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a b s t r a c t

Near the non-convex vertex the solution of the Heat equation is of the form u = (c ⋆ E)χ
rπ/ω sin( π θ

ω
)+w,w ∈ L2(R+

;H2), where c is the stress intensity function of the time vari-

able t , ⋆ the convolution, E(x, t) = re−r2/4t/2
√
π t3, χ a cutoff function and ω the opening

angle of the vertex. In this paper we use the Fourier finite element method for approximat-
ing the stress intensity function c and the regular part w, and derive the error estimates
depending on the regularities of c and w. We give some numerical examples, confirming
the derived convergence rates.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to apply the Fourier finite elementmethod (FFEM) to the corner singularity expansion for the
Heat equation on non-convex polygonal domains, to show unique existence and error estimates, and to confirm the derived
convergence rates by numerical experiments. The FFEM combines the Fourier method with the finite element method. This
provides some advantages. The approximate solution of the Heat equation on polygonal domains or the boundary value
problem on axisymmetric domains can be reduced to the approximate solution of a finite set of boundary value problems in
two dimensions and can be solved in parallel. Also, the approximate stress intensity function can be calculated by truncated
Fourier series, with coefficients of singular functions in two dimensions (see [1]).

The FFEM is based on the method given in Ref. [2], where it was applied to a general second-order elliptic Dirichlet
boundary value problem on axisymmetric domains in R3. In [1] it was also applied to the Dirichlet problem of the Poisson
equation in axisymmetric domains with reentrant edges and in [3] the interface problem of the Poisson-like equation in
axisymmetric domains with edges. In [4,5] the Fourier singular complement method was introduced and analyzed in such
axisymmetric domains. In [6] a combination of the FFEMwith the Nitsche finite elementmethodwas applied to the Dirichlet
problem of the Poisson equation in 3D axisymmetric domains with non-axisymmetric data. In particular, compared with
this paper, the analysis given in [7] is similar in applying the FFEM to the edge singularity expansion of the Poisson problem
but, in this paper, the stress intensity factor of the corner singularity for the Poisson problem with parameter is differently
formulated (see Remark 1.3).

This paper provides a FFEM to overcome corner singularities for the Heat equation with (nearly) optimal order conver-
gence. For the optimality we try to find the approximation of the regular part in the corner singularity expansion before
computing the stress intensity function of the singular solution (cf. [7]). Even though our approach needs the knowledge of
the exact forms of corner singularities, its advantage is that there is no procedure refining triangulations near the non-convex
corner, compared with Ref. [8].
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Handling singularity caused by singular boundaries is a very important issue in mechanics and numerical computations
because, as expected, the corners and edges of boundarymay result inmechanically singular forces and numerically unstable
phenomena. The finite element methods to overcome the corner singularities of the second order elliptic boundary value
problem were investigated in [9–15]. Even the singularities of the parabolic problem were studied so some numerical
methods on domains with corners were analyzed in [8,16–18]. In this paper we also consider the initial and boundary value
problems for the Heat equation:

∂tu −1u = f inΩ × R+,

u = 0 on Γ × R+,

u(·, 0) = 0 inΩ,
(1.1)

where u is the unknown function and f a given function; Ω ⊂ R2 is a non-convex polygon with the boundary Γ := ∂Ω;
R+

:= (0,∞) is the positive real line.
It is assumed, for simplicity, thatΩ has only one non-convex vertex P placed at the origin. Let ω = ω2 − ω1 > π be the

opening angle of P where ωi are the numbers in ω1 < ω2 < ω1 + 2π . Set α = π/ω. Denote by r > 0 the radial coordinate
and θ ∈ (ω1, ω2) the angular coordinate. The corresponding corner singularity φ and its dual function ψ are given by

φ = χ1rα sin[α(θ − ω1)], ψ = χ2r−α sin[α(θ − ω1)], (1.2)

where χi ∈ C∞(R2) are the cutoff functions defined by

χj = 1 for r ≤ dj and 0 for r ≥ dj+1, (1.3)

where dj are numbers with 0 < d1 < d2 < d3 ≪ 1.
The spaces and norms used in this paper are as follows. For real s, Hs means the usual fractional order Sobolev space with

norm ∥v∥s (see [19,20]). We write L2 = H0 with norm ∥v∥0 = (

Ω

|v|2dx)1/2, H1
0 := {v ∈ H1

: v|Γ = 0} and Hs
0 = Hs

∩ H1
0.

Also H−s means the dual space of Hs
0 with norm

∥f ∥−s := sup
0≠v∈Hs

0

⟨f , v⟩/∥v∥s, (1.4)

where ⟨ , ⟩ denotes the duality pairing. The function u(x, t) is considered as a mapping u : R+
→ X defined by [u(t)](x) :=

u(x, t) for x ∈ Ω and t ∈ R+, where X is a Banach space with norm ∥ ·∥. Let L2(R+
; X) be the set of all measurable functions

with

∥u∥L2(R+;X) :=


∞

0
∥u(t)∥2dt

1/2
.

Throughout this paper C denotes a generic positive constant, for instance, C = C(Ω, . . .), depending onΩ and so on.
The solution of the elliptic boundary value problems on a polygonal domain, for instance, the Poisson problem:−1u = f

inΩ and u = 0 on Γ can be written in the following form near the non-convex vertex (see [20–23]):

u = Cφ + w, w ∈ H2

with the regularity estimate: ∥w∥2 + |C| ≤ C∥f ∥0 for a constant C . In the numerical analysis a main issue is how the (opti-
mally) convergent numerical solutions for the pair [C, w] can be constructed. Such investigation can be found in the follow-
ing references: [11–15]. In [11] the extraction formula for the coefficient C is presented, based on the dual singular function
method, and the error estimates are derived: |C − Ch| + ∥w − wh∥0 = O(h1+α−ϵ) for 0 < ϵ ≪ 1 and ∥w − wh∥1 = O(h)
where wh and Ch are the approximations of w and C respectively. In [13] the multi-grid methods for the computation
of singular solutions and stress intensity factors are studied and the error estimates are derived: |C − Ch| = O(h1+α−ϵ),
∥w − wh∥1 = O(h). In [14,15] the extraction formula given in [11] is modified by the expression containing only the regu-
lar part w and the discrete variable wh is computed by using the Sherman–Morrison formula and also the error estimates:
|C − Ch| + ∥w − wh∥0 = O(h1+α−ϵ), ∥w − wh∥1 = O(h) are shown. Furthermore, some noticeable works on the finite
element methods for elliptic boundary value problems on domains with cusps can be found in [24,25].

On the other hand such numerical analysis for the corner singularity decomposition of the Heat equation has not been
given yet. A direct numerical approach to the solution itself can be found in the references: [8,16–18]. In [8] the au-
thors show that the approximation uh for the semidiscrete formulation of the problem (1.1) satisfies the error estimates:
∥u(t) − uh(t)∥0 = O(h2α), ∥∇(u(t) − uh(t))∥0 = O(hα) and also the optimal order convergence rates can be restored by
systematically refining triangulations toward the non-convex corner.

Unlike the corner singularity expansion of the Poisson problem the corner singularity of a non-convex vertex for the
time-dependent problem (1.1) corresponds to each time t > 0 and is of the form (Theorem 1.1)

u = (E ⋆ c)φ + w, (1.5)

where ⋆ is the convolution in time,φ is the corner singularity in (1.2) andw is the smoother part.We here state the regularity
result for the Heat equation (1.1) on the non-convex polygonΩ (see [26, Theorem 2.2]).
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Theorem 1.1. If f ∈ L2(R+
;H−1), there is a solution u ∈ L2(R+

;H1
0) of (1.1), satisfying

ess sup
0≤t<∞

∥u(t)∥0 + ∥u∥L2(R+,H1) + ∥∂tu∥L2(R+;H−1) ≤ C∥f ∥L2(R+;H−1).

