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1. Introduction

We generalize Teitelbaum’s work [16] on the definition of the L-invariant to Hilbert 
modular forms that arise from definite quaternion algebras over totally real fields by the 
Jacquet–Langlands correspondence.

More precisely, suppose that f is a Hilbert eigenform over a totally real field F (see Sec-
tion 2.5) that is special at a prime p|p of F (in the sense that the p-component of the cusp-
idal automorphic representation generated by f is the special representation of GL2(Fp)), 
and that f arises from a totally definite quaternion algebra B over F by the Jacquet–
Langlands correspondence. Assume that B splits at p, and that l exactly divides the 
conductor of f if B is ramified at l. Then we can define the L-invariant of f at the prime 
p in the style of Teitelbaum (Definition 3.4). One new feature that arises in the totally 
real case is that we have an L-invariant Lσ,Tei

p (f) for each embedding σ of Fp/Qp into Qp.
As in Teitelbaum’s case (F = Q), we need a pair of group cocycles associated to f in 

order to define the L-invariant. One of them is in the manner of Schneider as in [16], and 
the other is defined by using Coleman integrals given by the periods of the rigid analytic 
modular form associated to the Jacquet–Langlands correspondence of f . Another new 
feature that occurs when F �= Q is that the rigid analytic modular forms involved are 
in general vector valued (rather than scalar valued).

In the case F = Q the Fontaine–Mazur L-invariant [10] is defined by applying 
Fontaine’s theory to the Galois representation associated to the eigenform, and the def-
inition can be generalized to the Hilbert modular case (which will be explained in 3.2). 
Then we conjecture that the Teitelbaum type L-invariant coincides with the correspond-
ing Fontaine–Mazur type L-invariant. In the case F = Q this was proved in [8], by 
making use of an explicit version of the comparison theorem in p-adic Hodge theory.

The organization of this paper is as follows. We collect preliminaries about automor-
phic forms on totally definite quaternion algebras in Section 2. The L-invariant in the 
style of Teitelbaum is defined in Section 3. Then we state the exceptional zero conjecture 
in Section 4.

Notation 1.1. Throughout the paper F is a totally real field, with ring of integers OF . 
Denote by d = [F : Q] the degree of F over Q. The ring of adeles, and finite adeles will 
be denoted as AF and F̂ .
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Fix a rational prime p. For each p|p let Fp be the completion of F at p. Thus Fp :=
F ⊗Q Qp =

∏
p|p Fp.

For each prime l of F , denote by vall the normalized valuation of OFl
, whose value 

on the uniformizer of OFl
is one. Put |.|l to be the normalized absolute value of Fl given 

by |x|l = N l−vallx. Here in general we will denote by N the norm operation from F

to Q, either over the field itself, their completion, the adeles, or at the level of ideal (the 
subscripts that occur would indicate the field extensions involved).

Let χQ,cycl be the p-adic cyclotomic character of Q, which by class field theory is 
regarded as a Hecke character χQ,cycl : A×

Q/Q× → Z×
p . The class field theory isomor-

phism is normalized so that χQ,cycl(z) = z for z ∈ Z×
p . Let χF,cycl : A×

F /F
× → Z×

p be 
the Hecke character obtained by composing χQ,cycl with the norm map from A×

F to A×
Q. 

The character χF,cycl is trivial on the archimedean connected component of A×
F , hence 

we can view χF,cycl as a character on F̂×/F×
+ , where F×

+ is the set of totally positive 
elements of F .

Fix once and for all an embedding of Q into Qp and C.
Denote by |.|p the absolute value on Qp normalized by the condition |p|p = 1/p. As 

usual Cp is the completion of Qp with respect to |.|p. Denote by ordp the valuation 
of C×

p , normalized by the condition ordp(p) = 1.
Denote by I the set of embeddings of F into Qp. We denote by Z[I] the free abelian 

group generated by I. Note that we can partition I = �p|p Ip, where Ip consists of those 
embeddings that factor through Fp. We have #Ip = [Fp : Qp].

Finally for any ring A, we denote by M2(A) the ring of 2 ×2 matrices with coefficients 
in A.

2. Preliminaries

2.1. Automorphic forms on totally definite quaternion algebras

Let B be a totally definite quaternion algebra over F , i.e. B ⊗F,ν R is isomorphic to 
Hamilton’s quaternions, for all the real embeddings ν : F → R. We refer to Vigneras’ 
book [18] for the theory of quaternion algebras.

Denote by n− the discriminant of B. Thus n− is the square-free ideal of OF that is 
equal to the product of the set of finite primes of OF at which B ramifies. Note that the 
number of prime factors of n− is congruent to [F : Q] mod 2. We denote by J the set of 
primes of OF above p that do not divide n−. The reader is advised to take J to be the 
set of all primes above p, i.e. that n− is relatively prime to p OF , on first reading.

We now define automorphic forms on B×. Let B̂× = (B ⊗F F̂ )× be the group of 
finite adelic points of B×. Given b ∈ B̂×, and a place ν of F , we will denote by bν the 
component of b at ν. We will generally identify the finite places of F with prime ideals 
of OF , so if ν corresponds to a prime l, then we will also write bl for the corresponding 
component of b. On the other hand, we will write bl for the element of B̂× obtained from b

by replacing bl by the identity. Finally, we will write bp ∈
∏

q|p B
×
q for the element (bq)q|p.
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We fix an isomorphism

B ⊗Q Qp
∼=

∏
σ∈I

M2(Qp)

which is equivalent to the data: for all q|p, and σ ∈ Iq, an isomorphism

Bq ⊗Fq,σ Qp
∼= M2(Qp) (2.1)

(here Bq = B ⊗F Fq).
For each prime l not dividing n−, fix an isomorphism of Fl-algebras:

ιl : Bl = B ⊗F Fl → M2(Fl) (2.2)

which induces an isomorphism of B×
l

and GL2(Fl). If l = q ∈ J , we assume that the 
isomorphism (2.1) for each σ ∈ Iq is induced from that of (2.2).

Let Σ =
∏

l
Σl be an open compact subgroup of B̂×. Assume that the image of Σq

under ιq is contained in GL2(OFq
) for all q ∈ J . In the sequel, Σq would then be identified 

as subgroup of GL2(OFq
) for each q ∈ J .

Definition 2.1. For an embedding σ ∈ Iq, and integers n, v with n ≥ 0, let Lσ(n, v) be 
the Cp-vector space of polynomials in one variable of degree at most n, with coefficients 
in Cp, and with the right action of B×

q on Lσ(n, v) given as follows: for γ ∈ B×
q , write 

γσ =
(
aσ bσ

cσ dσ

)
to be the image of γ under

B×
q → (Bq ⊗Fq,σ Qp)×

(2.1)∼= GL2(Qp),

then we define

(P |γ)(T ) = det
(
γσ

)v(
cσT + dσ

)n
P

(
aσT + bσ

cσT + dσ

)
. (2.3)

For a pair of vectors n = (nσ)σ∈I , v = (vσ)σ∈I ∈ Z[I], with nσ ≥ 0 for all σ ∈ I, put

L(n, v) =
⊗
σ∈I

Lσ(nσ, vσ) =
⊗
q|p

⊗
σ∈Iq

Lσ(nσ, vσ).

For each q|p we have the natural tensor product right action of B×
q on 

⊗
σ∈Iq

Lσ(nσ, vσ), 
hence the product right-action of B×

p =
∏

q|p B
×
q on L(n, v). Define Vσ(nσ, vσ) to be the 

Cp-dual of Lσ(nσ, vσ), and V (n, v) to be the Cp-dual of L(n, v), with the dual left action 
of B×

p which is given by 〈P |γ, Φ〉 = 〈P, γ ·Φ〉 for γ ∈ B×
p , P ∈ Lσ(n, v) and Φ ∈ Vσ(n, v).

Let t = (1, · · · , 1) ∈ Z[I]. Suppose that there is an integer m such that the condition

n + 2v = mt (2.4)
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is satisfied. Note that for a given n, the set of vectors v that satisfies condition (2.4) (for 
variable integer m) differs from each other by integer multiples of t.

Definition 2.2. With the above notations, a p-adic automorphic form on B× of weight 
(n, v), level Σ, is a function

Φ : B̂× → V (n, v)

that satisfies:

Φ(zγbu) = χ−m
F,cycl(z)

(
u−1
p · Φ(b)

)
(2.5)

for all γ ∈ B×, b ∈ B̂×, u ∈ Σ and z ∈ F̂×. Denote by SB
n,v(Σ) the space of such forms.

Note that a form Φ of level Σ is determined by its values on a set of representatives 
of the double coset space

B×\B̂×/Σ

which is finite (being both compact and discrete).
If SB

n,v(Σ) is non-zero, then by (2.5) the character χ−m
F,cycl has to factor through 

F̂×/F×, which implies that m is even, and hence nσ is even for all σ ∈ I.

Remark 2.3. Let Φ ∈ SB
n,v(Σ). For any q|p, let πq be a uniformizer of Fq, identified as the 

idele that is equal to πq at the place q and 1 elsewhere. Applying Eq. (2.5) with z = πq, 
we have

Φ(πqb) = χF,cycl(πq)−mΦ(b)

=
∣∣NFq/Qp

(πq)
∣∣−m

p
NFq/Qp

(πq)−mΦ(b) for all b ∈ B̂×. (2.6)

Remark 2.4. Given Φ ∈ SB
n,v(Σ), and an integer r, define Φ′ by

Φ′(g) = χF,cycl(NrdB̂/F̂ g)−rΦ(g)

where NrdB̂/F̂ : B̂ → F̂ is the map induced by the reduced norm map NrdB/F from B

to F . Then Φ′ ∈ SB
n,v′(Σ), where

v′ = v + rt

(and hence n + 2v′ = m′t, with m′ = m + 2r). Here we are identifying the underlying 
vector space of V (n, v) and V (n, v′). It follows that SB

n,v(Σ) ∼= SB
n,v′(Σ) via this twisting 

operation.
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In the case where n = 0 (and hence v = m
2 t) one usually considers the space S0,v(Σ)

modulo the Cp-span of the form Φ0 given by Φ0 = (χF,cycl◦NrdB̂/F̂ )−m/2, as this does not 
correspond to cusp form under the Jacquet–Langlands correspondence (see Section 2.5
below).

