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Summary

Dysregulation of O-GlcNAc modification catalyzed by O-GlcNAc

transferase (OGT) and O-GlcNAcase (OGA) contributes to the etiol-

ogy of chronic diseases of aging, including cancer, cardiovascular

disease, type 2 diabetes, and Alzheimer’s disease. Here we found

that natural aging in wild-type mice was marked by a decrease in

OGA and OGT protein levels and an increase in O-GlcNAcylation in

various tissues. Genetic disruption of OGA resulted in constitu-

tively elevated O-GlcNAcylation in embryos and led to neonatal

lethality with developmental delay. Importantly, we observed

that serum-stimulated cell cycle entry induced increased O-GlcNA-

cylation and decreased its level after release from G2 ⁄ M arrest,

indicating that O-GlcNAc cycling by OGT and OGA is required for

precise cell cycle control. Constitutively, elevated O-GlcNAcylation

by OGA disruption impaired cell proliferation and resulted in

mitotic defects with downregulation of mitotic regulators. OGA

loss led to mitotic defects including cytokinesis failure and

binucleation, increased lagging chromosomes, and micronuclei

formation. These findings suggest an important role for O-GlcNAc

cycling by OGA in embryonic development and the regulation of

the maintenance of genomic stability linked to the aging process.
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Introduction

O-GlcNAcylation culminates with UDP-GlcNAc transfer to target proteins

in the hexosamine biosynthetic pathway (HSP). O-GlcNAcylation is a

post-translational modification that influences fundamental functions of

proteins by regulating protein–protein interactions, altering protein sta-

bility, and changing protein activity (Torres & Hart, 1984; Hart et al.,

2007, 2010). O-GlcNAc addition and removal from the Ser and Thr resi-

dues of proteins is catalyzed by O-GlcNAc transferase (OGT) and

O-GlcNAcase (OGA), respectively. OGA, a nucleocytoplasmic b-N-acetyl-

glucosaminidase, is a bifunctional protein containing a glycosidase

domain at the N-terminus and a putative histone acetyltransferase

domain at the C-terminus (Toleman et al., 2004). OGA is mapped to the

chromosomal region that is associated with Alzheimer’s disease and the

development of type 2 diabetes in a Mexican population (Lehman et al.,

2005). In addition, many studies have directly linked dysregulation of

O-GlcNAc cycling to chronic diseases of aging including diabetes, cardio-

vascular disease, neurodegenerative disorders, and cancer (Hart et al.,

2010). Although the cellular and physiological roles of O-GlcNAc cycling

have been extensively investigated, how OGA activity is regulated and

what the physiological effects are when OGA is dysregulated in vivo

remain unclear.

Aging is a multifaceted process characterized by genomic instability

and epigenetic changes. Maintenance of genomic stability requires accu-

rate segregation of sister chromosomes during mitosis (Draviam et al.,

2004; Holland & Cleveland, 2009). OGT is co-localized to the midbody

with OGA, kinase, and phosphatase, and it regulates the post-transla-

tional status of vimentin during mitosis (Slawson et al., 2005, 2008). Cor-

relatively, a combined glycoproteomic and phosphoproteomic approach

identified O-GlcNAcylation and phosphorylation sites on various spindle

and midbody proteins, suggesting that the cross talk between O-GlcNA-

cylation and protein phosphorylation is crucial to the regulation of cell

division (Wang et al., 2010). A recent study showed that OGT glycosy-

lates the cell cycle regulator host cell factor-1 (HCF-1) and cleaves HCF-1

to regulate mitosis (Capotosti et al., 2011). Regarding epigenetic

changes, histones are O-GlcNAcylated within the nucleosome core, sug-

gesting a crucial role for O-GlcNAc in chromatin remodeling and epige-

netic regulation (Sakabe & Hart, 2010; Sakabe et al., 2010). Thus, we

speculate that precise control of O-GlcNAc cycling by OGA and OGT is

required for the maintenance of genomic stability and epigenetic regula-

tion associated with aging. Moreover, we found that aged tissues have

dysregulated O-GlcNAcylation and O-GlcNAc cycling enzymes.

To elucidate the cellular and physiological roles of OGA associated with

dysregulation of O-GlcNAcylation, we generated OGA) ⁄ ) mice. In our

study, we found that OGA homozygous null mice showed perinatal lethal-

ity with developmental delay. We observed that O-GlcNAcylation level

fluctuated during the cell cycle and constitutively elevated O-GlcNAcyla-

tion by OGA disruption resulted in an aberrant cell cycle. OGA) ⁄ ) mouse

embryonic fibroblasts (MEFs) displayed genomic abnormalities, followed

by cytokinesis defects, and became senescent. Together, these findings

indicate that OGA dysregulation might contribute to the mammalian

aging process and affect development of age-related chronic diseases.