On the other hand, if f ∈ L2(R+
; L2), the solution u is written by

u(t) = (E ⋆ c)(t)φ + w(t), w(t) := u(t)− (E ⋆ c)(t)φ, (1.6a)

c(t) =
1

2π i


γ

⟨Λλ; (λI − ∂t)
−1f (t)⟩dλ, E(x, t) = re−r2/4t/2

√

π t3, (1.6b)

where γ is a vertical axis satisfying Re λ < 0 for λ ∈ γ , and Λλ is a continuous linear functional on Hs−2 defined by (1.17).
Furthermore the pair [w, c] ∈ L2(R+

;H2)× H(1−α)/2(R+) and satisfies

ess sup
0≤t<∞

∥w(t)∥1 + ∥w∥L2(R+;H2) + ∥∂tw∥L2(R+;L2) + ∥c∥(1−α)/2,R+ ≤ C∥f ∥L2(R+;L2).

We shall be concerned with the periodic extension in time t of the solution u in (1.6a) by the Fourier series expansion.
Let T be a positive number. LetΩT = Ω × (0, T ) (see Fig. 1). The Fourier series expansion of v ∈ L2(ΩT) is given by

v(x, t) =

∞
k=−∞

Vk(x)eλkt , λk = 2πki/T, (1.7)

where Vk is the kth Fourier coefficient (Ref. [27, Section 2.3]) of v with respect to t , defined by

Vk(x) =
1
T

 T

0
v(x, t)e−λktdt. (1.8)

Since the solution u is square integrable onΩT, the Fourier series converges to the solution at almost every point inΩT and
works for a general solution u onΩT. Letting Ck and Wk be the Fourier coefficients of c and w, the Fourier series expansion
of (1.5) is given by

u =

∞
k=−∞

Ukeλkt , Uk = Cke−r
√
λkφ + Wk, (1.9)

which follows by T

0


∞

0
E(s)c(t − s)ds e−λktdt =


∞

0
E(s)e−λksds

 T

0
c(t)e−λktdt

= e−r
√
λk CkT.

To approximate the decomposition (1.9) we follow the following steps:
(a) Find U ∈ H1

0 such that −1U + λU = F inΩ .
(b) Solve a (generalized) boundary value problem forW := U − Ce−r

√
λφ.

(c) Construct the approximation [Ch,Wh] of [C,W ] for the mesh-size h.
(d) Find the approximation [Ck,h,Wk,h] corresponding to λ = λk and define a finite approximation for the sum (1.9):

uN
h :=

N
k=−N

Uk,heλkt , Uk,h := Ck,he−r
√
λkφ + Wk,h. (1.10)

(e) With uN
:= u −


|k|>N Ukeλkt , we analyze the error defined by

uN
− uN

h =

N
k=−N

(Ck − Ck,h)e−r
√
λk+λktφ +

N
k=−N

(Wk − Wk,h)eλkt .

In order to follow above procedure we insert the Fourier series of u and f into (1.1), equate each coefficient of eλkt and
get the following equation for the Fourier coefficients:

−1Uk + λkUk = Fk inΩ, Uk = 0 on Γ , (1.11)

where Uk and Fk are the Fourier coefficients of u and f , respectively.
The problem (1.11) will be solved by investigating the following Poisson problem with parameter:

−1U + λU = F inΩ, U = 0 on Γ , (1.12)

where λ is a complex number with Re λ ≥ 0. We here state a regularity result for (1.12). The proof can be found in the
Refs. [28, Theorem 2.1] and [29].
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Fig. 1. The regionΩT .

Theorem 1.2. If F ∈ H−1, there exists a unique solutionU ∈ H1
0 of (1.12), satisfying ∥U∥1+|λ|1/2∥U∥0 ≤ C∥F∥−1 for a constant

C. On the other hand, there exist a number C and a function W ∈ H2 such that if F ∈ L2, the solution U can be written by

U = Ce−r
√
λφ + W , (1.13)

where φ = χ1rα sin[α(θ − ω1)]. Furthermore there is a constant C such that the following regularity holds:

∥W∥2 + (1 + |λ|)1/2∥W∥1 + (1 + |λ|)∥W∥0 ≤ C∥F∥0,

(1 + |λ|)(1−α)/2|C| ≤ C∥F∥0.
(1.14)

The coefficient C of (1.13) is formulated as follows: For simplicity we set

φλ = e−r
√
λφ, ψλ = e−r

√

λψ,

φ∗

λ = (∆− λI)φλ, ψ∗

λ = (∆− λI)ψλ,
(1.15)

where λ denotes the complex conjugate of λ and I is the identity operator. Using ϕ ∈ H1 satisfying (−∆+λ)ϕ = ψ∗

λ ∈ H−1

with ϕ|Γ = −ψλ|Γ and F = −(∆− λI)U , we write the coefficient C of (1.13) by

C = Λλ(F) :=
1
π


Ω

F(ϕ + ψλ)dx (1.16)

=
1
π


Ω

Uψ∗

λ + F ψλdx. (1.17)

For a detailed derivation for (1.16) one may refer to [28, Section 2]. A similar formulation like (1.17) can be found in
[14, (1.8)] and [20, pp. 399].

Remark 1.3. In this paper we shall use the formula (1.17) for C instead of (1.16). A main reason is that the expression (1.17)
enables us to derive a better L2-error estimate for the regular partW of (1.13): O(h2−α−ϵ)with 0 < ϵ ≪ 1−α (see (1.25a)).
Meanwhile, in [7, Section 3] the formula (1.16) is used and the derived L2-error estimate for the regular part W is O(h1−ϵ)
(see [7, Theorem 3.3]).

Using U = Cφλ + W of (1.13), we split the formula (1.17) for C by

C = C1(W )+ C2(F), (1.18)

where

C1(W ) =
1

πγ (λ)


Ω

Wψ∗

λdx, C2(F) =
1

πγ (λ)


Ω

Fψλdx,

γ (λ) = 1 −
1
π


Ω

φλ ψ
∗

λdx.
(1.19)
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Inserting U = Cφλ + W into (1.12) and using (1.18), one has a generalized boundary value problem for the remainderW :

−1W + λW − C1(W )φ∗

λ = Fλ inΩ,
W = 0 on Γ ,

(1.20)

where Fλ := C2(F)φ∗

λ + F . We shall find the weak solutionW ∈ H1
0 of (1.20), satisfying

aλ(W , V ) = ⟨Fλ, V ⟩, ∀ V ∈ H1
0, (1.21)

where
aλ(W , V ) = ⟨∇W ,∇V ⟩ + λ⟨W , V ⟩ − C1(W )⟨φ∗

λ, V ⟩,

⟨Fλ, V ⟩ =


Ω

FλVdx.

Set V = H1
0. Let Vh be a finite dimensional subspace of V for the mesh-size h. Then the approximate problem is to find

Wh ∈ Vh such that
aλ(Wh, Vh) = ⟨Fλ, Vh⟩, ∀ Vh ∈ Vh. (1.22)

WithWh of (1.22) we define the approximation of the coefficient C in (1.13) by
Ch = C1(Wh)+ C2(F). (1.23)

Recall from (1.14) that a least regularity space for F is assumed to be L2 so that the stress intensity factor C can be well
defined and the H2-regularity for the remainderW can be obtained.

We here give unique existences forWh and Ch and the error estimates, which are shown in Theorems 3.3–3.4.

Theorem 1.4. Let λ be a parameter with Re λ ≥ 0. If F ∈ L2, there exists a unique solution Wh ∈ Vh of (1.22). Also the
approximation Ch is defined by (1.23) and the following a priori estimates hold:

(1 + |λ|)1/2∥∇Wh∥0 + (1 + |λ|)∥Wh∥0 ≤ C∥F∥0, (1.24a)

(1 + |λ|)(1−α)/2|Ch| ≤ C∥F∥0. (1.24b)

Furthermore, there is a constant C independent of h such that, for a small number 0 < ϵ ≪ 1 − α,

∥W − Wh∥0 ≤ Ch2−α−ϵ
∥F∥0, (1.25a)

∥∇(W − Wh)∥0 + (1 + |λ|)1/2∥W − Wh∥0 ≤ Ch∥F∥0, (1.25b)

|C − Ch| ≤ C(1 + |λ|)
α
2 h∥F∥0. (1.25c)

In particular it is noted that if the parameter λ is set to be zero in the problems (1.21) and (1.22), one has ∥W − Wh∥0 ≤

Ch1+α−ϵ
∥F∥0 and |C − Ch| ≤ Ch1+α−ϵ

∥F∥0 for any ϵ with 0 < ϵ ≪ α.