2.2. Hecke operators

Recall the definition of Hecke operators. For each prime l � n− at which Σl is maximal, 
one can define the Hecke operators Tl as follows. Fix the isomorphism ιl : Bl → M2(Fl)
such that Σl becomes identified as GL2(OFl

). Let πl be a uniformizer of OFl
, and let kl

be the residue field at l. Given a double coset decomposition:

GL2(OFl
)
(

1 0
0 πl

)
GL2(OFl

) = �
r∈P1(kl)

σr(l) GL2(OFl
). (2.7)

Define the action of the Hecke operator Tl on SB
n,v(Σ) by the rule:

(TlΦ)(b) =
{∑

r∈P1(kl) Φ(b · σr(l)) if l � p,∑
r∈P1(kl) σr(l) · Φ(b · σr(l)) if l|p. (2.8)

It is clear that this is independent of the choice of the σr(l).
Suppose that for l � n− the level Σl is not maximal, but is an Iwahori subgroup of 

GL2(OFl
). Then we can define the operators Ul. To define it, first recall the definition 

of Iwahori subgroups.
In general for any l, let πl be a uniformizer of OFl

as above. Then for m ≥ 1, we define 
the Iwahori subgroup Ilm of GL2(OFl

) of level lm, by

Ilm =
{(

a b
c d

)
∈ GL2(OFl

)
∣∣∣ c ≡ 0 mod πm

l

}
.

Similarly put

M2
(
lm;OFl

)
=

{(
a b
c d

)
∈ M2(OFl

)
∣∣∣ c ≡ 0 mod πm

l

}
.

Suppose that Σ is a level, and l � n−, such that Σl = Iln for some n ≥ 1. Given a 
double coset decomposition

Iln

(
1 0
0 πl

)
Iln = �

r∈kl

σ̂r(l)Iln , (2.9)

define the action of the Hecke operator Ul on SB
n,v(Σ) by the rule

(UlΦ)(b) =
{∑

r∈kl
Φ(b · σ̂r(l)) if l � p,∑
σ̂r(l) · Φ(b · σ̂r(l)) if l|p. (2.10)
r∈kl
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One can take for example:

σ̂r(l) =
(

1 0
r̃πn

l πl

)
(2.11)

where r̃ ∈ Ol maps to r.

2.3. Choice of levels

In this paper, the level Σ is defined by the groups of units of local Eichler orders of B. 
Thus let a be an ideal of OF , relatively prime to n−. For any prime l, let Rl be a local 
order of Bl satisfying the condition:

Rl = the (unique) maximal order of Bl if l divides n−

and

Rl = an Eichler order of level lvall(a) if l is prime to n−.

For l not dividing n−, we will assume that under the isomorphism ιl : Bl → M2(Fl), the 
image of Rl is M2(lvalla; OFl

). Thus we have ιl(R×
l

) = Ilvall(a) .
Let R̂ =

∏
l
Rl. Then R := B ∩ R̂ is an Eichler order of B of level a. We will denote 

by Σ(a, n−) the level given by R̂× for the above choices of the local orders Rl.

Notation 2.5. We will write SB
n,v(a, n−) for SB

n,v(Σ(a, n−)).

For the levels of the type Σ = Σ(a, n−) one can also define the operators Ul for l|n−
as in (2.10) by using the double coset ΣlωlΣl = ωlΣl, where ωl is a uniformizer of the 
maximal order Rl of Bl (note that Σl = R×

l
), i.e. if l|n−, then

(UlΦ)(b) =
{
Φ(bωl) if l � p,

ωl · Φ(bωl) if l|p.

In the rest of the paper, we will write the ideal a that occurs in the level in the form

a = mn+

with n+ relatively prime to pOF , and m divisible only by primes above p.
Put n = mn+n−. We denote by T the polynomial algebra over Z generated by the 

symbols Tl for l � n, and the symbols Ul for l|n. The algebra T acts on the space of 
automorphic forms, and other objects (cohomology groups for instance, see Section 2.5). 
A form Φ ∈ SB

n,v(mn+, n−) is called an eigenform if it is an eigenvector for the action 
of T.
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Suppose now that l is a prime that divides mn+. Define the trace operator

Trmn
+

mn+/l : SB
n,v

(
mn+, n−

)
→ SB

n,v

(
mn+

l
, n−

)
as follows: given a form Φ ∈ SB

n,v(mn+, n−),

Trmn
+

mn+/l(Φ)(g) =
{∑

r Φ(gτr) if l � p,∑
r τr · Φ(gτr) if l|p.

Here {τr} run over a set of left coset representatives of Iln−1 modulo Iln where n =
vall(mn+) (if n = 1 then Iln−1 is interpreted as GL2(OFl

)). For example if l divides mn+

exactly (i.e. n = 1) then one can take (with the r indexed by P1(kl)):

τr =
(

1 0
r̃ 1

)
for r ∈ kl (2.12)

and

τ∞ =
(

0 −1
1 0

)
.

A form Φ ∈ SB
n,v(mn+, n−) is said to be new at l, if

Trmn
+

mn+/l(Φ) = 0.

An eigenform Φ ∈ SB
n,v(mn+, n−) is called a newform if it is new at all primes divid-

ing mn+.
Finally define the Atkin–Lehner operator at l as:

Wl : SB
n,v

(
mn+, n−

)
→ SB

n,v

(
mn+, n−

)
Wl(Φ)(g) = bl · Φ(gbl), (2.13)

here bl =
( 0 −1
πl 0

)
. In particular if the prime l does not lie above p, then we have 

Wl(Φ)(g) = Φ(gbl). An immediate calculation shows that when l divides mn+ exactly, a 
form Φ ∈ SB

n,v(mn+, n−) is new at l if and only if

Ul(Φ) = −Wl(Φ). (2.14)

2.4. Harmonic cocycles on Bruhat–Tits tree

As in the previous section we write Σ = Σ(mn+, n−). Fix a p ∈ J . Identify B×
p with 

GL2(Fp) via ιp.
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Let {ti,p}hp

i=1 be a set of representatives of

F×
+ \ F̂×/Ô×

F F
×
p

(which is equal to the quotient of the strict ideal class group of F by the image of F×
p

and hp is the order of this group). We assume that the ti,p’s are chosen to have trivial 
components at all q|p. Fix xi,p ∈ B̂× with (xi,p)q = 1 for all q|p, such that NrdB̂/F̂ (xi,p) =
ti,p for i = 1, · · · , hp. The theorem of the norm and the strong approximation theorem 
(Theorems 4.1 and 4.3 of [18], Chapter 3) give a decomposition:

B̂× =
hp�
i=1

B×xi,p GL2(Fp)Σ. (2.15)

More precisely if y ∈ B̂×, then the unique index i of (2.15) to which y belongs is 
determined by the condition that the class of NrdB̂/F̂ (yx−1

i,p ) in F×
+ \ F̂×/Ô×

F F
×
p is trivial.

Define, for i = 1, · · · , hp:

Γ̃ p

i = Γ̃ p

i

(
mn+, n−

)
:=

{
γ ∈ B× ∣∣ γl ∈ (xi,p)lΣl(xi,p)−1

l
for l �= p

}
.

Using (2.15), we have a bijection:

hp�
i=1

Γ̃ p

i \GL2(Fp)/Σp
∼→ B×\B̂×/Σ (2.16)

where for g ∈ GL2(Fp), the class of g in Γ̃ p

i \ GL2(Fp)/Σp gets mapped to the class of 
xi,p · g in B×\B̂×/Σ, with g regarded as the element of B̂× that is equal to g at the 
place p, and equal to identity at other places.

Using (2.16), we see that a form Φ ∈ SB
n,v(mn+, n−), with n+2v = mt, can be identified 

as an hp-tuples of function φ1
p, · · · , φ

hp

p on GL2(Fp), by the rule: φi
p(g) = Φ(xi,p · g), for 

i = 1, · · · , hp. The functions φi
p, satisfy:

φi
p(γpguz) = χ−m

F,cycl(z)
(
u−1γp

p · φi
p(g)

)
for γ ∈ Γ̃ p

i , g ∈ GL2(Fp), u ∈ Σp, z ∈ F×
p .

(2.17)

Here u ∈ Σp acts on V (n, v) by identifying it as an element of Σp =
∏

q|p Σq which is u
at the factor at p, and identity at q �= p and γp = γpγ

p
p where γp

p =
∏

q|p,q�=p
γq.

Formulas (2.8) and (2.10) for the action of the Hecke operators Tp or Up can be 
applied verbatim to the components (φ1

p, · · · , φ
hp

p ), because the elements xi,p as above 
have trivial components at p. For instance, if p � n, then the form TpΦ corresponds to 
the hp-tuple (Tpφ

1
p, · · · , Tpφ

hp

p ), where

Tpφ
i
p(g) =

∑
1

σa(p) · φi
p

(
gσa(p)

)
.

a∈P (kp)
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Similarly if p|n, then

Upφ
i
p(g) =

∑
a∈kp

σ̂a(p) · φi
p

(
gσ̂a(p)

)
. (2.18)

Suppose now that p exactly divides m. We interpret this in terms of harmonic cocycles 
on the Bruhat–Tits tree.

Let Tp be the Bruhat–Tits tree of PGL2(Fp). Thus the vertex set of Tp is given by 
the set of homothety classes of lattices of Fp⊕Fp. Denote by V(Tp) and E(Tp) the set of 
vertices and the set of oriented edges of Tp respectively. If e ∈ E(Tp), then we denote by 
e the opposite edge of e. The source and target vertices of e will be noted as s(e) and 
t(e). As usual Tp has the homogeneous (left) action of PGL2(Fp), and we can identify 
V(Tp) = PGL2(Fp)/ GL2(OFp

), and E(Tp) = PGL2(Fp)/Ip.