Results

Increased O-GlcNAcylation and decreased O-GlcNAc cycling

enzymes in aged tissues

To investigate how O-GlcNAcylation level is altered in natural aging, we

analyzed the levels of O-GlcNAcylation and O-GlcNAc cycling enzymes
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in various tissues of 4-month-old and 20-month-old mice. Notably, the

relative O-GlcNAcylation level of older mice was significantly higher

than that of younger mice in diverse tissues including brain, lung, skin,

thymus, testis, and liver. The protein levels of O-GlcNAc cycling

enzymes, OGT and OGA, decreased in tissues of older mice (Fig. 1A–D

and data not shown). Although lungs from older mice showed no dif-

ference in OGA protein level as compared to lungs from younger mice,

O-GlcNAcyltion was elevated (Fig. 1B). This result indicates that the

consequent elevation of O-GlcNAcylation might be resulted from

increased OGT activity or decreased OGA activity, suggesting the impor-

tance of the OGT ⁄ OGA balance in normal conditions. We suggest that

O-GlcNAc cycling is dysregulated in aged tissue, which is caused by

abnormality of the OGT ⁄ OGA balance. These results raise the possibility

that increased O-GlcNAcylation is associated with the normal aging

process.

Generation of OGA) ⁄ ) mice and constitutively elevated

O-GlcNAcylation in OGA) ⁄ ) embryos

To examine whether the increased O-GlcNAcylation had cellular and

physiological relevance to aging, we generated OGA-deficient mice

with a gene-trapped embryonic cell line [YTC085; (Stryke et al., 2003)].

5¢-RACE analysis of the fusion transcript confirmed insertion of the

gene trap vector in the first intron of OGA and identified the insertion

site (Fig. S1A,B). OGA disruption was confirmed by polymerase chain

reaction (PCR) using mouse tail-derived genomic DNA (Fig. S1C). OGA

expression was visualized by whole-mount LacZ staining of OGA+ ⁄ )

embryos and placentas, confirming the insertion of the gene trap beta-

galactosidase reporter allele (Fig. S1D). Embryo sagittal sections and

placenta radial sections stained with X-gal at embryonic day (E) 14.5

revealed that OGA expression was particularly high in the brain and in

the labyrinth structure of the placenta (Fig. S2A,B). OGA disruption

resulted in constitutively elevated O-GlcNAcylation in OGA) ⁄ ) embryos

(Fig. 2A).

Perinatal lethality of OGA knockout mice

To obtain OGA) ⁄ ) offspring, we crossed male heterozygotes with female

heterozygotes. In more than 100 offspring, we failed to identify the

homozygous null mutation at the time of weaning, suggesting that OGA

loss causes either embryonic or neonatal lethality. We analyzed OGA) ⁄ )

embryos at different gestational stages and found that OGA) ⁄ ) embryos

had stunted growth and that mutant neonates died within 1 day of birth

(Table 1). OGA) ⁄ ) embryos were significantly reduced in size and body

weight compared with wild-type (WT) embryos (Fig. 2B,C). However, his-

tological analysis of OGA) ⁄ ) embryos did not exhibit gross defects, and

we failed to observe any anatomical abnormalities at E14.5 (Fig. 2D). To

clarify the cause of neonatal lethality, histological analysis was performed.

Lungs from WT and OGA+ ⁄ ) mice floated in water, while lungs dissected

from OGA) ⁄ ) newborns were dense and sank. As expected, lung histol-

ogy of OGA) ⁄ ) newborns revealed that the alveolar space was markedly

reduced (Fig. 2E). Together, these results show that OGA disruption leads

to embryonic developmental delay, indicating an important role of OGA

in development.

(A) (B) (C) (D)

Fig. 1 Increased total O-GlcNAcylation and decreased OGA and OGT protein levels in aged tissue. (A–D) Western blot analysis of OGT, OGA, and O-GlcNAc levels in brain

(A), lung (B), skin (C), and thymus (D) of old and young mice. Densitometry was performed on immunoblots. The ratio of O-GlcNAc to b-actin was determined. Error bars

represent the S.D. (n = 3) and **P < 0.005, **P < 0.05 (Student’s t-test).
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Proliferative defects in OGA) ⁄ ) MEFs