Remark 1.5. As mentioned in Remark 1.3, it is noted that the error estimate (1.25a) gives a better L2-error estimate for the
regular part W than that given in [7, Theorem 3.3]. Since our approach is firstly to find the approximation of W ∈ H2, the
numerical tests in Section 4.1 show a super-convergence for the approximation ofW with the rate 2 in L2-error (cf. [13,15])
but it is hard to derive the best rate 2 in theory. Such difficulty comes from a lack of the regularity H2−α−ϵ , shown in
Lemma 3.1, for the dual problem (3.1) with g = W − Wh (see Theorem 3.4).

We here recall the Fourier series u =


∞

k=−∞
Ukeλkt . If u = (E ⋆ c)φ + w, the Fourier coefficient can be written by

Uk = Cke−r
√
λkφ + Wk and

c =

∞
k=−∞

Ckeλkt , w =

∞
k=−∞

Wkeλkt . (1.26)

For λ = λk, the coefficient Wk ∈ H1
0 is the weak solution satisfying aλ(Wk, V ) = ⟨Fλ, V ⟩, ∀ V ∈ H1

0 and also Ck = C1(Wk)+

C2(Fk). LetWk,h be the discrete solution of (1.22) with λ = λk and Ck,h the approximate coefficient of (1.23). Here we define
the approximation [wN

h , c
N
h ] of the truncation [wN , cN ] by

wN
h =

N
k=−N

Wk,heλkt , cNh =

N
k=−N

Ck,heλkt . (1.27)

To measure the periodic extension of the solution we consider the following spaces: Let X be a Banach space with norm
∥ · ∥X onΩ . We define L2(0, T; X) = {v : ∥v∥L2(0,T;X) < ∞} with norm ∥v∥L2(0,T;X) := T1/2(


∞

k=−∞
∥Vk∥

2
X)

1/2 and for real
s > 0, Hs(0, T; X) = {v ∈ L2(0, T; X) : ∥v∥Hs(0,T;X) < ∞} with norm

∥v∥Hs(0,T;X) := T1/2
 ∞
k=−∞

(1 + |λk|)
2s
∥Vk∥

2
X

1/2
.
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Also, we consider L2(0, T) = {c : ∥c∥L2(0,T) < ∞} with norm ∥c∥L2(0,T) := T1/2(


∞

k=−∞
|Ck|

2)1/2 and Hs(0, T) = {c ∈

L2(0, T) : ∥c∥Hs(0,T) < ∞} with norm

∥c∥Hs(0,T) := T1/2
 ∞
k=−∞

(1 + |λk|)
2s
|Ck|

2
1/2

.

We here give the a priori estimate for the approximation of (1.27) and the error estimates, which are shown in Section 3.

Theorem 1.6. If f ∈ L2(0, T; L2) then the approximation [wN
h , c

N
h ] of (1.27) satisfies ∥wN

h ∥H1/2(0,T;H1) + ∥wN
h ∥H1(0,T;L2) +

∥cNh ∥H(1−α)/2(0,T) ≤ C∥f ∥L2(0,T;L2) for a constant C. On the other hand, let [w, c] be of the form (1.26). Then there exists a constant
C independent of h and N such that, for 0 < ϵ ≪ 1 − α,

(i) ∥w − wN
h ∥L2(0,T;L2) ≤ C(h2−α−ϵ

+ N−1)∥f ∥L2(0,T;L2), (1.28a)

(ii) ∥w − wN
h ∥L2(0,T;H1) ≤ C(h + N−1/2)∥f ∥L2(0,T;L2), (1.28b)

(iii) ∥w − wN
h ∥H1/2(0,T;L2) ≤ C(h + N−1/2)∥f ∥L2(0,T;L2). (1.28c)

Additionally, if f ∈ H1/2(0, T; L2) then

(iv) ∥w − wN
h ∥H1/2(0,T;H1) ≤ C(h + N−1/2)∥f ∥H1/2(0,T;L2), (1.29a)

(v) ∥w − wN
h ∥H1(0,T;L2) ≤ C(h + N−1/2)∥f ∥H1/2(0,T;L2), (1.29b)

and if f ∈ Hα/2(0, T; L2) then

(vi) ∥c − cNh ∥L2(0,T) ≤ C(h + N−1/2)∥f ∥Hα/2(0,T;L2). (1.30)

Finally if Ω is a convex polygon, we have (i)′ ∥u−uN
h ∥L2(0,T;L2) ≤ C(h2

+N−1)∥f ∥L2(0,T;L2) and the regular part w can be replaced
by u in the above error estimates (ii)–(v).

It is also noted that the error estimate (1.28a) shows a better L2-error estimate for the regular partw in the space mesh-
size h than that given in [7, Theorem 4.1].

This paper is organized as follows. In Section 2we show the a priori estimates for the solutionW of (1.21). In Section 3we
derive stability and the error estimate for the discrete problem (1.22) and show Theorem 1.6. In Section 4we give numerical
examples for the approximations: Ch,Wh,wN

h and cNh , confirming the derived convergence rates.

2. The generalized boundary value problem (1.20)

In this section we show a unique existence of the solution for the problem (1.20), which is needed for showing the
stability of the discrete problem (1.22) (see Theorem 3.3). We first give a useful lemma, which is used in giving an optimal
dependency of the parameter λ for the a priori estimates for C andW .

Lemma 2.1. Let λ be a complex number with Re λ ≥ 0 and θλ = Arg(λ) the argument of λ. Then the number γ (λ) in (1.19) is
bounded below: |γ (λ)| ≥ 1 − 8−1/2 and for ∀a > −1, δ1

0
e−δ2ηr radr ≤ C(1 + |λ|)−(a+1)/2, (2.1)

where η = |λ|1/2 cos(θλ/2) and δj are some positive numbers.

Proof. Clearly γ (0) = 1. We consider γ (λ) for λ ≠ 0. A direct calculation shows

ψ∗

λ = e−r
√

λr−α−1 sin[α(θ − ω1)][(2α − 1)

λχ2 + (1 − 2α − 2r


λ)χ ′

2 + rχ ′′

2 ]. (2.2)

Recalling φλ = χ1e−r
√
λrα sin[α(θ − ω1)], we then have

Ω

φλψ
∗

λdx
 ≤ (2α − 1)|λ|1/2

 d2

0
e−2ηrdr

 ω2

ω1

sin2
[α(θ − ω1)]dθ

≤
1
4η
ω(2α − 1)|λ|1/2 ≤ π/

√
8,

because |e−r
√
λ
||e−r

√

λ
| = e−2ηr and η ≥ |λ|1/2/

√
2 for θλ ∈ (−π

2 ,
π
2 ). Hence we obtain that |γ (λ)| ≥ 1 − 1/

√
8.
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To show the second part. If |λ| ≥ 1 then |λ|−1
≤ 2/(1 + |λ|), so one has δ1

0
e−δ2ηr radr = (δ2η)

−(a+1)
 δ1δ2η

0
e−r1 ra1dr1 (r1 = δ2ηr)

≤ C |λ|−(a+1)/2

≤ C(1 + |λ|)−(a+1)/2.

On the other hand, if |λ| < 1 then 1 < 2/(1 + |λ|), so we have δ1

0
e−δ2ηr radr ≤

 δ1

0
radr ≤ C ≤ C(1 + |λ|)−(a+1)/2.

Hence the required estimate follows. �

We next estimate the numbers C1(W ) and C2(F) defined in (1.19).