Definition 2.6. A harmonic one-cocycle on Tp with values in V = V (n, v), is a function

c : E(Tp) → V

such that the following two conditions hold: for any edge e:

c(e) = −c(e) (2.19)

and for all vertices v, ∑
s(e)=v

c(e) = 0. (2.20)

The Cp-vector space of V -valued harmonic one-cocycles will be noted as C1
har(Tp, V ).

Denote by O(p)
F the ring of p-integers of F and by (O(p)

F )× the group of p-units of F . 
We have Γ̃ p

i ∩ F× = (O(p)
F )×. Also note that if γ ∈ Γ̃ p

i , then NrdB/F γ ∈ (O(p)
F )× ∩ F×

+ . 
We have the action of B× on V via the map B× →

∏
q|p B

×
q , but we want to twist this 

so that the resulting action factors through the quotient of B× by (O(p)
F )×.

Define the following action �p of B× on V : for γ ∈ B×, and v ∈ V ,

γ �p v := |NrdB/F γ|m/2
p γp · v.

Then the action the �p factors through B×/(O(p)
F )×. For i = 1, · · · , hp, put Γ p

i =
Γ̃ p

i /(O
(p)
F )×.

The space C1
har(Tp, V ) supports the following action of B×/(O(p)

F )×: for γ ∈ B×, and 
c ∈ C1

har(Tp, V ), the cocycle γ �p c is defined by

(γ �p c)(e) = γ �p
(
c
(
γ−1
p e

))
.
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Now let Φ ∈ SB
n,v(mn+, n−) which corresponds to an hp-tuple: (φ1

p, · · · , φ
hp

p ) as above. 
Assume that p exactly divides m. For each i = 1, · · · , hp, define a function cφi

p
on E(Tp)

as follows.
Let e = (s, t) ∈ E(Tp) (going from s to t). Represent s and t by lattices Ls and Lt such 

that Ls contains Lt with index Np. Let ge ∈ GL2(Fp) such that ge(OFp
⊕ OFp

) = Ls

and ge(OFp
⊕ pOFp

) = Lt. Then define

cφi
p
(e) = |det ge|m/2

p ge · φi
p(ge). (2.21)

By (2.6) and (2.17) this is well-defined independent of the choice of Ls, Lt, and indepen-
dent of the choice of ge. The following property also follows from (2.17):

cφi
p
(γpe) = γ �p cφi

p
(e) for γ ∈ Γ p

i . (2.22)

Denote by cΦ,p the vector of functions {cφi
p
}hp

i=1.
The Up operator has the following combinatorial description:

cUpφi
p
(e) = Npm/2

∑
s(e′)=t(e)

cφi
p

(
e′
)
. (2.23)

Similarly for the Atkin–Lehner operator Wp:

cWpφi
p
(e) = Npm/2cφi

p
(e). (2.24)

Proposition 2.7. Suppose that the form Φ ∈ SB
n,v(mn+, n−) is new at p, and satisfies the 

condition

UpΦ = Npm/2Φ. (2.25)

Then the functions cφi
p

are in C1
har(Tp, V ), and are invariant under Γ p

i (with respect to 
the action �p).

Proof. Condition (2.20) follows from (2.14), (2.23), and (2.24), together with the as-
sumption that Φ is new at p. With (2.20), condition (2.19) then follows from (2.23) and 
condition (2.25). The invariance under Γ p

i is a restatement of (2.22). �
Remark 2.8. It can be readily checked that if Φ′ ∈ Sn,v′(mn+, n−) is the form obtained 
from Φ by the twisting operation as described in Remark 2.4, then Φ and Φ′ define the 
same harmonic cocycle (with the identification of the underlying vector space of V (n, v)
and V (n, v′)).

In general let Γ be a subgroup of B×/(O(p)
F )×. We now define Schneider’s map from 

the space of V -valued Γ -invariant cocycles on Tp to H1(Γ, V ). Choose a vertex v ∈ V(Tp). 
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For c ∈ C1
har(Tp, V )Γ , define κc to be the following function on Γ with values in V : for 

γ ∈ Γ ,

κc(γ) =
∑

e:v→γpv

c(e), (2.26)

where the sum runs over the edges in the geodesic joining v and γv.
From the Γ -invariance of c, it follows that κc is a one-cocycle. Furthermore, the class 

of κc in H1(Γ, V ) is independent of the choice of v.
Now apply this construction to Γ = Γ p

i . Denote by:

κsch
i,p : C1

har(Tp, V )Γ
p

i → H1(Γ p

i , V
)

c �→ class of κc

the map defined as above. We also denote by

κsch
p :

hp⊕
i=1

C1
har(Tp, V )Γ

p

i →
hp⊕
i=1

H1(Γ p

i , V
)

the direct sum of the maps κsch
i,p . We denote by κsch

i,p (φi
p) ∈ H1(Γ p

i , V ) the image of cφi
p
, 

under κsch
i,p . Similarly denote by κsch

p (Φ) the image of cΦ,p under κsch
p . Note that by 

construction we have an identification of 
⊕hp

i=1 C
1
har(Tp, V )Γ

p

i with the eigenspace of 
SB
n,v(mn+, n−)p−new with Up-eigenvalue equal to Npm/2.
To conclude this section we state:

Proposition 2.9. The maps κsch
i,p are isomorphisms. Hence the map κsch

p is an isomor-
phism.

Without interrupting the main reasoning of the paper we refer the reader to Ap-
pendix A for the proof.

2.5. Action of Hecke operators and Jacquet–Langlands–Shimizu correspondence

When we use the strong approximation theorem with respect to the prime p
(Eqs. (2.15)–(2.17)) for the description of automorphic forms, the action of the Hecke 
operators Tl or Ul for l �= p becomes more complicated as compared to the adelic de-
scription (when l = p it is as in (2.18)). We describe this in the first part of this section. 
The reader familiar with the formalism of [14, Section 2], will notice the similarities.

First we observe the following: let y ∈ B̂× whose component at p is trivial. Then 
by (2.15), for any j = 1, · · · , hp, there is a unique i = i(j) ∈ {1, · · · , hp} corresponding 
to j, and α ∈ B×, b ∈ GL2(Fp), and u ∈ Σp (here Σp =

∏
l�=p

Σl), such that

xj,py = αxi,pbu. (2.27)
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Since the xi,p’s have trivial component at p, (2.27) is equivalent to:

xj,py = αpxi,pu

αp = b−1. (2.28)

Now let l �= p. Put yl =
( 1 0

0 πl

)
if l � n−, and yl = ωl if l|n− (with ωl a uniformizer 

of Rl). In either case we regard yl as an element of B̂× that has trivial components at 
places outside l.

Take y = yl in (2.27), (2.28). Then

yl = (xj,p)−1
l

αl(xi,p)lul,

1 = (xj,p)−1
l′ αl′(xi,p)l′ul′ if l′ �= l, p

which implies

ΣlylΣl = Σl(xj,p)−1
l

αl(xi,p)lΣl. (2.29)

Proposition 2.10. Suppose that we have a double coset decomposition

Γ̃ p

j αΓ̃
p

i =�
r

αrΓ̃
p

i . (2.30)

Then we have a corresponding double coset decomposition

ΣlylΣl =�
r

(xj,p)−1
l

(αr)l(xi,p)lΣl. (2.31)

Proof. This can be proved using the strong approximation theorem, as in [14, 
(2.8a)–(2.8b)]. �

Suppose that l � n. Then from (2.31) we see that the elements (xj,p)−1
l

(αr)l(xi,p)l
can be taken to be the matrices σr(l) used for defining Tl as in (2.7). Thus if we put 
σr(l) = (xj,p)−1

l
(αr)l(xi,p)l, then it is easy to check that we can write xj,pσr(l) in the 

form (2.27). More precisely,

xj,pσr(l) = αrxi,pbrur

for some br ∈ GL2(Fp), ur ∈ Σp. Similar discussions hold when l|n.

Proposition 2.11. Let Φ ∈ SB
n,v(mn+, n−) correspond to the hp-tuple (φ1, · · · , φhp). For 

l �= p, let Φ̃ = TlΦ or UlΦ depending on whether l � n or l|n, and denote by (φ̃1, · · · , φ̃hp)
the corresponding hp-tuple. Then given an index j, we have in the above notations:

φ̃j(g) =
∑
r

(αr)pp · φi
(
(αr)−1

p g
)

for g ∈ GL2(Fp). (2.32)

(So in particular the action of Tl or Ul “permutes the components” of Φ.)
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Proof. This is a direct computation. First notice that if y satisfies (2.27)–(2.28) as above, 
we have for any g ∈ GL2(Fp):

Φ(xj,pyg) = Φ
(
αpxi,pug

)
= Φ

(
α−1αpxi,pgu

)
= u−1

p · Φ
(
α−1
p xi,pg

)
=

(
y−1
p αp

p

)
· Φ

(
xi,pα

−1
p g

)
.

(For the last equality note that y and u have trivial component at p, and that xj, xi have 
trivial components at all primes above p.)

Consider the case l � n for Tl. The case where l|n for Ul is similar. We have:

φ̃j(g) = Φ̃(xj,pg)

= (TlΦ)(xj,pg)

=
∑
r

(
σr(l)

)
p
· Φ

(
xj,pgσr(l)

)
=

∑
r

(
σr(l)

)
p
· Φ

(
xj,pσr(l)g

)
.

By the above computations applied to y = σr(l), we have

(
σr(l)

)
p
· Φ

(
xj,pσr(l)g

)
= (αr)pp · Φ

(
xi,pα

−1
p g

)
= αp

p · φi
(
α−1
p g

)
and the result follows. �

We can similarly define action of the Hecke operators Tl or Ul (l �= p) on the 
spaces 

⊕hp

i=1 C
1
har(Tp, V )Γ

p

i and 
⊕hp

i=1 H
1(Γ p

i , V ). For instance, if c = (c1, · · · , chp
) ∈⊕hp

i=1 C
1
har(Tp, V )Γ

p

i , define c̃ = Tlc = (c̃1, · · · , ̃chp
), where (in the above notations):

c̃j(e) =
∑
r

αr �p ci
(
(αr)−1

p e
)
. (2.33)

An immediate computation shows that if c is the hp-tuple of harmonic cocycles associated 
to Φ (as in (2.21)), then Tlc is the hp-tuple associated to TlΦ.