Reduced body size of whole OGA) ⁄ ) embryos led us to examine whether

the developmental delay could be caused by a cell proliferation defect. To

determine whether OGA disruption caused the proliferative defect, we

used MEFs isolated from mid-gestation embryos [13.5 days post-concep-

tion (dpc)]. We compared cell growth rates at passages (P) 4 and 7 in

OGA+ ⁄ + and OGA) ⁄ ) MEFs. OGA) ⁄ ) MEFs exhibited a reduced growth

rate compared with WT MEFs (Fig. 3A). OGA knockdown by shRNA also

resulted in reduced cell growth in HEK293 cells (Fig. S3A,B). As cellular

senescence was characterized in vitro by a decline in growth rate,

OGA) ⁄ ) MEFs exhibited reduced population-doubling time compared

with OGA+ ⁄ + MEFs (Fig. 3B). In addition, enlarged and flattened cell mor-

phology was observed in OGA) ⁄ ) MEFs (data not shown), which are

established features of senescence (Dimri et al., 1995). Previous studies

have shown that increased O-GlcNAcylation leads to apoptosis (Webster

et al., 2009; Rajamani & Essop, 2010). Therefore, we asked whether the

reduced growth rate was caused by increased cell death. However,

annexin-V staining demonstrated that the decreased cell growth of

OGA) ⁄ ) MEFs was not because of apoptosis (Fig. 3B).

Elevation of O-GlcNAcylation in serum-stimulated cell cycle

entry

Reduced growth can be attributed to cell cycle defects. Thus, we won-

dered how O-GlcNAcylation changed during cell cycle progression. We

synchronized WT MEFs in G0 phase by serum starvation and extracted

proteins from cells harvested every 4 h after serum stimulation. To dis-

sect cell cycle progression, we analyzed cyclin B1, A, and E levels. The

O-GlcNAcylation level significantly increased at 20–24 h post-release,

consistent with OGT expression. However, OGA expression was not

altered during the cell cycle, suggesting that OGA might be regulated

by its enzymatic activity. In accordance with cyclin expression patterns,

OGT expression and O-GlcNAcylation were cell cycle-dependent

(Fig. 4A). OGT expression level was high in late S phase and peaked at

the M phase. The same patterns of OGT expression were confirmed in

(A) (B) (C)

(E)(D)

Fig. 2 OGA) ⁄ ) mice die within 1 day of birth and show significantly decreased intrauterine growth. (A) Immunoblot analysis confirmed the loss of OGA protein in the

OGA+ ⁄ + and OGA) ⁄ ) whole embryo lysates. (B) Morphology of E12.5, E14.5, E18.5, and neonate littermates. (C) Weight of WT and OGA) ⁄ ) embryos from different

gestational periods and neonates. Males and females were pooled. Ten or more embryos per genotype were analyzed. Error bars represent the SD and **P < 0.005,

*P < 0.02 (Student’s t-test). (D) Sagittal sections of OGA+ ⁄ + and OGA) ⁄ ) E14.5 embryos stained with hematoxylin and eosin. (E) Hematoxylin and eosin staining of OGA+ ⁄ +

and OGA) ⁄ ) lungs of E18.5 embryos and P0 neonates (a, pre-alveolar spaces; br, bronchiole).
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HEK293 cell lines (Fig. 4B). To further confirm the cell cycle-dependent

O-GlcNAcylation and OGT expression, we next synchronized WT MEFs

in the mitotic phase using nocodazole, an antimitotic drug. We

observed similar results showing that the OGT protein level and O-Glc-

NAcylation peaked at mitotic phase and decreased after release from

nocodazole (Fig. 4C). Strikingly, OGT levels and cyclin B1 were similarly

altered. Together, these results suggest that O-GlcNAcylation and its

cycling enzymes might be under precise control to ensure successful

mitosis.