Lemma 2.2. Let λ ∈ C with Re λ ≥ 0. If W ∈ H1
0 and F ∈ L2 then

|C1(W )| ≤ C(1 + |λ|)α/2∥∇W∥0, (2.3)

|C2(F)| ≤ C(1 + |λ|)(α−1)/2
∥F∥0. (2.4)

Proof. Since |ψ∗

λ | ≤ C(1 + |λ|)1/2e−ηr r−α−1 for r ≤ d3 and ψ∗

λ = 0 for r > d3, one has

|C1(W )| ≤ C(1 + |λ|)1/2

Ω

|r−1W |e−ηr r−αdx

≤ C(1 + |λ|)1/2∥r−1W∥0∥e−ηr r−α
∥0.

By [20, Theorem 1.4.4.4], one has ∥r−1W∥0 ≤ C∥∇W∥0 and by (2.1), we have

∥e−ηr r−α
∥
2
0 ≤ C

 d3

0
e−2ηr r−2α+1dr ≤ C(1 + |λ|)α−1.

Combining above estimates, we get (2.3). Also the estimate (2.4) follows by

∥ψλ∥
2
0 ≤ C

 d3

0
e−2ηr r−2α+1dr ≤ C(1 + |λ|)α−1. �

For convenience we define the following norm depending on λ: for integer j ≥ 1,

∥v∥j,λ :=


∥v∥2

j + (1 + |λ|)∥v∥2
j−1.

We next show Garding’s type inequality for the bilinear form aλ of (1.21).

Lemma 2.3. There is a constant C independent of λ such that if k is a sufficiently large integer, thenaλ(W ,W )+ k(1 + |λ|)∥W∥
2
0

 ≥ C∥W∥
2
1,λ, ∀W ∈ H1

0. (2.5)

Also the bilinear form aλ is continuous on H1
0 × H1

0:

|aλ(W , V )| ≤ C∥W∥1,λ∥V∥1,λ, ∀W , V ∈ H1
0.

Proof. For a large integer k one hasaλ(W ,W )+ k(1 + |λ|)∥W∥
2
0

 ≥ ∥∇W∥
2
0 + (k + (k − 1)|λ|)∥W∥

2
0 − |C1(W )||⟨φ∗

λ,W ⟩|

≥ ∥∇W∥
2
0 + (k − 1)(1 + |λ|)∥W∥

2
0 − C(1 + |λ|)1/2∥∇W∥0∥W∥0

≥ 2−1
∥∇W∥

2
0 + (k − 1 − 2−1C2)(1 + |λ|)∥W∥

2
0, (2.6)

where the second inequality follows by (2.3) and

∥φ∗

λ∥
2
0 ≤ C(1 + |λ|)

 d2

0
e−2ηr r2α−1dr ≤ C(1 + |λ|)1−α, (2.7)

and the third inequality follows by

C(1 + |λ|)1/2∥∇W∥0∥W∥0 ≤ 2−1
∥∇W∥

2
0 + 2−1C2(1 + |λ|)∥W∥

2
0.

Hence (2.5) follows by assuming that k > 1 + 2−1C2. The continuity of aλ is clear. �
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Using Lemma 2.3 we show a unique existence for (1.20) and the a priori estimate.

Theorem 2.4. If F ∈ L2, there exists a unique solution W ∈ H1
0 of (1.21), satisfying the a priori estimate:

(1 + |λ|)1/2∥∇W∥0 + (1 + |λ|)∥W∥0 ≤ C∥F∥0, (2.8)

where C is a constant not depending on λ.

Proof. We first formulate the weak problem (1.21) by the relation: AλW = Fλ in H−1 where Aλ is defined by

⟨AλW , V ⟩ = aλ(W , V ), ∀ V ∈ H1
0.

Set Tλ := Aλ + k(1+ |λ|)I for a sufficiently large k. By Lemma 2.3, Tλ is invertible on H1
0. Since TλW = Fλ + k(1+ |λ|)W and

letting K := k(1 + |λ|)T−1
λ , we get

(I − K)W = T−1
λ Fλ. (2.9)

Here K : L2 → L2 is compact by (2.5). By the Fredholm alternative theorem (Ref. [27, Section 5.7]) the kernel of the operator
(I − K) either is trivial or has finite nontrivial solutions. For a nontrivial solutionW , TλW = k(1 + |λ|)W . Then AλW = 0 in
H−1, that is, aλ(W , V ) = 0, ∀ V ∈ H1

0. Taking V = W + C1φλ ∈ H1
0 and by the integration by parts,

0 = aλ(W ,W + C1φλ)

= ⟨∇W ,∇(W + C1φλ)⟩ + λ∥W + C1φλ∥
2
0 − C1⟨1φλ,W + C1φλ⟩

= ∥∇(W + C1φλ)∥
2
0 + λ∥W + C1φλ∥

2
0.

Since Re λ ≥ 0, W + C1φλ ≡ 0. Plugging W = −C1φλ into the formula C1(W ) in (1.19) and since

Ω
φλψ

∗

λdx = π(1 − γ ),
we get

C1


1 +

1
πγ


Ω

φλψ
∗

λdx


= C1/γ = 0.

Hence C1 = 0 and W ≡ 0, which is a contradiction. Hence (2.9) has a unique solution W , given by W = (I − K)−1T−1
λ Fλ.

Since (I − K)−1 is bounded on L2 and T−1
λ : L2 → H1

0 is bounded, we have

∥W∥0 ≤ ∥(I − K)−1
∥L2 →L2∥T

−1
λ Fλ∥0

≤ C(1 + |λ|)−1
∥Fλ∥0

≤ C(1 + |λ|)−1
∥F∥0.

Again, using TλW = Fλ + k(1 + |λ|)W and the inequality (2.5),

∥∇W∥
2
0 + (1 + |λ|)∥W∥

2
0 ≤ C |⟨TλW ,W ⟩|

≤ C(|⟨Fλ,W ⟩| + k(1 + |λ|)∥W∥
2
0)

≤ C(1 + |λ|)−1
∥F∥

2
0.

Hence (2.8) follows. �

We estimate the number C, which is the same as that given in Theorem 1.2.

Corollary 2.5. The coefficient C of (1.19) is estimated by

(1 + |λ|)(1−α)/2|C| ≤ C∥F∥0 (2.10)

for a constant C, not depending on λ.

Proof. Combining (2.3)–(2.4),

|C| ≤ C(1 + |λ|)(α−1)/2(1 + |λ|)1/2∥∇W∥0 + ∥F∥0

, (2.11)

so the result follows by (2.8). �

3. The discrete problem (1.22) with parameter

In this section we show the stability of the discrete problem (1.22) and derive the error estimate. Uniqueness of the
solution Wh ∈ Vh of (1.22) is obtained by Schatz’s method concerning Ritz–Galerkin methods of indefinite bilinear forms
(see [30]).
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We next consider the adjoint problem of the bilinear form aλ: a∗

λ(z, w) = aλ(w, z) for allw, z ∈ H1
0. The adjoint problem

is to find z ∈ H1
0 such that

a∗

λ(z, w) = ⟨g, w⟩, ∀w ∈ H1
0, (3.1)

where

a∗

λ(z, w) = ⟨∇z,∇w⟩ + λ⟨z, w⟩ − C∗

1(z)⟨ψ
∗

λ , w⟩,

C∗

1(z) =
1
πγ


Ω

zφ∗

λ dx.

It is recalled that problem (3.1) is the weak formulation for the following boundary value problem:

−(∆− λI)z − C∗

1(z)ψ
∗

λ = g inΩ,
z = 0 on Γ .

(3.2)

Lemma 3.1. There is a unique solution z ∈ H1
0 of (3.1) such that if g ∈ Hs−2 for s ∈ [1, 2 − α), then

∥z∥s + (1 + |λ|)1/2∥z∥s−1 ≤ C∥g∥s−2. (3.3)

In particular, in the case λ = 0 the solution z satisfies ∥z∥s ≤ C∥g∥s−2 for s ∈ [1, 1 + α).