Similarly, if κ = (κ1, · · · , κhp
) ∈

⊕hp

i=1 H
1(Γ p

i , V ), define κ̃ = Tlκ = (κ̃1, · · · , ̃κhp
) as 

follows. In the notations above, for the index j and γ ∈ Γ̃j (and we continue to denote
by γ its image in Γ p

j ), then:

κ̃j(γ) =
∑

αr �p κi

(
α−1
r γαr′

)
(2.34)
r
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here r′ is the unique index in (2.30) such that α−1
r γαr′ ∈ Γ̃i (thus the map r �→ r′ is a 

permutation). Note that (2.34) is well-defined independent of the choice of the cocycles 
representing the κi’s.

Again we remark that the action of Tl and Ul permutes the components of ⊕hp

i=1 C
1
har(Tp, V )Γ

p

i and that of 
⊕hp

i=1 H
1(Γ p

i , V ).

Proposition 2.12. The isomorphism κsch
p :

⊕hp

i=1 C
1
har(Tp, V )Γ

p

i →
⊕hp

i=1 H
1(Γ p

i , V ) (cf.
Proposition 2.9) commutes the action of Tl and Ul for all l �= p.

Proof. This is a direct computation. Let c ∈
⊕hp

i=1 C
1
har(Tp, V )Γ

p

i , denote by κ ∈⊕hp

i=1 H
1(Γ p

i , V ) the image of c under κsch
p , any κ′ the image of Tlc (or Ulc if l|n) un-

der κsch
p . We maintain the notation of (2.33). Write γ′ := α−1

r γαr′ ∈ Γ̃i. Fix v0 ∈ V(Tp); 
at the level of cocycles we compute (to avoid notational difficulty we omit the subscript p
in the computations):

κ′
j(γ) =

∑
e:v0→γv0

c̃j(e)

=
∑

e:v0→γv0

∑
r

αr �p ci
(
α−1
r e

)
=

∑
r

∑
e:α−1

r v0→α−1
r γv0

αr �p ci(e)

=
∑
r

∑
e:α−1

r v0→γ′α−1
r′ v0

αr �p ci(e)

=
∑
r

∑
e:α−1

r v0→v0

αr �p ci(e) +
∑
r

∑
e:v0→γ′v0

αr �p ci(e)

+
∑
r

∑
e:γ′v0→γ′α−1

r′ v0

αr �p ci(e).

Now the term∑
r

∑
e:γ′v0→γ′α−1

r′ v0

αr �p ci(e) =
∑
r

∑
e:v0→α−1

r′ v0

αr �p ci
(
γ′e

)
=

∑
r

∑
e:v0→α−1

r′ v0

(
αrγ

′) �p ci(e)
=

∑
r

∑
e:v0→α−1

r′ v0

(γαr′) �p ci(e)

= γ �p

(∑
r′

∑
e:v →α−1v

αr′ �p ci(e)
)
.

0 r′ 0
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Hence if we put

X :=
∑
r

∑
e:v0→α−1

r v0

αr �p ci(e) ∈ V

(which is independent of γ), then

κ′
j(γ) =

∑
r

αr �p κi

(
γ′) + γ �p X −X.

Passing to cohomology we obtain κ′ = Tlκ (or Ulκ if l|n) as required. �
In the remainder of this subsection, we recall the relation between the quaternionic 

forms of Section 2.1 and Hilbert modular forms via the Jacquet–Langlands correspon-
dence. First recall some definitions regarding Hilbert modular forms. For more details, 
see [7, Chapter 2].

We will generally denote a place corresponding to an embedding of F into C as ν. 
Recall that we have fixed an embedding of Q into Qp and C, which allows us to identify I

also as the set of embeddings of F into C (which necessarily has image in R).

Notation 2.13. Put F∞ = F ⊗Q R, the archimedean component of AF . For x ∈ AF , 
denote by x∞ its archimedean component, and we denote by x∞ � 0 the condition of 
total positivity, i.e. all components at the infinite places are positive.

For x∞ = (xν)ν∈I ∈ F∞, put

eF (x∞) = exp
(

2πi
∑
ν∈I

xν

)

and

eF (ix∞) = exp
(
−2π

∑
ν∈I

xν

)
.

Let ψF be the standard unitary additive character of AF/F such that ψF (x∞) = eF (x∞)
for x∞ ∈ F∞.

For any y ∈ A×
F , denote by yOF the fractional ideal associated to y.

Put

K(n) =
{(

α β
γ δ

)
∈ GL2(ÔF )

∣∣∣ γ ∈ nÔF

}
.

This will be the level group in the Hilbert modular case.

Definition 2.14. Let n be an ideal of OF , and k, v ∈ Z[I] with kν ≥ 2, satisfying k+2v =
(m + 2)t for some integer m. By a cuspidal Hilbert modular form of weight (k, v) and 
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level n (of trivial nebentype), we mean a function f : GL2(AF ) → C, satisfying the 
following conditions:

(1) f satisfies the following transformation properties:

f(zsg) = |z|−m
AF

f(g) for all g ∈ GL2(AF ), s ∈ GL2(F ), z ∈ A×
F ,

f
(
gr(θ)

)
= f(g)

∏
ν∈I

eikνθν

where r(θ) = (rν(θν))ν∈I ∈
∏

ν∈I SO(2), with

rν(θν) =
(

cos(θν) sin(θν)
− sin(θν) cos(θν)

)
,

f(gκ) = f(g) for all g ∈ GL2(AF ), κ ∈ K(n).

(2) At each archimdean place ν, the form f generates the discrete series representation 
of GL2(Fν) of weight kν .

(3) f satisfies the cuspidal condition

∫
N(F )\N(AF )

f(ng) dn = 0 for all g ∈ GL2(AF ),

where N ⊂ GL2 is the subgroup of upper triangular unipotent matrices.

The complex vector space of cuspidal Hilbert modular forms of weight (k, v), and level n, 
is denoted as Sk,v(n, C).

Remark 2.15. In Definition 2.14, for condition (1) to be consistent kν has to be even 
(hence also m) for all ν ∈ I. If v = 0, then f is said to have parallel weight k. We note 
here that the definition employed here is slightly different from Definition 2.1 of [11], 
most notably concerning the central character. The definition in [11] was convenient for 
parallel weight forms, but for non-parallel weights situation the present definition is more 
convenient.

Remark 2.16. If f ∈ Sk,v(n, C), then for an integer r, the form f ′ defined by

f ′(g) = |det g|−r
AF

f(g) for g ∈ GL2(AF ) (2.35)

lies in Sk,v′(n, C), where v′ = v + rt.
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Given a form f ∈ Sk,v(n, C), we have the adelic Fourier expansion: let d be an idele 
of F whose associated ideal is the different of F . Then for all y ∈ A×

F , whose archimedean 
component y∞ is totally positive, and x ∈ AF ,

f
((

y x
0 1

))
= |y|AF

∑
0�ξ∈F

(ξ∞y∞)−{v}C(ξydOF , f)ψF (ξx)eF (iξ∞y∞). (2.36)

(Here for y ∈ RI , with I identifying as the set of embeddings of F into R, the notation 
y{v} stands for 

∏
ν∈I y

vν
ν .)

The coefficients C(b, f) range over all the integral ideals b of OF (and are understood 
to be zero if b is not integral), and are called the normalized Fourier coefficients of f . 
The form f is called normalized if C(OF , f) = 1.

Remark 2.17. In the situation of Remark 2.16, we have for all ideal b of OF ,

C
(
b, f ′

)
= NbrC(b, f). (2.37)

Let F̃ be the composite of the image of F under all elements of Hom(F,Q). For any 
subfield E of C that contains F̃ , define

Sk,v(n, E) =
{
f ∈ Sk,v(n,C)

∣∣ C(b, f) ∈ E for all b
}
.

Then Sk,v(n, E) is an E-vector space, and it is a theorem of Shimura [14] that

Sk,v(n,C) = Sk,v(n, E) ⊗E C. (2.38)

Hence one can define Sk,v(n, E), for any field E that contains F̃ (in particular for E =
Q,Qp, Cp), by

Sk,v(n, E) = Sk,v(n, F̃ ) ⊗F̃ E.

For l � n, one has Hecke operators Tl acting on Sk,v(n, C), such that on the normalized 
Fourier coefficients:

C(b, Tlf) = C(bl, f) + N lm+1C

(
b

l
, f
)
.

If l|n, then one has the operators Ul, for which

C(b, Ulf) = C(bl, f).

There is also an operator

Vl : Sk,v

(
n
,C

)
→ Sk,v(n,C)
l
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such that

C(b, Vlf) = C

(
b

l
, f
)

(here C(b
l
, f) is understood to be zero when l � b). A form in Sk,v(n, C) is called new at l

if it does not lie in the span of the image of Sk,v(nl , C) under the natural inclusion and 
under Vl.

If f is normalized, and is an eigenvector for Tl, then the eigenvalue is C(l, f) (similarly 
for Ul). A Hilbert modular form f ∈ Sk,v(n, C) is called an eigenform if it is normalized 
and is an eigenvector for all the Hecke operators, in which case we have f ∈ Sk,v(n,Q). 
It is called a newform if it is new at all primes dividing the level n, in which case n is 
called the conductor of f .

Suppose that f ∈ Sk,v(n, C), with k + 2v = (m + 2)t as above, is a normalized 
eigenform. If χ is a finite order Hecke character of F , define the complex L-function of f
and χ, for Re(s) � 0, as

L(s, f , χ) =
∑
b

χ(b)C(b, f)
Nbs

(2.39)

(here χ(b) = 0 if b is not relatively prime to the conductor of χ). By the eigenform 
property it admits the Euler product over prime ideals:

L(s, f , χ) =
∏
l

1
1 − χ(l)C(l, f)N l−s + εlχ(l)2N lm+1−2s (2.40)

(here εl = 0 if l divides n, and is one otherwise). The function L(s, f) can be analytically 
continued to an entire function, and admits a functional equation relating the value 
L(s, f , χ) to L(m +2 −s, f , χ−1). If χ is trivial then the value L(m/2 +1, f) is the central 
L-value.