Mitotic defects in OGA) ⁄ ) MEFs

To investigate how constitutively increased O-GlcNAcylation by OGA

knockout affected the cell cycle, we next performed flow cytometry anal-

ysis with OGA+ ⁄ + and OGA) ⁄ ) MEFs. Flow cytometry analysis of DNA

content revealed no significant difference between the OGA) ⁄ ) MEFs

and WT MEFs during the early passages (P2). However, during the late

passage (P4), OGA) ⁄ ) MEFs showed increased 4N and decreased 2N frac-

tions compared with OGA+ ⁄ + MEFs, indicating a partial defect in these

stages of the cell cycle (Fig. 5A,B). In addition, flow cytometry analysis of

BrdU ⁄ PI-stained MEFs showed reduced amounts of G1 and S phase,

while G2 ⁄ M-phase cells increased in the OGA) ⁄ ) MEFs (Fig. 5C). Down-

regulation of mitotic regulators such as Aurora and polo-like kinase has

been shown to lead to defective mitosis (Kunitoku et al., 2003; Glotzer,

2005; Raouf et al., 2005). Therefore, we examined the protein levels of

mitotic regulators and cyclins in OGA) ⁄ ) MEFs. We found that the pro-

tein levels of mitotic regulators such as Aurora Kinase B, cyclin B1, and

cdc2 decreased in OGA) ⁄ ) MEFs, suggesting that the OGA) ⁄ ) MEFs with

4N DNA have increased nonmitotic (4N-G1) cells. As we observed that

OGT was concomitantly changed with cyclin B1 during mitosis in WT cells

Table 1 Genotype of offspring from OGA+ ⁄ ) · OGA+ ⁄ ) mating after eight

generations of backcrossing with C57BL ⁄ 6 wild-type animals

Developmental stage

No. of offspring with OGA genotype of:

+ ⁄ + + ⁄ ) + ⁄ ) Resorbed

E10.5 8 12 7 0

E11.5 9 16 9 2

E12.5 9 13 6 4

E13.5 16 32 12 7

E14.5 18 30 14 7

E15.5 10 18 7 8

E16.5 12 21 8 4

E17.5 10 15 8 3

E18.5 15 26 13 1

Prenatal total (406) (%) 107 183 84 36

(26.10) (44.63) (20.49) (8.78)

P0 48 90 22

P1 58 131 0

Prenatal total (349) 106 221 22

(A) (B)

(C) (D)

Fig. 3 OGA) ⁄ ) MEFs exhibit reduced growth rates. (A) Growth curves of OGA+ ⁄ + and OGA) ⁄ ) MEFs (passages 4 and 7). Error bars represent the S.D. (n = 3). (B) Growth

curves were determined by a 3T3 protocol. OGA+ ⁄ + and OGA) ⁄ ) MEFs were seeded on 6-cm culture dishes at a density of 105 MEFs every 3 days. (C) The population of

apoptotic cells was determined by annexin-V–FITC and propidium iodide (PI) staining. A representative dot plot (left panel) and the mean (right panel) and SD from three

independent experiments are presented.
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(Fig. 4A–C), OGT was also downregulated in OGA) ⁄ ) MEFs (Fig. 5D).

Together, these results suggest that precise control of O-GlcNAcylation is

required for cell cycle progression.

Defects in the maintenance of genomic stability

We observed an increase in the percentage of multinucleated cells (>4n)

in OGA) ⁄ ) MEFs, suggesting gain and loss of chromosomes (Fig. 5B).

These results prompted us to examine the abnormal nuclear morphologies

in OGA) ⁄ ) MEFs. The WT and OGA) ⁄ ) MEFs were fixed and stained with

Hoechst for nuclei visualization. We observed frequent enlarged nuclei

and a high incidence of multinuclear cells in OGA) ⁄ ) MEFs as compared

to OGA+ ⁄ + (Fig. 6A). OGA) ⁄ ) MEFs contained a significantly higher num-

ber of polynucleated cells (24% of OGA) ⁄ ) cells vs. 9% OGA+ ⁄ + cells)

and micronuclei (15% of OGA) ⁄ ) cells vs. 4.8% OGA+ ⁄ + cells) compared

with WT MEFs (Fig. 6B,C). Micronuclei originate from lagging chromo-

somes and are stably maintained in cells. We next examined whether

OGA loss led to mitotic abnormalities, including lagging chromosomes.

Indeed, we observed more anaphase figures with lagging chromosomes

in OGA) ⁄ ) MEFs than in OGA+ ⁄ + MEFs (Fig. 6D). Quantification of the

lagging chromosomes is shown Fig. 6E. These results suggest that OGA

loss can cause chromosome aberrations marked with nuclear enlarge-

ment and aneuploidy. To further confirm the genomic instability in

OGA) ⁄ ) MEFs, we performed chromosome counts on colcemid-arrested

metaphase spreads from OGA+ ⁄ + and OGA) ⁄ ) MEFs at P5. In OGA) ⁄ )

MEFs, a higher percentage of cells exhibited abnormal chromosome num-

bers than in OGA+ ⁄ + MEFs. These results indicate that the loss of OGA

can lead to a loss or gain of a single chromosome (Fig. 6F,G).