Proof. We first show the unique existence of z in H1
0. Let T

∗

λ = A∗

λ + k(1 + |λ|)I for a large integer k where ⟨A∗

λz, v⟩ =

a∗

λ(z, v), ∀ v ∈ H1
0. As shown in (2.6), we have

|⟨T ∗

λ z, z⟩| ≥ ∥∇z∥2
0 + (k − 1)(1 + |λ|)∥z∥2

0 − |C∗

1(z)⟨ψ
∗

λ , z⟩|

≥ 2−1
∥∇z∥2

0 + (k − 1 − 2−1C2)(1 + |λ|)∥z∥2
0,

which is shown by

|C∗

1(z)⟨ψ
∗

λ , z⟩| ≤ C(1 + |λ|)1/2∥∇z∥0∥z∥0 (by (2.7) and (2.3))

≤ 2−1
∥∇z∥2

0 + 2−1C2(1 + |λ|)∥z∥2
0.

For a large integer k > 1 + 2−1C2, one has

|⟨T ∗

λ z, z⟩| ≥ C[∥∇z∥2
0 + (1 + |λ|)∥z∥2

0], ∀ z ∈ H1
0. (3.4)

By the relation T ∗

λ z = g + k(1 + |λ|)z, one has

(I − K∗)z = T ∗

λ
−1g, (3.5)

where K∗
:= k(1 + |λ|)T ∗

λ
−1. By (3.4), K∗

: L2 → L2 is a compact operator. As shown in Theorem 2.4, the kernel of I − K∗ is
trivial. If (I − K∗)z = 0 for a nontrivial z ∈ L2 then A∗

λz = 0 in H−1, that is,

a∗

λ(z, v) = aλ(v, z) = 0, ∀ v ∈ H1
0. (3.6)

Taking v = z − C1φλ ∈ H1
0 in (3.6) and by integration by parts, we have

0 = aλ(z − C1φλ, z)
= ⟨∇(z − C1φλ),∇z⟩ + λ∥z∥2

0 − C1⟨1φλ, z⟩

= ∥∇z∥2
0 + λ∥z∥2

0.

Since Re λ ≥ 0, we have z ≡ 0, which is a contradiction. Hence the formula z = (I − K∗)−1T ∗

λ
−1g by (3.5) shows unique

existence in H1
0. Since (I − K∗)−1 is bounded on L2 and ∥T ∗

λ
−1

∥H−1 →L2 ≤ C(1 + |λ|)−1/2 by (3.4), we have

∥z∥0 ≤ ∥(I − K∗)−1
∥L2 →L2∥T

∗

λ
−1

∥H−1 →L2∥g∥−1

≤ C(1 + |λ|)−1/2
∥g∥−1. (3.7)

Using (3.4) and the relation: T ∗

λ z = g + k(1 + |λ|)z,

∥∇z∥2
0 + (1 + |λ|)∥z∥2

0 ≤ C |⟨T ∗

λ z, z⟩|

≤ C(|⟨g, z⟩| + k(1 + |λ|)∥z∥2
0)

≤ C(∥z∥1 + (1 + |λ|)1/2∥z∥0)∥g∥−1.

Hence the inequality (3.3) for s = 1 follows.
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To show the inequality (3.3) for s > 1. By the same procedure as used in showing (2.8), one has (1+|λ|)1/2∥z∥1 ≤ C∥g∥0.
By interpolation theory between integer values and using (3.7),

(1 + |λ|)1/2∥z∥s−1 ≤ C∥g∥s−2 for s ∈ (1, 2). (3.8)

Note that an increased regularity for the solution z of problem (3.2) mainly depends on the following regularity of the
function ψ∗

λ in (2.2):

∥ψ∗

λ∥s−2 ≤ C(1 + |λ|)(s+α−1)/2 for s < 2 − α (λ ≠ 0),
∥ψ∗

λ∥s−2 ≤ C for s < 1 + α (λ = 0).

By Remark 3.2 and for 1 < s < min{1 + α, 2 − α}, one has

∥z∥s + (1 + |λ|)1/2∥z∥s−1 ≤ C(|C∗

1(z)|∥ψ
∗

λ∥s−2 + ∥g∥s−2)

≤ C[(1 + |λ|)1/2∥z∥s−1 + ∥g∥s−2]

≤ C∥g∥s−2 (by (3.8)), (3.9)

because |C∗

1(z)| ≤ C∥z∥s−1∥φ
∗

λ∥1−s ≤ C(1 + |λ|)(2−s−α)/2
∥z∥s−1, which follows by |φ∗

λ| ≤ C(1 + |λ|)1/2e−ηr rα−1 where η is
defined in Lemma 2.1. �

Remark 3.2. Let z ∈ H1
0 be the solution for the problem: −1z + λz = g ∈ Hs−2. Let u = χz for the cutoff function χ . Then

u satisfies the regularity

∥u∥s + (1 + |λ|)1/2∥u∥s−1 ≤ C∥g∥s−2 for s ∈ [1, 1 + α).

Indeed, as shown in (3.8) we have (1 + |λ|)1/2∥u∥s−1 ≤ C∥g∥s−2 for s ∈ [1, 2]. We now show ∥u∥s ≤ C∥g∥s−2 for
s ∈ [1, 1 + α). We write u(r) = u(r, ·). By [31, Theorem 2.1] we use the Mellin transform

ŭ(ζ ) =
1

√
2π


∞

0
r iζ−1u(r)dr, ζ = σ + iη ∈ C.

Since u ∈ H1
0, ŭ is analytic for η = Im ζ < 0 and square integrable for η ≤ 0. Let g1 = g − λu. By the integration by parts,

one has (ζ 2
− ∂θθ )ŭ(ζ ) = ğ1(ζ − 2i). Since (ζ 2

− ∂θθ )
−1 has no pole for η = 0, and by the inverse Mellin transform, the

solution u is expressed by

u(r) =
1

√
2π


∞+i0

−∞+i0
r−iζ (ζ 2

− ∂θθ )
−1ğ1(ζ − 2i)dζ .

For s ∈ [1, 1 + 2α) and s ≠ 1 + α, we define ur by

ur(r) =
1

√
2π


∞+i(s−1)

−∞+i(s−1)
r−iζ (ζ 2

− ∂θθ )
−1ğ1(ζ − 2i)dζ .

If we assume that g1 ∈ Hs−2, then g1(ζ − 2i) is square integrable for η ≤ s − 1, and by the Residue theorem,

u − ur =


0 for s − 1 < α,
us for s − 1 > α,

(3.10)

where, by [23, Section II.2.2.1],

us =
√
2π i Res

ζ=iα
r−iζ (ζ 2

− ∂θθ )
−1ğ1(ζ − 2i)

= rα lim
ζ→iα

(ζ 2
− ∂θθ )

−1
[(ζ − iα)ğ1(ζ − 2i)]

= c1rα sin[α(θ − ω1)]

for a constant c1 ≠ 0. The remainder satisfies ∥ur∥2 ≤ C∥g1∥0 ≤ C∥g∥0 by (1 + |λ|)∥u∥0 ≤ C∥g∥0. Since u = ur for 1 ≤

s < 1+α by (3.10), we have ∥u∥s = ∥ur∥s ≤ C∥g∥s−2 for s ∈ (1, 1+α) by the interpolation theory between integer values.
Hence the required estimate follows. �

It is assumed that there is a projection operator Πh : H1
→ Vh (see [32]) satisfying the following interpolation error

estimates:

∥v −Πhv∥0 ≤ Chs
∥v∥s for v ∈ Hs (0 ≤ s ≤ 2),

∥v −Πhv∥1 ≤ Chs−1
∥v∥s for v ∈ Hs (1 ≤ s ≤ 2),

(3.11)

where C is a constant independent of h. For the examples of (3.11), one may refer to Refs. [32–34].
We show the a priori estimate forWh ∈ Vh and a number Ch.
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Theorem 3.3. Let s ∈ (1, 2−α). Suppose the mesh-size h is sufficiently small: h < [Ck(1+ |λ|)]
−

1
2(s−1) for a constant C, where

k is the number in Lemma 2.3. If F ∈ L2, there exists a unique solution Wh ∈ Vh of (1.22), satisfying

∥Wh∥1,λ ≤ C∥W∥1,λ ≤ C(1 + |λ|)−1/2
∥F∥0, (3.12)

where C is a constant not depending on h. Also the approximation Ch in (1.23) is uniquely defined:

(1 + |λ|)(1−α)/2|Ch| ≤ C(1 + |λ|)1/2∥W∥1,λ + C∥F∥0 ≤ C∥F∥0. (3.13)

Proof. Let e = W −Wh for the solutionW of (1.21) and the discrete solutionWh of (1.22). We claim that for s ∈ (1, 2− α),

∥e∥0 ≤ Chs−1
∥e∥1,λ. (3.14)

To show this, consider the dual problem: a∗

λ(z, v) = ⟨e, v⟩, ∀ v ∈ V . By Lemma3.1 this solution z satisfies, for s ∈ (1, 2−α),

∥z∥s + (1 + |λ|)1/2∥z∥s−1 ≤ C∥e∥s−2 ≤ C∥e∥0.