Finally recall a version of the Jacquet–Langlands–Shimizu correspondence, as can be 
found as Theorem 2.30 in [7] for instance:

Theorem 2.18 (Jacquet–Langlands–Shimizu correspondence). Suppose that n = mn+n−

as before. Let Φ ∈ SB
n,v(mn+, n−) be an eigenform. In the case where n = 0 (and hence 

v = m
2 t) assume that Φ �= (χF,cycl ◦ NrdB̂/F̂ )−m/2. Then there is a unique normalized 

Hilbert eigenform f of weight (n+2t, v), that is new at primes dividing n−, such that the 
eigenvalues of Φ and f with respect to T coincide. Conversely given a Hilbert eigenform f
of weight (n + 2t, v), level n, that is new at primes dividing n−, there is an eigenform 
Φ ∈ Sn,v(mn+, n−), unique up to scalar multiples, such that the eigenvalues of f and Φ
with respect to T coincide. If Φ is a newform then so is f and conversely.
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Remark 2.19. With Φ and f as in Theorem 2.18, let Φ′ and f ′ be the corresponding 
twisted forms as in Remark 2.4 and Remark 2.16 respectively (for the same integer r). 
Then Φ′ and f ′ correspond under the Jacquet–Langlands–Shimizu correspondence.

3. Teitelbaum type L-invariant

3.1. Rigid analytic modular forms and Coleman integrals

In this section, we define rigid analytic modular forms and Coleman integrals associ-
ated to the harmonic cocycles defined by (2.21). One new aspect that occurs when F �= Q
is that the rigid analytic forms and Coleman integrals to be considered are vector valued 
rather scalar valued, and that we need to consider all the different embeddings σ ∈ Ip. 
The definitions are motivated by the Cerednik–Drinfeld theorem on p-adic uniformiza-
tion of Shimura curves over totally real fields, in the form proved by Varshavsky [17, 
Theorem 5.3].

For p as before, put Wp := F 2
p − {0, 0}. Define, for σ ∈ Ip, the natural projection:

prσp : Wp → P1(Fσ
p

)
= Fσ

p ∪ {∞}
prσp((x, y)) = (x/y)σ. (3.1)

We will usually write t for the affine coordinate of P1(Fσ
p ). We let GL2(Fp) act on Wp

by the rule: for 
(
a b
c d

)
∈ GL2(Fp), and (x, y) ∈ Wp,

(
a b
c d

)
· (x, y) = (ax + by, cx + dy). (3.2)

On the other hand, define the action of GL2(Fp) on P1(Fσ
p ) by the rule: for 

(
a b
c d

)
∈

GL2(Fp) and t ∈ P1(Fσ
p ), (

a b
c d

)
· t = aσt + bσ

cσt + dσ
. (3.3)

Then prσp is equivariant for the action of GL2(Fp).
For any lattice L of F 2

p , define L′ := L −πpL to be the set of primitive vectors. Given 
an oriented edge e = (s, t) ∈ E(Tp), choose lattices Ls and Lt that represent s and t, 
such that Ls contains Lt with index Np. Put

Uσ
e := prσp

(
L′
s ∩ L′

t

)
. (3.4)

Note that Uσ
e is independent of the choices of Ls ⊃ Lt and depends only on e. It is an 

open compact subset of P1(Fσ
p ), and {Uσ

e }e∈E(Tp) forms a base of the p-adic topology of 
P1(Fσ

p ).
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Referring to the notations of Section 2.1, for (n, v) as before, put Lσ = Lσ(n, v) :=⊗
σ′ �=σ Lσ′(nσ′ , vσ′). We identify Lσ(nσ, vσ) ⊗Cp

Lσ(n, v) ∼= L(n, v). Equip Lσ(n, v) with 
the right action of B×

p as in Definition 2.1 (except for the disappearance of the factor 
Lσ(nσ, vσ)). Put V σ(n, v) to be the Cp-linear dual of Lσ(n, v), with the dual left action 
of B×

p .
For Φ satisfying the conditions of Proposition 2.7, we have the hp-tuple of harmonic 

cocycle cφi
p

defined as in (2.21). We want to define a V σ = V σ(n, v)-valued locally 
analytic distribution μσ

φi
p

on P1(Fσ
p ) associated to cφi

p
for i = 1, · · · , hp.

In general let c ∈ C1
har(Tp, V )Γ

p

i . As described in [16, Proposition 9], the methods of 
Amice–Velu and Vishik allow us to define the V σ-valued locally analytic distribution μσ

c

on P1(Fσ
p ), characterized by the property: for any P ∈ Lσ(nσ, vσ), the value of the 

integral ∫
Uσ

e

P (t) dμσ
c ∈ V σ

is given by the following: for any Q ∈ Lσ,

( ∫
Uσ

e

P (t) dμσ
c (t)

)
(Q) = cφi

p
(e)(P ⊗Cp

Q). (3.5)

The distribution μσ
c can be used to integrate locally meromorphic functions on P1(Fσ

p )
that are locally analytic on Fσ

p , and with a pole of order at most nσ at ∞.
Note that by condition (2.19), we have

∫
P1(Fσ

p )

P (t) dμσ
c (t) = 0 for all P ∈ Lσ(nσ, vσ). (3.6)

The invariance of the harmonic cocycle c with respect to Γ̃ p

i can then be stated as 
follows: for all γ ∈ Γ̃ p

i , and P ∈ Lσ(nσ, vσ),

∫
Uσ

γpe

P (t) dμσ
c (t) = |NrdB/F γ|m/2

p γp ·
( ∫

Uσ
e

P |γp(t) dμσ
c (t)

)
. (3.7)

Let HFσ
p

be the p-adic upper half space over Fσ
p , which is a rigid analytic space 

over Fσ
p whose Cp-points are given by HFσ

p
(Cp) = P1(Cp) − P1(Fσ

p ); notice that the 
embedding σ of Fp into Cp has to be specified (if Fp/Qp is Galois, for example when p|p
is unramified, then HFσ

p
is independent of the choice of σ ∈ Ip). We equipped the action 

of GL2(Fp) on HFσ as in the case of P1(Fσ
p ), cf. Eq. (3.3).
p
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Denote by OHFσ
p

the structure sheaf of Cp-algebras of the rigid space HFσ
p
. Define the 

V σ-valued rigid analytic function fσ
c on HFσ

p
(Cp) by the p-adic Poisson type integral 

formula

fσ
c (z) :=

∫
P1(Fσ

p )

1
t− z

dμσ
c (t) for z ∈ HFσ

p
(Cp). (3.8)

Using (3.6) and (3.7), one can show that the function fσ
c satisfies the transformation

property: for γ ∈ Γ̃ p

i , let γσ =
(
aσ bσ

cσ dσ

)
∈ GL2(Fσ

p ) be the image of γp ∈ GL2(Fp)
under σ. Then:

fσ
c (γp · z) = |NrdB/F γ|m/2

p

(
NrdB/F γσ

)vσ−1(
cσz + dσ

)nσ+2
γp ·

(
fσ
c (z)

)
. (3.9)

The V σ-valued function fσ
c is an example of a vector-valued rigid analytic modular form.

We now define the Coleman integrals. For τ1, τ2 ∈ HFσ
p
, and P ∈ Lσ(nσ, vσ), define

τ2∫
τ1

P (z)fσ
φi
p
(z)dz :=

∫
P1(Fσ

p )

P (t) logp
(
t− τ2
t− τ1

)
dμσ

c (t) ∈ V σ. (3.10)

Here logp : C×
p → Cp is Iwasawa’s p-adic logarithm, defined by the condition logp(p) = 0.

Proposition 3.1. For any γ ∈ Γ̃ p

i , we have:
γpτ2∫

γpτ1

P (z)fσ
c (z)dz = |NrdB/F γ|m/2

p γp ·
( τ2∫

τ1

(P |γp)(z)fσ
c (z)dz

)
.

Proof. With notations as in (3.9) we compute, using (3.7):
γpτ2∫

γpτ1

P (z)fσ
c (z)dz =

∫
P1(Fσ

p )

P (t) logp
(
t− γpτ2
t− γpτ1

)
dμσ

c (t)

= |NrdB/F γ|m/2
p γp ·

( ∫
P1(Fσ

p )

P |γp(t) logp
(
γpt− γpτ2
γpt− γpτ1

)
dμσ

c (t)
)

= |NrdB/F γ|m/2
p γp ·

( ∫
P1(Fσ

p )

P |γp(t) logp
(
t− τ2
t− τ1

cστ1 + dσ

cστ2 + dσ

)
dμσ

c (t)
)

= |NrdB/F γ|m/2
p γp ·

( ∫
P1(Fσ

p )

P |γp(t) logp
(
t− τ2
t− τ1

)
dμσ

c (t)
)

+ |NrdB/F γ|m/2
p logp

(
cστ1 + dσ

cστ2 + dσ

)
γp ·

( ∫
P1(Fσ)

P |γp(t) dμσ
c (t)

)
.

p
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By (3.6), the second term in the last expression is zero, and hence we obtain the re-
sult. �
3.2. Definition of L-invariants

With the notation of the previous section, let c ∈ C1
har(Tp, V )Γ

p

i . For each σ ∈ Ip, 
define a V -valued cochain λσ

c on Γ p

i as follows. Choose base point z0 ∈ HFσ
p
. Let γ ∈ Γ̃ p

i , 
and by abuse of notation we continue to denote its image in Γ p

i as γ. The value λσ
c (γ) ∈ V

is determined as follows: it suffices to specify the evaluation of λσ
c (γ) on tensors of the 

form P ⊗Q ∈ L = L(n, v), with P ∈ Lσ(nσ, vσ), Q ∈ Lσ(n, v); then

λσ
c (γ)(P ⊗Q) =

( γpz0∫
z0

P (z)fσ
c (z)dz

)
(Q). (3.11)

By (3.11) it can be checked that λσ
c is a cocycle on Γ p

i (with respect to the �p action 
of Γ p

i on V as in Section 2.4), and that the class of λσ
c in H1(Γ p

i , V ) is independent of 
the choice of z0. This defines a map

κcol,σ
i,p : C1

har(Tp, V )Γ
p

i → H1(Γ p

i , V
)

c �→ class of λσ
c . (3.12)

Denote by κcol,σ
p the direct sum of the maps

κcol,σ
p :

hp⊕
i=1

C1
har(Tp, V )Γ

p

i →
hp⊕
i=1

H1(Γ p

i , V
)
. (3.13)

The same computations as in Section 2.5 show that

Proposition 3.2. The map κcol,σ
p commutes the Hecke operators Tl, Ul for all l �= p.