Cytokinesis failure in OGA) ⁄ ) MEFs

Polyploidy can result from cytokinesis failure, which subsequently leads to

chromosome instability (Stenmark & Sagona, 2010). OGT and OGA are

localized to the midbody and regulate mitotic regulators during cytokine-

sis (Slawson et al., 2008; Wang et al., 2010). Therefore, we next exam-

ined whether the OGA loss impaired cytokinesis. OGA) ⁄ ) MEFs were

monitored by time-lapse differential interference contrast (DIC) micros-

copy. As expected, the WT MEFs underwent normal cytokinesis. Forty-

seven of 53 OGA+ ⁄ + MEFs exhibited normal cell cleavage and complete

separation of the two daughter cells (Fig. 6H,J). In contrast, 18 of 53

OGA) ⁄ ) MEFs failed to complete cytokinesis and resulted in binucleated

cells (Fig. 6I,J). OGA) ⁄ ) MEFs entered mitosis normally. As shown in

Fig. 6I, however, OGA) ⁄ ) MEFs spent a much longer time in mitotic cell

rounding during mitosis compared with WT MEFs.

Cells deficient in mitotic checkpoint regulators commonly display

higher rates of polyploidy (Holland & Cleveland, 2009). To assess the pos-

sibility of mitotic checkpoint defects in OGA) ⁄ ) cells, we treated WT and

OGA) ⁄ ) MEFs with nocodazole and analyzed the mitotic defect. How-

ever, propidium iodide (PI) staining after nocodazole treatment did not

reveal a difference in the fraction of 4N and 8N DNA content between

WT and OGA) ⁄ ) MEFs (Fig. S4A). We also obtained the same results from

the knockdown of OGA with shRNA (Fig. S4B). These observations sug-

gest that OGA is necessary for successful completion of cytokinesis.

Together, these findings support a critical role for O-GlcNAc cycling in

the maintenance of genomic stability. These results also indicate that

OGA dysfunction might contribute to genomic instability linked to the

aging process, as we observed increased O-GlcNAcylation and decreased

protein levels of OGA and OGT in natural aging.

Discussion

In this study, we found higher levels of O-GlcNAcylation and lower levels

of O-GlcNAc cycling enzymes in older mice compared with younger ones

in diverse tissues. We investigated how constitutively elevated O-GlcNA-

cylation affects physiological processes and cellular functions by generat-

ing OGA knockout mice. OGA homozygous null embryos exhibited

delayed embryonic development and died soon after birth as a result of

respiratory failure. OGA) ⁄ ) MEFs had a reduced growth rate that led to

senescence caused by mitotic defects. We also showed that OGA loss led

to abnormal chromosome segregation and frequently failed to complete

(A) (B) (C)

Fig. 4 O-GlcNAcylation fluctuates with OGT expression during cell cycle progression. (A) WT MEFs were arrested in G0 by serum starvation and then stimulated by serum.

Total lysates were analyzed at the indicated time point after serum stimulation. Immunodetection in total lysates of the indicated cyclins, O-GlcNAc cycling enzymes, and

O-GlcNAc was conducted. (B) The same experiment was performed in HEK293 cells. (C) The indicated proteins from total lysates of WT MEFs at the indicated time points

after release from nocodazole were analyzed by Western blotting. Actin was used as a loading control.
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cytokinesis, which ultimately caused aneuploidy. These cellular defects

are likely causes of the delayed OGA) ⁄ ) embryo growth and consequent

death.

It has studied the important roles of O-GlcNAc cycling during cell cycle.

Inhibition of OGA or overexpression of OGT delays M-phase progression

in mammalian cells (Slawson et al., 2005). Importantly, O-GlcNAc level is

elevated in M phase during Xenopus laevis oocytes maturation (Lefebvre

et al., 2004; Dehennaut et al., 2009). Consistently, dysregulation of

O-GlcNAc cycling impairs cell cycle progression in Xenopus laevis oocytes

(Dehennaut et al., 2007). We observed that the O-GlcNAcylation level

increased at late S phase and peaked at M phase, concomitant with

increased OGT levels in mammalian cells. O-GlcNAcylation decreased dur-

ing mitotic exit, which is controlled by OGA enzymatic activity

(Fig. 4A–C). Thus, OGA disruption may profoundly affect multiple mitotic

signaling circuits. Consequently, OGA) ⁄ ) MEFs failed to maintain geno-

mic stability, followed by abnormal chromosome segregation and cytoki-

nesis failure. Similarly, a previous study shows that increased O-GlcNAc

level by OGT overexpression leads to polyploid nuclei (Slawson et al.,

(A) (B)

(C) (D)

Fig. 5 OGA) ⁄ ) MEFs show mitotic defects and downregulation of mitotic regulators. (A) DNA content profile of asynchronous OGA+ ⁄ + and OGA) ⁄ ) MEFs (P2 and P4). (B)

The percentage of cells (P4) in each phase of the cell cycle is shown. Error bars represent the S.D. (n = 3) and **P < 0.005, *P < 0.05 vs. OGA+ ⁄ + MEFs (Student’s t-test). (C)

Cell cycle status of MEFs (P4) analyzed by FACS after BrdU and PI staining. (D) Western blot analysis of the expression levels of OGT, cdc2, AKB, cyclin B1, cyclin A, cyclin D,

and cyclin E. Anti-b-actin antibody was used as loading control.
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2005). These results suggest that increased O-GlcNAcylation by OGA dis-

ruption or OGT overexpression causes defective mitosis.