Taking v = e in the dual problem and using the orthogonality aλ(e, vh) = 0, ∀ vh ∈ Vh,

∥e∥2
0 = |a∗

λ(z, e)| = |aλ(e, z −Πhz)|
≤ C∥e∥1,λ∥z −Πhz∥1,λ

≤ Chs−1(∥z∥s + (1 + |λ|)1/2∥z∥s−1)∥e∥1,λ

≤ Chs−1
∥e∥0∥e∥1,λ.

Hence (3.14) follows. We next show (3.12). Using (2.5) and (3.14), we have

∥e∥2
1,λ ≤ C

aλ(e, e)+ k(1 + |λ|)∥e∥2
0


= C

aλ(e,W −ΠhW +ΠhW − Wh)+ k(1 + |λ|)∥e∥2
0


≤ C∥e∥1,λ∥W −ΠhW∥1,λ + Ck(1 + |λ|)h2(s−1)

∥e∥2
1,λ.

If the mesh-size h is sufficiently small then

∥e∥1,λ ≤ C∥W −ΠhW∥1,λ ≤ C∥W∥1,λ. (3.15)

Using (3.15) we have ∥Wh∥1,λ ≤ ∥W∥1,λ+∥e∥1,λ ≤ C∥W∥1,λ. The second inequality of (3.12) follows by (2.8). Finally (3.13)
can be shown by the procedure as done in (2.11) and the estimate (3.12). �

Next we derive the error estimates ofWh and Ch.

Theorem 3.4. Let W ∈ V be the solution of (1.21) andWh ∈ Vh the solution of (1.22). With the conditions of Theorem 3.3 there
is a constant C not depending on h such that, for 0 < ϵ ≪ 1 − α,

∥W − Wh∥0 ≤ Ch2−α−ϵ
∥F∥0, (3.16a)

∥∇(W − Wh)∥0 + (1 + |λ|)1/2∥W − Wh∥0 ≤ Ch∥F∥0 (3.16b)

and also the number Ch in (1.23) satisfies

|C − Ch| ≤ C(1 + |λ|)
α
2 h∥F∥0. (3.17)

In particular it is noted that if the parameter λ is set to be zero in the problems (1.21) and (1.22), one has the same result as
[14, Theorem 4.4]: ∥W − Wh∥0 ≤ Ch1+α−ϵ

∥F∥0 and |C − Ch| ≤ Ch1+α−ϵ
∥F∥0 for any ϵ with 0 < ϵ ≪ α.

Proof. By (3.15) and (3.11), the error e = W − Wh satisfies

∥e∥1,λ ≤ Ch(∥W∥2 + (1 + |λ|)1/2∥W∥1)

≤ Ch∥F∥0,

which shows (3.16b). Let 0 < ϵ ≪ 1−α be any number. Using (3.14)with s = 2−α−ϵ and (3.16b), ∥e∥0 ≤ Ch1−α−ϵ
∥e∥1,λ ≤

Ch2−α−ϵ
∥F∥0. By (2.3) and (3.16b), we have

|C − Ch| = |C1(e)| ≤ C(1 + |λ|)α/2∥∇e∥0

≤ C(1 + |λ|)α/2h∥F∥0.

If λ = 0, the inequality (3.9) is true for all s ∈ [1, 1 + α) and (3.14) holds for s ∈ [1, 1 + α). So the required result for
∥e∥0 follows by (3.16b). Also, one has |C − Ch| ≤ C∥e∥0 ≤ Ch1+α−ϵ

∥F∥0 since ψ∗

λ ∈ L2 for λ = 0. �
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Finally we show the main result: Theorem 1.6.

Proof of Theorem 1.6. Set βt,k = (1 + |λk|)
t . We first show the a priori estimate for wN

h and cNh of (1.27). By (3.12),
β1/2,k∥Wk,h∥1 + β1,k∥Wk,h∥0 ≤ C∥Fk∥0 for |k| ≤ N . Then

∥wN
h ∥

2
H1/2(0,T;H1)

≤ CT

|k|≤N

∥Fk∥2
0

≤ CT
∞

k=−∞

∥Fk∥2
0 = C∥f ∥2

L2(0,T;L2). (3.18)

As shown in (3.18) we have ∥cNh ∥H(1−α)/2(0,T) ≤ C∥f ∥L2(0,T;L2) since β(1−α)/2,k|Ck,h| ≤ C∥Fk∥0, ∀ |k| ≤ N obtained by (3.13).
Clearly ∥wN

h ∥H1(0,T;L2) ≤ C∥f ∥L2(0,T;L2). Hence the a priori estimate follows.
To derive the error estimates. By (2.8) one sees that for |k| > N ,

∥Wk∥0 ≤ Cβ−1,k∥Fk∥0, (3.19a)

∥Wk∥1 ≤ Cβ−1/2,k∥Fk∥0. (3.19b)

Using (3.19a) and the estimate (3.16a): ∥Wk − Wk,h∥0 ≤ Ch2−α−ϵ
∥Fk∥0, we have

∥w − wN
h ∥

2
L2(0,T;L2) = T


|k|≤N

∥Wk − Wk,h∥
2
0 + T


|k|>N

∥Wk∥
2
0

≤ Ch2(2−α−ϵ)T

|k|≤N

∥Fk∥2
0 + CT


|k|>N

β−2,k∥Fk∥2
0

≤ C(h2(2−α−ϵ)
+ N−2)∥f ∥2

L2(0,T;L2). (3.20)

Then (1.28a) follows. As done in (3.20), by (3.19b) and the estimate (3.16b): ∥Wk − Wk,h∥1 ≤ Ch∥Fk∥0, (1.28b) is shown.
Also, since β1/2,k∥Wk − Wk,h∥0 ≤ Ch∥Fk∥0 (cf. (3.16b)) and β1/2,k∥Wk∥0 ≤ CN−1/2

∥Fk∥0 (cf. (3.19a)), the inequality (1.28c)
is derived. Similarly the error estimates (1.29a) and (1.29b) follow.

Since |Ck − Ck,h| ≤ Chβα/2,k∥Fk∥0 (cf. (3.17)) and |Ck| ≤ Cβ(α−1)/2,k∥Fk∥0 ≤ CN−1/2βα/2,k∥Fk∥0 (cf. (2.10)), (1.30)
follows. �

4. Numerical simulations

In this section we confirm the convergence rates given in Theorems 1.4 and 1.6 by suitable examples and list the
numerical values of the convergence rates for the stress intensity factor and the regular part. The finite element code used
in [35] has been modified for this numerical simulations.

Let Th = {T : T is a triangle inΩ} be a regular triangulation of Ω with the mesh-size h = maxT∈Th diam(T ). Let Vh =

{vh ∈ C(Ω) : vh|T ∈ P1(T ), ∀ T ∈ Th, vh|Γ = 0} be the finite dimensional space where P1(T ) denotes the space of linear
functions on the triangle T .