Let Φ ∈ Sn,v(mn+, n−) be a newform that satisfies the condition of Proposition 2.7, 
and corresponds to the tuple (φ1

p, · · · , φ
hp

p ). For σ ∈ Ip, we have the cohomology class 
κcol,σ
i,p (φi

p) given by the Coleman integral. Denote κcol,σ
p (Φ) =

⊕hp

i=1 κ
col,σ
i,p (φi

p). Thus we 

have a pair of hp-tuple of cohomology class κcol,σ
p (Φ), κsch,σ

p (Φ).
To define the Teitelbaum type L-invariant, we need the following multiplicity one 

statement.

Proposition 3.3. The Φ-eigenspace of the module 
⊕hp

i=1 H
1(Γ p

i , V ) with respect to the 
operators Tl, Ul for all l �= p is one-dimensional.

Proof. By Proposition 2.9 we have an isomorphism between 
⊕hp

i=1 H
1(Γ p

i , V )
and 

⊕hp

i=1 C
1
har(Tp, V )Γ

p

i , and the latter is isomorphic to the Up-eigenspace of



656 M. Chida et al. / Journal of Number Theory 147 (2015) 633–665
SB
n,v(mn+, n−)p−new with the Up-eigenvalue being equal to Npm/2; the isomorphisms 

commute with the Hecke operators Tl, Ul for all l �= p. Thus the Φ-eigenspace of the 
module 

⊕hp

i=1 H
1(Γ p

i , V ) is isomorphic to the Φ-eigenspace of SB
n,v(mn+, n−)p−new with 

respect to all Tl, Ul. This is one-dimensional by Theorem 2.18. �
Thus both κcol,σ

p (Φ) and κsch
p (Φ) lie in Φ-isotypic component of the Hecke module ⊕hp

i=1 H
1(Γ p

i , V ). By Proposition 3.3, the Φ-isotypic component of 
⊕hp

i=1 H
1(Γ p

i , V )
is one-dimensional, with a basis given by κsch

p (Φ). It follows that there is a unique 
Lσ,Tei
p (Φ) ∈ Cp, such that

κcol,σ
p (Φ) = Lσ,Tei

p (Φ)κsch
p (Φ). (3.14)

In particular we have

κcol,σ
i,p

(
φi
p

)
= Lσ,Tei

p (Φ)κsch
i,p

(
φi
p

)
(3.15)

for all i = 1, · · · , hp.

Definition 3.4. Let Φ satisfy the condition of Proposition 2.7, and f be the Hilbert 
newform corresponding to Φ under the Jacquet–Langlands–Shimizu correspondence. The 
Teitelbaum L invariant Lσ,Tei

p (f) of f at the prime p, with respect to σ ∈ Ip, is the 
quantity Lσ,Tei

p (Φ) as defined in (3.15) (recall that f determines Φ uniquely up to scalar 
multiple, so Lσ

p(f) is well-defined). Finally put

LTei
p (f) :=

∑
σ∈Ip

Lσ,Tei
p (f). (3.16)

It can be checked that the L-invariant Lσ,Tei
p (f) is independent of the choices that 

occur in (2.1), (2.2) and (2.15). On the other hand, the reason that we define the quan-
tity LTei

p (f) as the sum of Lσ,Tei
p (f) over σ ∈ Ip, is that it is the quantity LTei

p (f) that is 
expected to appear in the general form of the exceptional zero conjecture; see Conjec-
ture 4.2 below, and also Remark 4.3 for the justification of taking the sum over σ ∈ Ip.

Remark 3.5. With f as above, let f ′ be the twist of f as in Remark 2.16. It follows from 
Remark 2.19 and Remark 2.8 that Lσ,Tei

p (f) = Lσ,Tei
p (f ′).

With f as in Definition 3.4, we have that p divides exactly the conductor of f , and 
that

C(p, f) = Npm/2.

This condition is equivalent to saying that the p-component of the cuspidal automorphic 
representation generated by f is the special representation of GL2(Fp) (by the results 
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of Casselman [3]). Therefore we can generalize the Fontaine–Mazur type L-invariant 
Lσ,FM
p (f) for each σ ∈ Ip as follows.
Let f be a Hilbert eigenform, whose weight is (k, v) (here k = (kσ)σ, v = (vσ)σ

with kσ ∈ Z≥2, vσ ∈ Z, and σ ranges over the set of embeddings of F into Qp, as in 
Definition 2.14). Let GF be the absolute Galois group of F , and denote by

ρf : GF → GL2(Qp)

the two-dimensional p-adic Galois representation associated to the eigenform Hilbert f , 
characterized by the condition

Tr ρf (Frobl) = C(l, f)

for all primes l of F not dividing p and the conductor of f ; here Frobl is the Frobenius 
element at l and C(l, f) is the normalized Fourier coefficient of f at l, as in Eq. (2.36)
below. Since we assume that f is special at the prime p, the Galois representation ρf was 
already constructed by Carayol [2].

Put ρ := ρf |GFp
, the restriction of ρf to the local Galois group GFp

at p. Denote by 
Dst(ρ) the semi-stable Dieudonne module of Fontaine associated to ρ. From the main 
result of [12], we have the following information about Dst(ρ). It is free of rank two 
over Fp,0 ⊗Qp

Qp (where Fp,0 is the maximal subextension of Fp/Qp that is absolutely 
unramified). Put D := Dst(ρ) ⊗Fp,0 Fp. Then D is free of rank two over Fp ⊗Qp

Qp.
For any σ : Fp → Qp it induces the map Fp ⊗Qp

Qp → Qp. By [12] the module 
Dσ := D⊗Fp⊗QpQp,σ

Qp is then a two-dimensional filtered (ϕ, N)-module over Qp, with 
the monodromy operator N being non-trivial. The data defining the filtration of Dσ is 
given by a one-dimensional subspace Fσ ⊂ Dσ, where the jumps of the filtration are 
given by (vσ, kσ + vσ − 1) (the underlying (ϕ, N) module of Dσ is independent of the 
embedding σ up to isomorphism). Choose a pair of ϕ-eigenvectors u1, u2 ∈ Dσ such 
that N(u1) = u2. Then {u1, u2} is a basis of Dσ, and the Fontaine–Mazur L-invariant 
L = Lσ,FM

p (f) ∈ Qp is the unique element such that

Fσ = Qp(u1 − Lu2)

(the weak admissibility condition satisfied by Dσ insures that Fσ �= Qpu2). In partic-
ular, there is one such L-invariant for each embedding σ : Fp → Qp. Note that the 
Fontaine–Mazur type L-invariant Lσ,FM

p (f) depends only on ρf |GFp
.

Conjecture 3.6. We have the equality

Lσ,FM
p (f) = Lσ,Tei

p (f).

In the case F = Q this was proved by Iovita and Spiess [8, Theorem 6.4]. Conjec-
ture 3.6 would imply that Lσ,FM

p (f) can be computed from the automorphic side, and 
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conversely that Lσ,Tei
p (f) depends only on ρf |GFp

. In particular Lσ,Tei
p (f) does not depend 

on the factorization of the conductor n = mn+n−.

4. Statement of the exceptional zero conjecture

To conclude, we state the exceptional zero conjecture for the p-adic L-functions of 
Hilbert modular forms, using the Teitelbaum type L-invariants. Thus in contrast to the 
previous sections, we do not assume that the Hilbert modular forms arise from definite 
quaternion algebras via the Jacquet–Langlands–Shimizu correspondence.

We recall the properties of p-adic L-functions of Hilbert modular forms, as defined by 
Dabrowski [4]. First we need some notations. Let ψ =

⊗
ν ψν be a Hecke character of F

of finite order. Denote by sig(ψ) ∈ {±1}d, the signature of ψ, as the d-tuple (ψν(−1))ν|∞. 
Thus sig(ψ) = (1, · · · , 1) if ψ is unramified at all the infinite places. As another example, 
let ωQ be the Teichmuller character of Q. Regarding ωQ as a Hecke character of Q, and 
letting ωF = ωQ ◦ NF/Q, one has sig(ωF ) = (−1, · · · , −1).

Denote by cψ the conductor of ψ, and by τ(ψ) the Gauss sum associated to ψ [14, 
Eq. (3.9)].

Let f ∈ Sn+2t,v(n) be a normalized Hilbert newform, with n+ 2v = mt for some even 
integer m. Put

r∗ = max
σ∈I

vσ, r∗ = min
σ∈I

(nσ + vσ) = m− r∗.

Then for r∗ ≤ r ≤ r∗, the values L(r + 1, f) are the critical values in the sense of 
Deligne of the complex L-function L(s, f) associated to f . The central critical value is 
L(m/2 + 1, f).

