)* 24.6
D 0 29.1 —

1 17.5 (19.4)* 9.8

2 8.5 (11.6)* 27.0
E 0 17.8 —

1 8.6 (11.9)* 27.5

2 2.1 (7.1)* 70.5

*Thickness of the Cr oxide layer theoretically calculated when the
simple elongation of the Cr oxide layer is estimated without the
spallation from the surface.

and decreases in the order of the C, A, B, and E steels. It
is thinner than that of the TGA test (Table IV) because
the temperature and holding time are lower and shorter,
respectively, in the hot-rolling test. However, the thick-
ness tendency of the oxide layer measured from the
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rolling test is well matched with that measured from the
TGA test.

In the D steel, the thickest oxide layer is formed in the
heating furnace, and a considerable amount of oxides
remains on the surface even after the second pass. In
contrast, the E steel has the thinnest oxide layer in the
heating furnace, and the largest spallation of oxides
occurs during the rolling passes. For example, the
spallation ratio of the second pass reaches 70 pct in the
E steel, which leaves parts of the surface region
uncovered by oxides (Figures 7(b) and (c)). The oxide
layer thickness of the C steel is thinner than that of the
D steel before and after the rolling test, but is thicker
than those of any other steels. The oxide layer thickness
existed after the rolling test tends to be proportional to
that which existed before the test.

IV. DISCUSSION

To clarify the mechanisms of sticking, it is necessary
to first understand the high-temperature rolling behav-
ior in relation to microstructures including the thickness
of the oxide layer formed on the rolled steel surface.[*'*!
In the present study, hot-rolling tests were conducted by
a pilot-plant-scale rolling machine, and the formation
and fragmentation processes of Cr oxides were studied
by steps, from which the amount of sticking was
evaluated.
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According to the hot-rolling test results of Figures 3
through 7 and Table V, the oxide layer formed in the
heating furnace is not extinguished during hot rolling,
but is broken off into pieces or fragments and then
remains on the surface with an increasing number of
rolling passes. The decarburized layer formed in the
furnace before hot rolling of conventional plain carbon
steels or high-strength low alloy steels is peeled off by a
descaling treatment or mostly extinguished during rough
rolling. However, most of the oxide layer formed during
heating of stainless steels remains even during hot
rolling unless it is artificially peeled off by applying a
descaling treatment. Parts of the remaining oxide layer
are broken by rolls, but a considerable amount of oxides
are distributed on the surface region. The oxides are
clongated together with the base steel as the rolling
proceeds, and often leave parts of the surface region
uncovered by oxides because the amount of oxides is
reduced by the elongation. The total reduction ratio in
the rolling test of Figures 3 through 7 is 60 pct, and the
surface area of the steel after the rolling test increases 2.5
times that before the rolling test. Thus, parts of the thick
oxide layer formed on the steel surface before the rolling
test are broken off and gone. Some oxides infiltrates the
steel, but the surface regions with hardly any oxides can
exist as the surface area increases. The hardness of the
surface region without oxides is significantly lower than
that of the surface region with oxides, and parts of the
steel surface can be removed because of the reduction by
rolls."? Oxides in the surface region contribute to the
increased surface hardness and enhance the resistance to
sticking. To prevent or minimize sticking in ferritic
stainless steels, therefore, it is desirable to promote an
oxide layer as thick as possible in the heating furnace
and to keep the slab temperature as high as possible,
whereas the descaling treatment of the oxide layer
should not be applied before the rolling.

Because sticking is significantly affected by the thick-
ness of the oxide layer present on the steel surface, it can
be evaluated by the initial thickness of the oxide layer
and the amount of the oxide spallation as shown in
Table V. The initial thickness of the surface oxide layer
formed in the furnace is thickest in the D steel, and
decreases in the order of the C, A, B, and E steels. In the
D steel, the thick surface oxide layer is formed in the
heating furnace, and a considerable amount of the layer
remains even after the rolling test (Figures 6(a) through
(¢)). In the other steels, the surface oxide layer thickness
decreases with an increasing rolling pass number, but
the final thickness of the oxide layer tends to be linearly
proportional to the initial thickness of the layer formed
before the test. Thus, the amount of sticking can be
effectively estimated by measuring and analyzing the
oxide layer formed in the heating furnace.