Many mitotic regulators of O-GlcNAcylation have been identified. OGA

and OGT localizes in a transient complex with vimentin (a cytoskeletal

protein), Aurora kinase B (AKB), and protein phosphatase 1 (PP1) at the

midbody during cytokinesis, which cooperatively regulates the post-trans-

lational status of proteins (Slawson et al., 2008). Nup153 and EMSY,

which are required for nuclear envelope breakdown and maintenance of

genomic stability, respectively, are also O-GlcNAcylated during M phase

(Favreau et al., 1996; Hughes-Davies et al., 2003; Raouf et al., 2005; Ull-

man et al., 2009; Wang et al., 2010). Furthermore, nuclear mitotic appa-

ratus protein 1 (NuMA1) plays an important role in spindle pole formation

and is O-GlcNAcylated at M phase (Silk et al., 2009; Yokomori et al.,

2009; Wang et al., 2010). OGT overexpression causes inhibitory phos-

phorylation of CDK1 and consequently reduces the phosphorylation of

CDK1 target proteins (Wang et al., 2010). However, how O-GlcNAcyla-

tion controls specific mitotic regulators during mitosis has not been

demonstrated. These data suggest that the precise control of O-GlcNAcy-

lation on mitotic regulators is critical for mitosis.

In addition to genomic instability, epigenetic changes are a critical com-

ponent of aging in all eukaryotes. The potential roles of O-GlcNAcylation

in epigenetic regulation have been investigated. O-GlcNAcylation occurs

on nuclear pores and many nuclear and chromatin-associated proteins.

Many transcription factors are O-GlcNAcylated, which affects their tran-

scriptional activity (Ozcan et al., 2010). In addition, O-GlcNAc cycling can

affect the activity of RNA polymerase II (Kelly et al., 1993; Hart & Comer,

2001). Strikingly, recent studies have shown that histones H2A, H2B, and

H4 are O-GlcNAcylated within the nucleosome core, implicating an

(A)

(B) (C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

Fig. 6 OGA loss causes genomic instability, and OGA is required for completion of cytokinesis. MEFs were fixed and stained with Hoechst. (A) OGA) ⁄ ) MEFs had higher

numbers of binuclear cells and larger mononuclei and micronuclei compared with OGA+ ⁄ + MEFs (arrows indicate micronuclei, arrowheads denote binuclear cells). The

percentage of polynucleated cells (B) and micronuclei (C) in OGA+ ⁄ + and OGA) ⁄ ) MEFs. (D) OGA) ⁄ ) MEFs with a lagging chromosome in anaphase (arrows highlight a

lagging chromosome). (E) Quantification of lagging chromosomes in OGA+ ⁄ + and OGA) ⁄ ) MEFs. (F) Representative photomicrographs of Giemsa-stained metaphase spreads

of OGA+ ⁄ + and OGA) ⁄ ) MEFs (P5). (G) Metaphase spreading profiles of OGA+ ⁄ + and OGA) ⁄ ) MEFs. At least 80 cells were analyzed per genotype per experiment. In all

panels, error bars represent the SD and **P < 0.005, *P < 0.02 (Student’s t-test). (H and I) Time-lapse DIC images of OGA+ ⁄ + (H) and OGA) ⁄ ) (I) MEFs. OGA) ⁄ ) MEFs

displayed cytokinesis failure, resulting in multinucleation (arrows indicate nuclei, time points are in minutes), with scale bars of 50 lm. (J) Frequency of OGA+ ⁄ + and OGA) ⁄ )

MEFs that failed to complete cytokinesis.
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important role for O-GlcNAc in chromatin remodeling and epigenetic

regulation (Sakabe & Hart, 2010; Sakabe et al., 2010). Correlatively, the

ogt-1 and oga-1 null mutant alleles of Caenorhabditis elegans show that

disruption of O-GlcNAc cycling leads to age-related transcriptional

changes (Love et al., 2010). These results also support the close relation-

ship between the aging process and dysregulation of O-GlcNAcylation.