We have Shimura’s rationality result on L-values, cf. [14, Theorem 4.3(I)], and 
[4, remark (ii) on p. 1027]: for every w ∈ {±1}d, one can choose Ωw

f ∈ C×, such that, for 
integer r∗ ≤ r ≤ r∗, and finite order Hecke character ψ of F , with conductor cψ, the value:

Lalg(r + 1, f , ψ) :=
∏

σ∈I Γ (r + 1 − vσ)∏
σ∈I(−2πi)r−vσ

· Dr
FL(r + 1, f , ψ)

τ(ψ−1)Ω(−1)r sig(ψ)
f

(4.1)

lies in the (finite) field extension of Q generated by the normalized Fourier coefficients 
of f and the values of ψ, so in particular is an algebraic number (here DF is the discrim-
inant of F , and Γ (s) is Euler’s Γ -function). It is called the algebraic part of the critical 
value L(r + 1, f , ψ).

Now for each q|p, factor the Hecke polynomial at q:

X2 − C(q, f)X + εqN qm+1 =
(
X − α(q)

)(
X − β(q)

)
(4.2)

(here εq = 1 if q � n, and equal to zero otherwise).
For each q|p order the roots α(q), β(q) so that ordp α(q) ≤ ordp β(q). Assume that 

ordp α(q) < ∞ for all p|p. We refer to [4, Theorem 1] for the following statement:
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Theorem 4.1. For any finite order Hecke character χ of F unramified outside the places p
and ∞, there is a p-adic analytic function Lp(s, f , χ) for s ∈ Zp (called the p-adic 
L-function of f and χ), that satisfies the following interpolation property: for all integers 
r∗ ≤ r ≤ r∗, we have

Lp(r + 1, f , χ) =
∏
q|p

Eq(f , χ, r) · Lalg(r + 1, f ,
(
χω−r

F

)−1)
. (4.3)

Here

Eq(f , χ, r) =
(

1 − χω−r
F (q)N qr

α(q)

)(
1 − (χω−r

F )−1(q)β(q)
N qr+1

)
if q � cχω−r

F
. (4.4)

On the other hand if q|cχω−r
F

, then

Eq(f , χ, r) =
(
N qr+1

α(q)

)n

with n = valqcχω−r
F

. (4.5)

Let S be the set of primes p|p such that p exactly divides n, and such that

α(p) = C(p, f) = Npm/2. (4.6)

If p ∈ S, and χ0 is a finite order Hecke character of F such that χ0(p) = 1, then by (4.4), 
we have Ep(f , χ0ω

m/2
F , m/2) = 0. Hence in this case, we have by (4.4):

Lp

(
m/2 + 1, f , χ0ω

m/2
F

)
= 0 (4.7)

in which case we say that Lp(s, f , χ0ω
m/2
F ) has an exceptional zero at s = m/2 + 1.

Now we state

Conjecture 4.2. Denote by e the cardinality of S. Assume that e ≥ 1. Then for χ0 a 
finite order Hecke character such that χ0(p) = 1 for all p ∈ S, the p-adic L-function 
Lp(s, f , χ0ω

m/2
F ) vanishes to order at least e at s = m/2 +1. We also have the derivative 

formula:

de

dse
Lp

(
s, f , χ0ω

m/2
F

)∣∣∣∣
s=m/2+1

=
∏
p∈S

LTei
p (f)

∏
q|p, q/∈S

Eq
(
f , χ0ω

m/2
F ,m/2

)
· Lalg(m/2 + 1, f , χ0). (4.8)

Remark 4.3. Let E/F be a modular elliptic curve over F , in the sense that there is a 
Hilbert newform fE of parallel weight 2 with conductor n equal to that of E, such that 
the Galois representation of GF on the p-adic Tate-module of E/F is isomorphic to ρfE . 
Suppose that p ∈ S. Then E has split multiplicative reduction at p, hence E/Fp has a 
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p-adic Tate uniformization. Let QE ∈ pOFp
− {0} be the Tate period of E/Fp. Then it 

can be shown (as in [1, Section II.4]) that for σ ∈ Ip

Lσ,FM
p (fE) =

logp Qσ
E

valpQσ
E

=
logp Qσ

E

valpQE
.

Thus

LFM
p (fE) :=

∑
σ∈Ip

Lσ,FM
p

=
∑
σ∈Ip

logp Qσ
E

valpQE
=

logp NFp/Qp
QE

valpQE

= fp/p
logp NFp/Qp

QE

ordp NFp/Qp
QE

(here fp/p is the residue field degree of Fp/Qp). So in this case Conjecture 4.2 is the 
conjecture of Greenberg and Hida (stated as Conjecture 9.1 of [11]) if Conjecture 3.6
holds.

Remark 4.4. Recently Spiess [15] proved the exceptional zero conjecture for modular el-
liptic curves over totally real fields under certain conditions. In [15], Spiess introduced the 
automorphic L-invariant LSp

p which is a generalization of Darmon’s L-invariant defined 
in [5] and showed the exceptional zero conjecture for Hilbert modular forms with the 
automorphic L-invariant using a new construction of p-adic L-functions attached to co-
homology classes. The coincidence of L-invariant LSp

p = Lp(E) is obtained by comparing 
the exceptional zero formula and the main result of [11].
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Appendix A

Here we prove Proposition 2.9. We largely follow de Shalit [13] whose arguments we 
extract and suitably generalize.
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Recall that Γ p

i = Γ̃ p

i /(O
(p)
F )×. Put (Γ̃ p

i )1 := Γ̃ p

i ∩B1, where B1 = {γ ∈ B, NrdB/F γ =
1}, and (Γ p

i )1 := (Γ̃ p

i )1/{±1}. Then we have an exact sequence

1 →
(
Γ p

i

)
1 → Γ p

i

NrdB/F−−−−−−→
(
O(p)

F

)×
/
((
O(p)

F

)×)2
.

Note that (O(p)
F )×/((O(p)

F )×)2 is finite, hence (Γ q

i )1 is normal of finite index in Γ̃ p

i .
Now Γ p

i embeds as a discrete finitely generated cocompact subgroup of PGL2(Fp)
[6, Chapter 9], and by [6] we can pick Γ ⊂ (Γ p

i )1 that is normal of finite index in Γ p

i and 
is free (called an arithmetic Schottky group). Put Δ = Γ p

i /Γ , then

C1
har(Tp, V )Γ

p

i =
(
C1

har(Tp, V )Γ
)Δ

H1(Γ p

i , V
)

= H1(Γ, V )Δ.

Hence it suffices to show that the map

κsch
Γ : C1

har(Tp, V )Γ → H1(Γ, V )

c → class of κc

is isomorphism.
Note that since Γ ⊂ B1/{±1}, its action on L(n, v), V (n, v) does not “see” the 

determinant factor involving v. In conjunction with this, for an even integer n, de-
note by Symn(C2

p) the Cp-vector space of polynomials in one variable of degree at 
most n, with right action of PSL2(Cp) = SL2(Cp)/{±1} given by the usual rule: for 

g =
(
a b
c d

)
∈ PSL2(Cp), and P (t) ∈ Symn(C2

p),

P |g(t) = (ct + d)n · P
(
at + b

ct + d

)
.

Denote by (Symn(C2
p))∗ the dual of Symn(C2

p), with the dual left action of SL2(Cp).
Next we observe that dimC1

har(Tp, V )Γ ≥ dimH1(Γ, V ). Indeed, let v and e be the 
number of vertices and unoriented edges of the finite connected graph Γ\Tp. Then g =
e − v + 1 is the genus of the graph, and Γ is free on g generators. First compute the 
dimension of H1(Γ, V ). Denote by D =

∏
σ∈I(nσ + 1) the dimension of V = V (n, v). 

Then the dimension of the space of cocycles on Γ is gD. On the other hand, the dimension 
of the space of coboundaries on Γ is equal to D if n �= 0 (since V Γ = 0), and equal to 0 
if n = 0 (since we can take V = Cp). Hence

dimH1(Γ, V ) =
{

(g − 1)D if n �= 0,
g if n = 0.

Now consider the dimension of C1
har(Tp, V )Γ . When n = 0, we can take V = Cp, and 

it’s well-known that its dimension is g. In general, to define an element of C1
har(Tp, V )Γ
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one needs to specify an element of V on the e unoriented edges of Γ\Tp, subject to v linear 
conditions at the vertices. It follows that dimC1

har(Tp, V )Γ ≥ e ·D − v ·D = (g − 1)D, 
as required.

Thus it suffices to show that κsch
Γ is injective. Denote:

C0(Tp, V ) =
{
g : V(Tp) → V

}
,

C1(Tp, V ) =
{
f : E(Tp) → V

∣∣ f(e) = −f(e) for all edge e
}
.

We have a map d : C0(Tp, V ) → C1(Tp, V ): if g ∈ C0(Tp, V ),

(dg)(e) = g
(
t(e)

)
− g

(
s(e)

)
.

It is easy to see that d is surjective: fix a v0 ∈ V(Tp). Then for f ∈ C1(Tp, V ), define 
g ∈ C0(Tp, V ) by

g(v) =
∑

e:v0→v

f(e)

Then dg = f .
Thus we have a short exact sequence of Γ -modules:

0 → V → C0(Tp, V ) d−→ C1(Tp, V ) → 0.

Put C0
har(Tp, V ) = d−1(C1

har(Tp, V )). Then

0 → V → C0
har(Tp, V ) d−→ C1

har(Tp, V ) → 0.

This gives the associated long exact sequence

0 → V Γ → C0
har(Tp, V )Γ d−→ C1

har(Tp, V )Γ ∂−→ H1(Γ, V ).

A direct computation shows that the connecting homomorphism ∂ is equal to −κsch
Γ . 

Hence it suffices to prove that V Γ = C0
har(Tp, V )Γ .