The thickness of the oxide layer measured after the
TGA test (Table IV) is proportional to that measured
after the hot-rolling test (Table V). This result implies
that the TGA test is useful for explaining the formation
behavior of the surface oxide layer during hot rolling.
Major oxides formed in ferritic stainless steels are Cr
oxides, and their oxidation behavior is related to Cr
activity.?**" Oxide-forming metal elements need to
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satisfy the following equation to form oxides by
interacting with oxygen*":

NO) = [Lg* NS Po Vm]
B

2v 0 DB VOX

[1]

where N§30)’ Ng), v, Do, Dy, Vi, and Vox are the density
of metal, solubility of oxygen in metal, infiltration
velocity of oxide layer into metal, diffusion coefficient of
oxygen, diffusion coefficient of metal, volume of metal
per 1 mole, and volume of oxygen per 1 mole,
respectively. According to Eq. [1], the concentration of
oxide-forming metal elements decreases when the oxy-
gen flux is prevented or the diffusion of metal elements
increases. The Cr activity favorably affects the value of
Dy and consequently the formation of Cr oxides because
the Cr concentration required for forming Cr oxides
decreases.

Because the Cr activity is closely related to the
amount of oxides formed at high temperatures in ferritic
stainless steels,” it can be estimated at a given high
temperature by thermodynamic calculations. Thermo-
Calc,'* which is a commercial thermodynamic calcu-
lating program, was used for the calculations, and the
upgraded version of TCFE20001*%*” was used for the
thermodynamic database. The given temperature is
1533 K (1260 °C), which is the heating furnace temper-
ature. The Cr activity is varied with contents of alloying
elements of Zr, Ni, Cu, and Si, and the results are shown
in Figures 8(a) through (d). The Cr activity increases as
the contents of Cu, Zr, Ni, and Si increase.

To confirm the correlation between Cr activity and
actual high-temperature oxidation behavior, the Cr
activity data are compared with the TGA test data
(Table IV). The effects of alloying element Cu added to
the stainless steels can be analyzed by comparing the B
and C steels. The amount of oxidation as expressed by
the weight gain increases in the C steel containing
0.4 wt pct Cu. As the contents of Ni and Zr increase in
the C and D steels and in the A and D steels,
respectively, the amount of oxidation increases. Thus,
the amount of oxidation increases with increasing
amounts of Cu, Ni, and Zr, and is matched with the
Cr activity data. The increment of Si in the A and E
steels reduces the amount of oxidation, which shows the
opposite result of Cr activity and oxidation behavior.
This result might be associated with another factor in
the peculiar oxide formation behavior of Si. Thus, the
effects of the Si addition on high-temperature oxidation
and sticking should be analyzed in detail.

Figures 9(a) and (b) show the EDS data of the oxide
layer formed after TGA of the A and E steels. In the E
steel, spherical Si oxides (SiO,) are continuously formed
along the interfacial area between the Cr oxide layer and
the base steel (Figure 9(b)), whereas only Cr oxides are
found above the base steel in the A steel (Figure 9(a)).
The mapping data of Si and O confirm the formation of
Si oxides along the interfacial area. This result indicates
that Si oxides formed along the interfacial area can
prevent the movement of Cr ions and consequently the
growth of the Cr oxide layer. In addition, Si can act as
an oxygen attractor, decrease the reaction of Cr and
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Fig. 8—Cr activity (log scale) vs content of alloying elements of (a) Zr, (b) Cu, (¢) Ni, and (d) Si. These Cr activity data were calculated by an

analysis program of ThermoCalc® based on TCFE2000.1262"

oxygen present in the base steel, and reduce the growth
of the Cr oxide layer.