4.1. The Poisson problem (1.12) with parameter

We compute the approximations Wh and Ch by (1.22) and (1.23) on the L-shaped domain Ω depicted in Fig. 2(a). The
singular functions for (1.15) are given by

φλ = e−r
√
λχ1(r)r

2
3 sin θ1, ψλ = e−r

√

λχ2(r)r−
2
3 sin θ1, (4.1)

where θ1 :=
2
3 (θ +

π
2 ) and

χj =


1 for r ≤ j/4,
15
16

 8
15

− ξj +
2
3
ξ 3j −

1
5
ξ 5j


for j/4 < r < j/2,

0 for r ≥ j/2,

with ξj(r) = 8r/j − 3 for j = 1, 2. Clearly χ1 and χ2 are in C2(R). Also let φ∗

λ = (∆− λI)φλ.
We use the Sherman–Morrison (SM) formula in [15] to solve the matrix problem generated by the discrete problem

(1.22). The procedure is as follows: Let {ϕj, j = 1, . . . ,M} be the nodal basis of Vh. If Wh =
M

j=1wjϕj, the matrix problem
for (1.22) becomes

(Aλ − Bλ)w = Fλ, (4.2)

whereAλ andBλ are theM×M-matriceswith (i, j)-components: ⟨∇ϕj,∇ϕi⟩+λ⟨ϕj, ϕi⟩ andC1(ϕj)⟨φ
∗

λ, ϕi⟩, respectively,w =

{wj}
M
j=1 the unknown vector and Fλ = {⟨Fλ, ϕj⟩}

M
j=1 the load vector. Note that Aλ is invertible for Re λ ≥ 0 and Bλ = pqt is a
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(a) L-shaped domainΩ . (b) Initial triangulation ofΩ .

Fig. 2. The L-shaped domainΩ .

Table 1
Numerical errors for λ = 1.

hj nvar |C − Ch| Rate ∥W − Wh∥0 Rate |W − Wh|1 Rate

2−1 5 2.7732E−2 4.7274E−2 3.2654E−1
2−2 33 6.8882E−3 2.01 1.6808E−2 1.49 1.9790E−1 0.72
2−3 161 1.7813E−3 1.95 4.6458E−3 1.86 1.0476E−1 0.92
2−4 705 4.2972E−4 2.05 1.1925E−3 1.96 5.3178E−2 0.98
2−5 2945 1.1098E−4 1.95 3.0016E−4 1.99 2.6692E−2 0.99
2−6 12,033 2.6277E−5 2.08 7.5147E−5 2.00 1.3359E−2 1.00
2−7 48,641 7.0255E−6 1.90 1.8800E−5 2.00 6.6810E−3 1.00
2−8 195,585 1.7137E−6 2.04 4.7000E−6 2.00 3.3407E−3 1.00
2−9 784,385 4.2502E−7 2.01 1.1750E−6 2.00 1.6704E−3 1.00
2−10 3,141,633 1.0634E−7 2.00 2.9375E−7 2.00 8.3519E−4 1.00

nonsymmetric and rank-one matrix with p = {⟨φ∗

λ, ϕj⟩}
M
j=1 and q = {C1(ϕj)}

M
j=1. By the SM formula the inverse of Aλ−Bλ is

(Aλ − Bλ)−1
= A−1

λ +
A−1
λ pqtA−1

λ

1 − qtA−1
λ p

.

Hence the solutionw = (Aλ − Bλ)−1Fλ of system (4.2) is computed by the following procedure, called Algorithm A:

1. Find x and y solving Aλx = Fλ and Aλy = p, respectively.
2. Compute a = 1/(1 − qty) and b = qtx.
3. Setw = x + ab y.

Using this procedure we test three numerical examples:

Example 1. As an exact solution of (1.12) we choose

C = 1, W (x, y) = (x − x3)(y2 − y4). (4.3)

With φλ in (4.1) we have U = Cφλ + W and F = −1U + λU is determined. With Fλ = C2(F)φ∗

λ + F we solve the dis-
crete problem (1.22) for Wh on the regular triangulation Th. Let hj = 2−j be the mesh-size for each level j ≥ 1. Let nvar be
the number of unknowns and Rate the convergence rate. The rate is defined by Rate := log2(ej−1/ej), where ej denotes the
corresponding error on the jth level.

In Table 1 we list the numerical values for errors and their convergence rates when λ = 1. Let |v|1 = ∥∇v∥0. As pre-
dicted in (1.25) the numerical numbers for |W −Wh|1 show the predicted convergence rate 1 but those for ∥W −Wh∥0 show
much greater convergence rate 2 than the value 2 − α − ϵ ≈ 4/3 predicted in (1.25a). This is presumed from a sufficient
smoothness, that is, H2-regularity, of the exact solution W in (4.3) (Ref. [13, Section 6]). Also, if ∥W − Wh∥0 shows such a
super-convergence, the error |C − Ch| shows the same convergence rate 2 by the formula C.

In Fig. 3we display the numerical errors for the parameters: λ = 0, 1, 10 and 100. The x-axis reads the value ofmesh-size
and the y-axis the value of corresponding errors. The computed error becomes smaller for the larger value λ and also shows
the predicted convergence rates.
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(a) |C − Ch|.

(b) ∥W − Wh∥0 . (c) |W − Wh|1 .

Fig. 3. Graphs of errors for λ = 0, 1, 10 and 100.

Example 2. We here simply test the Poisson problem (1.12) with parameter when F = 1. Then we do not have the exact
formulae for the functions U , C andW in the decomposition U = Cφλ +W . We consider the following numerical errors for
level j ≥ 2:

EC = |C
j
h − C

j−1
h |, EW ,0 = ∥W j

h − W j−1
h ∥0,

EW ,1 = |W j
h − W j−1

h |1,
(4.4)

where C
j
h andW j

h denote the approximations on the mesh-size hj.

In Fig. 4 we plot the approximation Ch and the errors in (4.4) for λ = 0, 1, 10 and 100. As shown in Fig. 4(c)–(d) the errors
EW ,0 and EW ,1 show the predicted convergence rates 2 and 1, explained in Example 1. In Fig. 4(b) we show the convergence
rates of the error EC for the different parameters. The rate for λ = 1 is irregular but much greater than the predicted rate 1
in (1.25c). This irregularity is due to the singular term

ψ∗

λ = (∆− λI)(e−r
√

λψ) = e−r
√

λ1ψ + 2∇(e−r
√

λ) · ∇ψ + [(∆− λI)(e−r
√

λ)]ψ

∼ r−α−1 (since1ψ ∼ 0 near the origin),

which appears in C1(W ) of (1.19), i.e.,

C1(W ) ∼


Ω

Wψ∗

λdx ∼

 1

0
Wr−αdr.
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(a) Ch . (b) EC .

(c) EW ,0 . (d) EW ,1 .

Fig. 4. Graphs of Ch and errors for Example 2.

Example 3. Herewe test the programwith the complex parameters λ = 2πki, k ∈ Z, which are used in the next subsection
for the Heat equation. The considered exact functions for U = Cφλ + W are

C = e−λλ−3
[λ+ 2 + eλ(λ− 2)], W (x, y) = C(x − x3)(y2 − y4).

In Table 2we list the errors and their convergence rateswhen λ = 2π i. As predictedwe have the rateO(h) for the error |W−

Wh|1 and the super-convergence rateO(h2) for |C−Ch| and ∥W−Wh∥0, which is assumed to be the same reason as explained
in Example 1. In Fig. 5 we show and compare the errors for the different parameters: λ = 2πki, k = 0, 1, 10 and 100.