To prove this we need a rational structure on the Cp[Γ ]-module V . Let K be the Galois 
closure of F in Q. Then K is again totally real. Fix an embedding of K into Cp. We are 
going to define a K-vector space U , with K-linear action of Γ , such that U ⊗K Cp

∼= V

as Γ -module. Then V Γ = UΓ ⊗K Cp. While C0
har(Tp, V ) �= C0

har(Tp, U) ⊗K Cp, we do 
have C0

har(Tp, V )Γ = (C0
har(Tp, U) ⊗K Cp)Γ since Γ\Tp is finite. The latter is equal to 

C0
har(Tp, U)Γ ⊗K Cp. So it suffices to show that UΓ = C0

har(Tp, U)Γ .
We now define such a K-structure for V . Say the quaternion algebra B is defined by

B = F + Fα + Fβ + Fαβ

where αβ = −βα, α2 = a, β2 = b, with a, b totally negative elements of F . Now since 
we have fixed an embedding of K into Cp, we can identify I, the set of embeddings 
of F into Qp, with the set of embeddings of F into K. For each embedding σ ∈ I, put
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BK,σ := B ⊗F,σ K. Let B0
K,σ := {ξ ∈ BK,σ, TrdBσ,K/K(ξ) = 0} (spanned over K by 

α ⊗ 1, β ⊗ 1, αβ ⊗ 1 for instance), and by (BK,σ)1 = {ξ ∈ BK,σ, NrdBσ,K/K(ξ) = 1}. 
Here TrdBK,σ/K , NrdBK,σ/K are the reduced trace and reduced norm on BK,σ (which are 
induced from that of B). We have the right action of (BK,σ)1 on B0

K,σ by conjugation.
There is a K-valued positive definite inner product ( , ) on B0

K,σ, defined as follows: 
for θ, ξ ∈ B0

K,σ,

(θ, ξ) = TrdBK,σ/K

(
θξ∗

)
where ξ �→ ξ∗ is the canonical involution of BK,σ (again induced from that of B). It is 
immediately seen to be invariant under (BK,σ)1.

Define W1,σ to be the K-dual of B0
K,σ. It inherits the (BK,σ)1-invariant inner product 

from B0
K,σ. For example, define X1,σ, X2,σ, X3,σ to be the elements of W1,σ dual to 

α⊗ 1, β ⊗ 1, αβ ⊗ 1. Then

(X1,σ, X1,σ) = −1/aσ, (X2,σ, X2,σ) = −1/bσ, (X3,σ, X3,σ) = 1/(ab)σ.

Let (BK,σ)1 act on the left on W1,σ, by dualizing the right action of (BK,σ)1 on B0
K,σ.

For integer m ≥ 1, define Wm,σ to be the m-th symmetric power of W1,σ, with the 
induced action of (BK,σ)1. The dimension of Wm,σ over K is 

(
m+2

2
)
, and can be viewed as 

the space of homogeneous polynomials in X1,σ, X2,σ, X3,σ of degree m with coefficients 
in K. It inherits the (BK,σ)1-invariant inner product from W1,σ.

Now denote by Δσ : Wm,σ → Wm−2,σ the Laplacian:

Δσ = − 1
aσ

∂2

∂X2
1,σ

− 1
bσ

∂2

∂X2
2,σ

+ 1
(ab)σ

∂2

∂X2
3,σ

.

The map Δσ is surjective (with the convention that W−1,σ = 0, and W0,σ = K) and 
commutes with the action of (BK,σ)1. Hence if we define Um,σ := ker(Δσ : Wm,σ →
Wm−2,σ). Then Um,σ has dimension 2m +1 over K, with the action of (BK,σ)1. Further-
more when we extend scalars from K to Cp, then Um,σ ⊗K Cp becomes isomorphic to 
(Sym2m(C2

p))∗, with the isomorphism commuting with the action of (BK,σ)1 [9, Corol-
lary 2.16, part (1)]. Here (BK,σ)1 acts on (Sym2m(C2

p))∗ via (here q|p is the prime for 
which σ ∈ Iq):

(BK,σ)1 → (BK,σ ⊗K Cp)1 = (B ⊗F,σ Cp)1 = (Bq ⊗Fq,σ Cp)1
(2.1)∼= SL2(Cp). (A.1)

In particular when restricted to B1, this can be described as follows: for γ ∈ B1, let(
aσ bσ

cσ dσ

)
∈ SL2(Cp) be the image of γ ⊗ 1 ∈ (BK,σ)1 under the map (A.1). Then for

h ∈ (Sym2m(C2
p))∗, the action of γ ⊗ 1 sends h to h′, where

h′(P (t)
)

= h

((
cσt + dσ

)2m · P
(
aσt + bσ

cσt + dσ

))
for all P (t) ∈ Sym2m(C2

p).
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In particular, it follows that for V =
⊗

σ∈I Vσ(nσ, vσ), with nσ = 2mσ, we can put 
U =

⊗
σ∈I Umσ,σ. The action of B1 on U is via the tensor product action coming from the 

embedding B1 →
∏

σ∈I(BK,σ)1. Then V is isomorphic to U⊗K Cp, and the isomorphism 
respects the action of Γ . We also see that U inherits a Γ -invariant inner product 〈 , 〉
from the inner products on each Umσ,σ.

The Γ -invariant K-valued inner product 〈 , 〉 on U can be used to define non-
degenerate bilinear forms on C0(Tp, U)Γ and C1(Tp, U)Γ :

〈g1, g2〉 =
∑

v∈Γ\V(Tp)

〈
g1(v), g2(v)

〉
on C0(Tp, U)Γ ,

〈f1, f2〉 =
∑

e∈Γ\E0(Tp)/{±1}

〈
f1(e), f2(e)

〉
on C1(Tp, U)Γ .

Here E(Tp)/{±1} means we take the edges of E(Tp) modulo orientation. Since K is real, 
these are actually inner products, i.e. positive definite.

Define δ : C1(Tp, U) → C0(Tp, U) by

δf(v) =
∑

t(e)=v

f(e).

Then f ∈ C1
har(Tp, U) if and only if δf ≡ 0.

By a direct computation, we have for f ∈ C0(Tp, U)Γ , g ∈ C1(Tp, U)Γ :

〈f, dg〉 = 〈δf, g〉.

Now we can complete the proof as follows. Suppose that g ∈ C0
har(Tp, U)Γ . Then 

dg ∈ C1
har(Tp, U)Γ , so δdg ≡ 0. Thus we have

〈dg, dg〉 = 〈δdg, g〉 = 0.

This implies dg ≡ 0 by the positive definiteness of 〈 , 〉. Thus g ∈ UΓ .

References

[1] L. Berger, An introduction to the theory of p-adic representations, in: Geometric Aspects of Dwork 
Theory, Walter de Gruyter, Berlin, 2004, pp. 255–292.

[2] H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. 
Ec. Norm. Super. (4) 19 (3) (1986) 409–468.

[3] B. Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973) 301–314.
[4] A. Dabrowski, p-adic L-functions of Hilbert modular forms, Ann. Inst. Fourier 44 (4) (1994) 

1025–1041.
[5] H. Darmon, Integration on Hp ×H and arithmetic applications, Ann. of Math. 154 (2001) 589–639.
[6] L. Gerritzen, M. van der Put, Schottky Groups and Mumford Curves, Lecture Notes in Math., 

vol. 817, Springer, Berlin, 1980.
[7] H. Hida, Hilbert Modular Forms and Iwasawa Theory, Oxford Math. Monogr., The Clarendon Press, 

Oxford University Press, Oxford, 2006.

http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4265s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4265s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4361s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4361s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib43s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib44s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib44s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4461s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4756s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4756s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib48s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib48s1


M. Chida et al. / Journal of Number Theory 147 (2015) 633–665 665
[8] A. Iovita, M. Spiess, Derivatives of p-adic L-functions, Heegner cycles and monodromy modules 
attached to modular forms, Invent. Math. 154 (2) (2003) 333–384.

[9] B. Jordan, R. Livne, Integral Hodge theory and congruences between modular forms, Duke Math. J. 
80 (2) (1995) 419–484.

[10] B. Mazur, On monodromy invariants occurring in global arithmetic, and Fontaine’s theory, in: p-adic 
Monodromy and the Birch and Swinnerton-Dyer Conjecture, in: Contemp. Math., vol. 165, Boston, 
MA, 1991, Amer. Math. Soc., Providence, RI, 1994, pp. 1–20.

[11] C.P. Mok, The exceptional zero conjecture for Hilbert modular forms, Compos. Math. 145 (2009) 
1–55, Part 1.

[12] T. Saito, Hilbert modular forms and p-adic Hodge theory, Compos. Math. 145 (5) (2009) 1081–1113.
[13] E. de Shalit, Eichler cohomology and periods of modular forms on p-adic Schottky groups, J. Reine 

Angew. Math. 400 (1989) 3–31.
[14] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, in 

Collected Papers, vol. III, No. 78c, the original version appeared in: Duke Math. J. 45 (3) (1978) 
637–679.

[15] M. Spiess, On special zeros of p-adic L-functions of Hilbert modular forms, Invent. Math. 196 (2014) 
69–138.

[16] J. Teitelbaum, Values of p-adic L-functions and a p-adic Poisson kernel, Invent. Math. 101 (2) (1990) 
395–410.

[17] Y. Varshavsky, p-adic uniformization of unitary Shimura varieties. II, J. Differential Geom. 49 (1) 
(1998) 75–113.

[18] M.-F. Vigneras, Arithmetique des Algebras de Quaternions, Lecture Notes in Math., vol. 800, 
Springer-Verlag, 1980.

http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4953s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4953s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4A4Cs1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4A4Cs1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4D61s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4D61s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4D61s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4Ds1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib4Ds1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib5361s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib536861s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib536861s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib53s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib53s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib53s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib5370s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib5370s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib54s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib54s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib5661s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib5661s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib56s1
http://refhub.elsevier.com/S0022-314X(14)00285-6/bib56s1

	On Teitelbaum type L-invariants of Hilbert modular forms attached to deﬁnite quaternions
	1 Introduction
	2 Preliminaries
	2.1 Automorphic forms on totally deﬁnite quaternion algebras
	2.2 Hecke operators
	2.3 Choice of levels
	2.4 Harmonic cocycles on Bruhat-Tits tree
	2.5 Action of Hecke operators and Jacquet-Langlands-Shimizu correspondence

	3 Teitelbaum type L-invariant
	3.1 Rigid analytic modular forms and Coleman integrals
	3.2 Deﬁnition of L-invariants

	4 Statement of the exceptional zero conjecture
	Acknowledgments
	References