The formation processes of Si oxides along the
interfacial area and the growth of the Cr oxide layer
are illustrated in Figure 10. Si has a strong affinity to
oxygen to form Si oxides, and Si oxides influence the
formation of Cr oxides.**?* 3% In the initial oxidation
stage, Si interacts with oxygen to form Si oxides
containing a small amount of Fe and Cr. These oxides
act as nucleation sites for Cr oxides, and help the Cr
oxide layer to grow rapidly.”® As the oxidation pro-
ceeds, Si oxides, which are more stable at high temper-
atures than Cr oxides, are grown beneath the Cr oxide
layer. Because the oxidation rate of the Cr oxide layer is
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determined by the diffusion of Cr ions through Si
oxides, the formation and growth of Si oxides reduce
the growth rate of the Cr oxide layer. In other words,
the growth of the Cr oxide layer decreases because the
diffusion of Cr ions is interrupted by Si oxides.
Although the increment of Si content increases the Cr
activity (Figure 8(d)), Si readily forms Si oxides, and Si
oxides are grown beneath the Cr oxide layer. This
process results in the formation of a thin Cr oxide layer
on the steel surface as shown in Tables IV and V.

The adhesive force between the oxide layer and the
base steel was measured in the A and E steels by using
an adhesion tester (Sebastian Five A; Quad Group,
Spokane, WA). After an aluminum stud (cross-sectional
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Fig. 9—EDS mapping data of the oxide layer formed after the TGA test of the (a) A and () E steels.

area 3 mm?®) was bonded to the surface oxide layer by are 10.6 MPa and 4.22 MPa in the A and E steels,

epoxy adhesives, the oxide layer was separated from the respectively. After the oxide layer was separated, the
base steel by pulling the aluminum stud. When the remaining base steel was sectioned, and the cross-
separation occurred, the load was measured and aver- sectional area was observed by an SEM as shown in

aged after the three-time tests. The adhesive strengths Figures 11(a) through (d). In the A steel, the surface of
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Fig. 10—Schematic illustration showing the formation and growth
of Cr oxides (Cr,03) and Si oxides (SiO,) in the E steel.

the base steel is exposed as the Cr oxide layer is removed
from the surface (Figures 11(a) and (b)). In the E steel,
however, Si oxides are retained in the base steel because
the interface between the Si oxides and the Cr oxide
layer is separated and the Cr oxide layer is spalled out
(Figures 11(c) and (d)). This finding implies that the
adhesive strength between the Si oxides and the Cr oxide
layer in the E steel is much lower than the adhesive
strength between the Cr oxide layer and the base steel in
the A steel. These adhesive test results agree well with
the results of Bamba es al.'” in which the adhesive
force between the Cr oxide layer and the base steel
decreased as the Si content increased in Fe-15Cr steels.
Thus, the Cr oxide layer is thinly formed in the E steel,
and the Cr oxide layer is readily spalled off from the
surface during the rolling test (see the spallation ratio
data in Table V) because of the bad adhesive strength
between the Cr oxide layer and the base steel.

As mentioned earlier, the high-temperature oxidation
behavior, Cr activity calculation, and hot-rolling process
were investigated on five different kinds of stainless
steels with varying contents of Zr, Ni, Cu, and Si, from
which the effects of alloying elements on sticking are
summarized as follows:

(a) Effect of Zr addition: The effects of alloying ele-
ment Zr added to the stainless steels can be ana-
lyzed by comparing the A and D steels. As shown
in Table V, the D steel with a small addition of Zr
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shows a thicker oxide layer than the A steel. In the
two steels, the spallation of oxides occurs as the
rolling passes proceed, but the oxide layer formed
before and after the rolling test is thicker in the D
steel. When considering the beneficial effect of a
thick oxide layer on sticking, Zr has a good effect
on reducing sticking even though a small amount
(0.02 wt pct) was added to the D steel.

(b) Effect of Cu addition: By comparing the B and C
steels of Table I, the effects of 0.4 wt pct Cu addi-
tion is investigated. According to the hot-rolling
test results, the oxide layer is thicker in the C steel
than in the B steel. After the second pass, the
oxide layer remains uniform on the surface of the
C steel, whereas it remains thin in the B steel. This
implies that the Cu addition positively affects the
reduction in sticking.