4.2. The Heat equation on the L-shaped domain

In this subsection we test the Heat equation on the L-shaped domain by using the FFEM. Take T = 1 and set λk = 2πki.
The exact functions in the decomposition: u = (E ⋆ c)(t)φ + w are chosen by

w(x, y, t) = c(t)(x − x3)(y2 − y4), c(t) = t(1 − t) =

∞
k=−∞

Ckeλkt ,

Ck =

 1

0
c(t)e−λktdt, (E ⋆ c)φ =

∞
k=−∞

Ckeλktφλk ,

where φλk is given by (1.15) for λ = λk. Also we have Wk(x, y) = Ck(x − x3)(y2 − y4) and Fk = −(∆ − λkI)[Ckφλk + Wk].
For λ = λk in Algorithm A, let Aλk and Bλk be the M × M-matrices with (i, j)-components: ⟨∇ϕj,∇ϕi⟩ + λk⟨ϕj, ϕi⟩ and
C1(ϕj)⟨φ

∗

λk
, ϕi⟩, respectively, and Fλk = {⟨Fλk , ϕj⟩}

M
j=1 be the load vector, where Fλk = C2(Fk)φ∗

λk
+ Fk and ϕj are the nodal

bases of Vh. By Algorithm A we find the vector wk := {wk
j }

M
j=1 satisfying (Aλk − Bλk)wk = Fλk . Setting Wk,h =

M
j=1w

k
j ϕj

and Ck,h = C1(Wk,h)+ C2(Fk), we obtain the approximationswN
h and cNh by (1.27).
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(a) |C − Ch|.

(b) ∥W − Wh∥0 . (c) |W − Wh|1 .

Fig. 5. Graphs of errors for λ = 2πki, k = 0, 1, 10 and 100.

Table 2
Errors and their convergence rates for λ = 2π i.

hj |C − Ch| Rate ∥W − Wh∥0 Rate |W − Wh|1 Rate

2−1 1.0299E−3 – 2.4220E−3 – 1.6573E−2 –
2−2 2.5277E−4 2.03 8.5269E−4 1.51 1.0046E−2 0.72
2−3 6.3591E−5 1.99 2.3606E−4 1.85 5.3108E−3 0.92
2−4 1.4995E−5 2.08 6.0608E−5 1.96 2.6945E−3 0.98
2−5 3.7546E−6 2.00 1.5254E−5 1.99 1.3523E−3 0.99
2−6 8.9557E−7 2.07 3.8199E−6 2.00 6.7677E−4 1.00
2−7 2.3278E−7 1.94 9.5538E−7 2.00 3.3846E−4 1.00
2−8 5.7144E−8 2.03 2.3887E−7 2.00 1.6924E−4 1.00
2−9 1.4187E−8 2.01 5.9718E−8 2.00 8.4622E−5 1.00
2−10 3.5447E−9 2.00 1.4930E−8 2.00 4.2311E−5 1.00

Let Ni = 2i. We now check convergence rates for the Heat equation. Set the following error notations:

E(Ni, h) =


e(Ni−1, h)2 − e(Ni, h)2 for fixed h,

E(N, hj) =


e(N, hj−1)2 − e(N, hj)2 for fixed N,

(4.5)

where e(N, h) denotes an appropriate error norm for the Fourier mode N and the mesh-size h.
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(a) E(Ni, h4), i = 2, . . . , 8. (b) E(N4, hj), j = 2, . . . , 9.

Fig. 6. Error graphs for the numerical example of the Heat equation.

Table 3
Numerical errors for ∥c − cNh ∥L2(0,T) and ∥w − wN

h ∥L2(0,T;L2) .

(a) Errors for fixed h = h4

Ni ∥c − cNi
h4

∥L2(0,T) E(Ni, h4) Rate ∥w − w
Ni
h4

∥L2(0,T;L2) E(Ni, h4) Rate

21 1.0089E−2 – – 1.3498E−3 – –
22 4.2848E−3 9.1335E−3 – 6.0759E−4 1.2053E−3 –
23 1.6719E−3 3.9452E−3 1.21 3.1325E−4 5.2061E−4 1.21
24 6.3916E−4 1.5449E−3 1.35 2.3783E−4 2.0387E−4 1.35
25 2.7956E−4 5.7478E−4 1.43 2.2541E−4 7.5850E−5 1.43
26 1.8631E−4 2.0843E−4 1.46 2.2372E−4 2.7505E−5 1.46
27 1.7071E−4 7.4627E−5 1.48 2.2351E−4 9.8481E−6 1.48
28 1.6863E−4 2.6551E−5 1.49 2.2348E−4 3.5038E−6 1.49

(b) Errors for fixed N = N4

hj ∥c − cN4
hj

∥L2(0,T) E(N4, hj) Rate ∥w − w
N4
hj

∥L2(0,T;L2) E(N4, hj) Rate

2−1 1.0269E−2 – – 8.6451E−3 – –
2−2 2.9820E−3 9.8270E−3 – 3.1614E−3 8.0464E−3 –
2−3 9.1650E−4 2.8377E−3 1.79 8.7280E−4 3.0385E−3 1.40
2−4 6.3916E−4 6.5684E−4 2.11 2.3783E−4 8.3977E−4 1.86
2−5 6.1815E−4 1.6255E−4 2.01 9.8954E−5 2.1627E−4 1.96
2−6 6.1668E−4 4.2508E−5 1.94 8.2580E−5 5.4520E−5 1.99
2−7 6.1660E−4 9.9721E−6 2.09 8.1446E−5 1.3639E−5 2.00
2−8 6.1660E−4 2.6781E−6 1.90 8.1374E−5 3.4162E−6 2.00
2−9 6.1660E−4 6.5676E−7 2.03 8.1370E−5 8.5381E−7 2.00

Consider the case e(N, h) = ∥w − wN
h ∥L2(0,T;L2). By (3.19a) one sees

E(Ni, h) =

 
Ni−1<|k|≤Ni

(∥Wk∥
2
0 − ∥Wh − Wk,h∥

2
0)

1/2

≤ C
 
Ni−1<|k|≤Ni

|k|−2
∥Fk∥2

0

1/2
= O(N−1

i−1), (4.6)

and by (3.16a) we have E(N, hj) = O(h2−α−ϵ
j−1 ) for a very small number ϵ > 0. However it is seen from Table 3(a)–(b) that

the numerical errors E(Ni, h4) and E(N4, hj) for the case e(N, h) = ∥w − wN
h ∥L2(0,T;L2) show the (super) convergence rates

3/2 and 2, respectively. The reason is as follows: Since Ck = e−λkλ−3
k [λk + 2+ eλk(λk − 2)] and ∥Wk∥0 =

8
105 |Ck| ≤ C |k|−2,

the equality (4.6) is estimated by

E(Ni, h) ≤ C
 
Ni−1<|k|≤Ni

|k|−4
1/2

≤ C
 ∞

Ni−1

x−4dx
1/2

= O(N−3/2
i−1 ).

Also the error E(N, hj) for fixed N has the convergence rate O(h2
j ) with the same reason as explained in Example 1: the

error ∥Wk − Wk,h∥0 for fixed k has the rate O(h2). In Fig. 6(a) we plot the errors E(Ni, h4) for some cases: e(N, h) = ∥w −

wN
h ∥L2(0,T;L2), ∥w−wN

h ∥L2(0,T;H1), and so on, where the x-axis and the y-axis of Fig. 6(a) read the FouriermodesN = Ni and the
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errors E(Ni, h4), respectively. Similarly we plot the errors E(N4, hj) for various mesh-sizes hj in Fig. 6(b), which also show
the (super) convergence rates with the same reason explained above.

4.3. Conclusion

With several numerical examples, we have confirmed the convergence rates in some error estimates derived in
Theorems 1.4 and 1.6, where Theorem 1.4 is for the finite element method, based on the corner singularity expansion, of the
generalized boundary value problemwith parameter on bounded plane domainswith a non-convex vertex and Theorem1.6
is for the FFEM of the initial and boundary value problems.

The prerequisite of the finite element methods used in this paper is the knowledge of the corner singularity expansion.
Nevertheless the finite element solutions in numerical experiments are super-convergent with the rate 2 in L2-error as the
mesh-size varies for fixed Fourier modes. Such super-convergence results become relevant because our approach firstly
provides the finite element solution for the regular part, which belongs to H2, of the singular solution. Similar results can be
found in Refs. [13,15]. Also such super-convergence provides the approximate stress intensity function with the same rate.
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