This evidence and our results suggest that increased O-GlcNAcylation by

aberrant regulation of O-GlcNAc cycling enzymes might lead to epige-

netic changes that contribute to natural aging.

Because genomic instability is a hallmark of most cancers, our results

raise the possibility that OGA or OGT is dysfunctional in cancer. Consistent

with this idea, dysregulation of O-GlcNAcylation and aberrant protein lev-

els of O-GlcNAc cycling enzymes are observed in tumors and in cancer cell

lines. In breast tissue or thyroid cancers, decreased O-GlcNAc levels and

increased OGA enzymatic activity occur (Slawson et al., 2001; Krzeslak

et al., 2010). In contrast, however, many studies have recently shown

increases in the O-GlcNAc levels and the protein levels of O-GlcNAc

cycling enzymes in cancers. Lung and colon tissue exhibited increased O-

GlcNAcylation and protein levels of O-GlcNAc cycling enzymes (Gu et al.,

2010; Yu et al., 2011). Moreover, in patients with chronic lymphocytic

leukemia, O-GlcNAcylated proteins increased, and the protein levels of O-

GlcNAc cycling enzymes also increased (Shi et al., 2010). In breast cancer

cell lines, O-GlcNAc levels are elevated, and the OGT level also increases

compared with less aggressive breast cancer lines. Importantly, OGT

knockdown in breast cancer cells inhibits tumor growth both an in vitro

and in an in vivo mouse model (Caldwell et al., 2010). OGT deficiency in a

mammalian model reveals that OGT is essential for stem cell viability (Shafi

et al., 2000). Moreover, the tissue-specific OGT knockout using floxed

mice leads to T-cell apoptosis and fibroblast growth arrest (O’Donnell

et al., 2004). We show here that OGA) ⁄ ) MEF exhibited reduced growth

with a decreased OGT level. Similarly, OGT disruption also leads to a paral-

lel decrease in OGA protein levels (Kazemi et al., 2010). OGT knockdown

cells by shRNA also displayed a reduced OGA level and decreased growth

rate (Fig. S3A,B). These results reflect the observation that many cases of

cancer tissues display increased protein levels of O-GlcNAc cycling

enzymes, while aged tissues show decreased protein levels of O-GlcNAc

cycling enzymes. Thus, we propose that aberrantly increased protein lev-

els of O-GlcNAc cycling enzymes might be critical for cancer cell growth

rather than total O-GlcNAcylation change.

In summary, this study provides key insight into the role of OGA in the

maintenance of genomic instability linked to aging. OGA loss caused a

reduced growth rate and cellular senescence with genomic instability.

OGA enzymatic activity is important to complete mitosis with OGT func-

tions. Abnormal OGA function might contribute to the aging process and

be associated with development of age-related chronic diseases.

Materials and methods

Histology

For the histological analysis, mouse embryos, placentas, and tissues were

collected, fixed with 10% phosphate-buffered formalin, dehydrated, and

embedded in paraffin. The 6-lm sections were stained with hematoxylin

and eosin by standard procedures. The slides were observed under a digi-

tal virtual microscope (dotSlide; Olympus, Tokyo, Japan).

Generation of MEFs and growth rate analysis

MEFs were isolated from 12.5 to 14.5 dpc embryos. After removal of the

intestinal organs and head, embryos were washed with phosphate-buf-

fered saline (PBS), minced, and trypsinized. After centrifugation, the dis-

sociated cells were plated in Dulbeccos’s modified Eagle’s medium

(DMEM) containing 10% fetal bovine serum. Growth curves were deter-

mined at passages 4 and 6. At day 0, 105 MEFs were seeded in triplicate

on 6-cm plates, counted, and reseeded at the same density every 2–

3 days. The population-doubling rate of each passage was calculated

using a log2 formula (the number of harvested cells ⁄ the number of

seeded cells).

Apoptosis assays using annexin-V and PI

OGA+ ⁄ + and OGA) ⁄ ) MEFs were harvested, washed with ice-cold PBS,

and resuspended in annexin-V binding buffer. Annexin-V–FITC (BD Bio-

sciences, San Jose, CA, USA) and PI (Sigma, St. Louis, MO, USA) were

added to the cells and incubated for 15 min at room temperature in the

dark. Samples were analyzed by FACSCalibur (BD Biosciences).