(c) Effect of Ni addition: The effect of Ni addition can
be evaluated by comparing the C and D steels.
After the first pass, the oxide layer is thicker in the
D steel than in the C steel, whereas the spallation
ratio is lower. After the second pass, the oxide
layer thickness of the D steel is similar to that of
the C steel as the spallation takes place more in
the D steel, and finely fragmented oxides are uni-
formly distributed on the surface in both steels.
Although oxides are formed more often in the D
steel in the heating furnace, the amount of oxides
remained after the second pass is similar in both
steels, as oxides are broken and spalled off from
the surface. Thus, the Ni addition favorably influ-
ences the reduction in sticking, but its effect is not
large.

(d) Effect of Si addition: To investigate the effect of Si
addition on sticking, the A and E steels should be
compared. The TGA and hot-rolling results indi-
cate that the oxide layer is thinner in the E steel
containing 0.5 wt pct Si than in the A steel. As
mentioned earlier, in the E steel, Si oxides are
formed along the interfacial area between the Cr
oxide layer and the base steel, and prevent the for-
mation and growth of the Cr oxide layer. In addi-
tion, as shown in the adhesive test results
(Figures 11(a) through (d)), the formation of Si
oxides deteriorates the bonding of the Cr oxide
layer and the base steel, and readily leads to the
spallation of Cr oxides during hot rolling. Because
the hardness of the surface region without oxides
is significantly lower than that of the surface
region with oxides, parts of the rolled steel can be
broken off by the rolls. The Si addition plays a
role in increasing sticking, and thus, the reduction
in Si content is desirable for preventing sticking.

Because the rolling test using a pilot-plant-scale
rolling machine is a good way to identify sticking
phenomenon occurring in actual hot-rolling stands, it
can be useful to understand mechanisms of sticking and
to suggest desirable alloy-designing conditions for pre-
venting or minimizing sticking. The resistance to stick-
ing is enhanced by adding Zr, Cu, and Ni to ferritic
stainless steels because these elements help the thick
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Fig. 11—Back-scattered electron images of the cross section of the («) and () A and (c¢) and (d) E steel plates after the adhesion test of the Cr

oxide layer. (b) and (d) are high-magnification images of the oxide-spalled area in (a) and (c), respectively.

oxide layer to form on the surface of the rolled steel,
whereas the Si addition shows the opposite effect on
sticking resistance. Thus, sticking can be reduced by the
appropriate alloy designing, from which the oxide layer
formed thick in a reheating furnace should not be
readily spalled off.

V. CONCLUSIONS

In the present study, mechanisms of sticking occur-
ring during hot rolling of modified STS430J1L ferritic
stainless steels were investigated, and the effects of
alloying elements on sticking were analyzed by the high-
temperature oxidation behavior.

1. The formation behavior of high-temperature oxides
was investigated by the TGA test in relation to the
Cr activity. The oxide layer mainly consisted of Cr
oxides, and was thickest in the steel containing Ni,
Cu, and Zr. The thickness results of the Cr oxide
layer measured after the TGA test was linearly pro-
portional to those measured after the hot-rolling
test, and was also matched well with the Cr activity
data except in the Si-rich steel.

2. According to the hot-rolling test results, the Cr
oxide layer formed in the heating furnace was bro-
ken off and infiltrated the steel, thereby forming Cr
oxides on the rolled steel surface. Because the sur-
face region without oxides underwent a reduction in

METALLURGICAL AND MATERIALS TRANSACTIONS A

hardness rather than the surface region with oxides,
the thickness of the surface oxide layer favorably
affected the resistance to sticking.

3. The hot-rolling results of the ferritic stainless steels
with varying additions of Zr, Cu, Ni, and Si re-
vealed that the addition of Zr, Cu, and Ni worked
favorably for decreased sticking, but the Si addition
negatively affected the resistance to sticking. In the
Si-rich steel, Si oxides were continuously formed
along the interfacial area between the Cr oxide
layer and the base steel, and interrupted the forma-
tion and growth of the Cr oxide layer. The Si addi-
tion played a role in increasing sticking, and thus,
the reduction in Si content was desirable for pre-
venting sticking.
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