Western blotting and immunofluorescence staining analysis

Tissue and cell lysates were prepared using standard procedures. Samples

of 20–30 lg of protein were separated on an SDS-polyacrylamide gel

and visualized. Western blotting antibodies used were anti-cyclin A (sc-

596; Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-cyclin B1 (05-

158; Upstate Biotechnology, Lake Placid, NY, USA), anti-cyclin E (sc-481;

Santa Cruz Biotechnology), anti-cyclin D (sc-450; Santa Cruz Biotechnol-

ogy), anti-AKB (611082; BD Biosciences), anti-cdc2 (9112; Cell Signaling

Technology, Beverly, MA, USA), and b-actin (691001; MP Biomedicals,

Santa Ana, CA, USA). The antibodies used for the anti-O-GlcNAc Western

blots (CTD110.6) were kindly provided by Dr. Gerald Hart (Johns Hopkins

University, Baltimore, MD, USA). Anti-OGT and OGA polyclonal antibod-

ies had been previously generated and were used as previously described

(Suh et al., 2008). Synthetic peptides (YAAGNKPDHMIK) for the anti-

OGT antibody and purified His-OGA protein for the anti-OGA antibody

were conjugated with keyhole limpet hemocyanin (KLH) (Calbiochem,

San Diego, CA, USA) using glutaraldehyde. The peptide–KLH conjugates

were immunized into a New Zealand white rabbit. The peroxidase-labeled

goat anti-mouse IgG and the goat anti-mouse IgA, IgM, and IgG used as

the secondary antibodies were obtained from Kirkegaard & Perry Labora-

tories (KPL, Gaithersburg, MD, USA).

For nuclei staining, the MEFs were grown on coverslips, fixed for

15 min at room temperature in 4% paraformaldehyde, and washed in

PBS. DNA was visualized with Hoechst stain (Sigma), and the coverslips

were mounted on slides. Nuclei were analyzed using a FV1000SPD

(Olympus).

Cell cycle study

For primary MEF asynchronous cell cycle analysis, bromodeoxyuridine

(BrdU) and PI staining was performed using BrdU flow kits (BD Pharmin-

gen, San Diego, CA, USA). Briefly, the MEFs were incubated with 10 lM

BrdU for 4 h. After harvesting and fixation, cells were permeabilized with

BD Cytofix ⁄ Cytoperm� buffer (BD Biosciences) and were labeled with an

FITC-conjugated anti-BrdU antibody. Total DNA was stained with PI solu-

tion and analyzed using a FACSCalibur instrument (BD Biosciences).

Cytogenetic analyses

MEFs were treated with 0.1 lg mL)1 colcemid (Gibco ⁄ BRL, Grand Island,

NY, USA) for 5 h. After washing with PBS, the cells were detached and

incubated in 0.075 M KCl (hypotonic solution) at 37 �C for 15 min. The
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cells were fixed with methanol ⁄ glacial acetic acid (3:1) three times at

room temperature for 10 min. The cells were dropped on a slide and

stained with Giemsa.

Live cell imaging

Asynchronously grown MEFs were seeded on coverslips and maintained

in a heated culture chamber (37 �C, 5% CO2) on Microscope equipped

with a CO2 control system and a humidity chamber. The cells were visual-

ized by DIC imaging. DIC images were collected at 10-min intervals for

24 h. Live images of cell division were obtained using an IX81-ZDC in

UNIST-Olympus Biomed Imaging Center (UOBC).
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this article:

Data S1. Methods.

Fig. S1 Generation of OGA-/- mice and confirmation of gene trap vector

insertion in the OGA gene. (A) A gene-trapping vector was used to disrupt

OGA. (B) The gene trap vector was inserted in the first intron. (C) PCR gen-

otyping of tails was used to confirm the status of OGA+/+ and OGA+/ mice.

The indicated primers (F, R, and T) were used in genotyping. (D) Whole-

mount lacZ staining of E10.5 and E12.5 embryos and placentas, confirming

the insertion of gene trap beta-galactosidase reporter alleles.

Fig. S2 OGA expression during mouse development. Sagittal section of

embryos (A) and radial sections of placenta (B) stained with X-gal at stage

E14.5. Ma, maternal decidua; Sp, syncytiotrophoblast layer; TG, trophoblast

giant cell layer; La, labyrinthine layer.

Fig. S3 Reduced growth rate in OGA and OGT knockdown cell lines. (A)

Western blots confirming the shRNA knockdown of OGA and OGT in total

lysates from stable cell lines. (B) Growth curves of the control vector, OGA,

and OGT knockdown HEK293 cells. Error bars represent the S.D.

Fig. S4 OGA loss does not affect the mitotic checkpoint defect. (A) Cell

cycle analysis by flow cytometry of OGA+/+ and OGA-/- MEFs treated with
nocodazole (100 ng mL-1) for the indicated number of hours. (B) The

experiment was performed with OGA knockdown and control cell lines.
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