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Abstract: Ultrafine-grained (UFG) Ti-6Al-4V alloy has attracted attention from the various 

industries due to its good mechanical properties. Although severe plastic deformation (SPD) 

processes can produce such a material, its dimension is generally limited to laboratory scale. 

The present work utilized the multi-pass caliber-rolling process to fabricate Ti-6Al-4V bulk 

rod with the equiaxed UFG microstructure. The manufactured alloy mainly consisted of 

alpha phase and showed the fiber texture with the basal planes parallel to the rolling 

direction. This rod was large enough to be used in the industry and exhibited comparable 

tensile properties at room temperature in comparison to SPD-processed Ti-6Al-4V alloys.  

The material also showed good formability at elevated temperature due to the occurrence of 

superplasticity. Internal-variable analysis was carried out to measure the contribution of 

deformation mechanisms at elevated temperatures in the manufactured alloy. This revealed 

the increasing contribution of phase/grain-boundary sliding at 1073 K, which explained the 

observed superplasticity. 
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1. Introduction 

Titanium and its alloys have attracted attention from various fields such as structural-material, 

biomedical, munitions, and information-technology industries. In particular, Ti-6Al-4V alloy has been 

a key material in aerospace industries since it was developed in 1954 [1]. The alloy possesses a superior 

strength-to-weight ratio that increases the fuel efficiency of rocket and aircraft. It also exhibits excellent 

corrosion resistance and mechanical stability at various temperatures. Finally, the alloy has good 

formability at elevated temperatures after applying a certain thermomechanical process due to the 

superplasticity [2–4]. 

Many researchers have focused on the fact that grain refinement can improve mechanical properties 

of titanium alloys. The increasing fraction of grain boundaries act as barriers against dislocation slip, 

leading to grain-boundary strengthening. In addition, the grain refinement provides the increasing 

sources of grain-boundary sliding and hence induces the superplastic behavior at elevated temperatures. 

It is thus natural that ultrafine-grained (UFG) titanium alloys have been actively studied for decades [5–9]. 

To attain the UFG structure, most of previous works have utilized a severe plastic deformation (SPD) 

process, such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) [10]. 

However, the manufactured samples were generally 10s of centimeters in length, which were limited to 

laboratory scale. 

To produce a UFG bulk rod applicable to the industries, the authors have introduced a multi-pass 

caliber-rolling process as an alternative to the conventional SPD processes. Caliber-rolling machine 

includes several calibers with various sizes and shapes (e.g., oval and circular) in its rolls by which a 

multi-axial deformation is imposed on a workpiece during the process. Since Kimura et al. [11] reported 

the considerable mechanical improvement in a caliber-rolled low-alloy steel, related studies have been 

actively carried out with various materials [12–19]. Nevertheless, studies on caliber-rolled titanium 

alloys have just begun in spite of its importance both in academia and industry [20–22]. A UFG bulk rod 

was successfully manufactured by caliber-rolling Ti-6Al-4V alloy in this work. The researchers 

investigated microstructures and tensile properties of the manufactured material and discussed 

mechanisms of grain refinement and superplasticity. 

2. Materials and Methods 

Ti-6Al-4V rod was machined with a diameter of 28 mm and a length of 150 mm. The head part was 

made to be conical to insert a material into a pair of calibers. The beta-transus temperature of this alloy 

was reported to be 1268 K [9]. The Ti-6Al-4V rod was solution-treated at 1323 K for 2 h followed by 

quenching in a water bath to induce a fine lath structure. This alloy was then soaked in a furnace at 1073 K 

for 1 h and caliber-rolled in the ambient atmosphere. The caliber-rolling process used in this work 

consists of six deformation passes. First, third, and fifth calibers are oval-shaped, while second, fourth, 

and sixth calibers are circular. The sample was inserted in a caliber, rotated by 90 degrees, and then 

immediately inserted in the next caliber for each deformation path, as illustrated in Figure 1. There was 

a single reheating process at 1073 K for 2 min after the fourth deformation pass. The sample was  

air-cooled after the sixth deformation pass. The total reduction of area was determined to be 85%. 
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Figure 1. Schematic illustration of multi-pass caliber-rolling process. 

Disc samples with a diameter of 3 mm were obtained from the caliber-rolled alloy, and then mechanically 

thinned with 240-grit SiC papers to a thickness less than 200 μm. Afterwards, they were jet-polished at 

22 V and 265 K in a solution containing 40 mL of HClO4, 240 mL of 2-butoxy ethanol, and 400 mL of 

methanol. Transmission electron microscope (TEM) was used to observe microstructures at 200 kV with 

JEM-2100F FE-TEM machine (JEOL, Tokyo, Japan). Grain size was measured from the image using 

the linear intercept method [23]. Meanwhile, other discs were mirror-polished with 1 μm alumina 

powder and 0.25 μm colloidal silica for electron backscatter diffraction (EBSD) analysis. The analysis 

was performed at 20 kV with Quanta 3D FEG machine (FEI, Hillsboro, OR, USA). 

Tensile properties were measured using rod-type specimens whose gauge length and diameter were 

6 and 3 mm, respectively. Instron 8862 machine (INSTRON, Norwood, MA, USA) was used for both 

room- and high-temperature tensile tests. Room-temperature tensile test was carried out at a strain rate 

of 5 × 10−3 s−1 with an extensometer to obtain reliable data. High-temperature tensile test was conducted 

in a halogen furnace at two temperature conditions (873 K and 1073 K) and two strain rates  

(5 × 10−3 s−1 and 5 × 10−4 s−1). Each sample was heated for 10 min before commencing the test.  

Load-relaxation test (LRT) was conducted in a similar manner to the high-temperature tensile test,  

except that the samples were deformed up to a true strain of 0.2 and then hold to investigate the load 

relaxation behavior. The obtained LRT data were converted into stress-strain rate relationship based on 

the following equation [24]: 

σ = P(L0 + X − P/K)/A0L0 (1a) 

  = −(dP/dt)(Lo + X − P/K) (1b) 

K−1 ≈ Cm + L0/A0E (1c) 

where P is load, Lo is the gauge length, Ao is the cross-sectional area of gauge region, X is the 

displacement, Cm is the elastic compliance of testing machine, and E is Young’s modulus of Ti-6Al-4V 

alloy. Strain-rate-jump test (SRJT) was performed at 1073 K, during which a strain rate changed from  

5 × 10−4 s−1 to 5 × 10−3 s−1 at a true strain of 0.6. Strain-rate sensitivity (m) was determined as follows: 

m = ∂ log σ/∂ log   (2) 
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3. Results 

Figure 2 demonstrates the manufactured caliber-rolled Ti-6Al-4V bulk rod. The length and diameter 

of the rod was approximately 1200 and 10 mm, respectively. It is also noted that the length can be even 

increased by tailoring the dimension of initial material. Such a large dimension enables the caliber-rolled 

rod to be directly used in the industry. Indeed, the authors fabricated a dental implant fixture with this 

material, which exhibited satisfying mechanical strength and fatigue resistance both in ambient 

atmosphere and simulated body fluid [21]. 

 

Figure 2. Ti-6Al-4V bulk rod manufactured by the multi-pass caliber-rolling process. 

The grain structure of caliber-rolled rod was observed by TEM analysis as shown in Figure 3. It is 

obvious that the rod possessed the UFG structure with a grain size of 0.2 ± 0.05 μm. Such a strong grain 

refinement has thus far been accomplished by SPD processes. For example, Ko et al. [25] achieved a 

similar UFG structure with a mean grain size of ~0.3 μm after applying four-pass ECAP deformation at 

873 K; however, the length of fabricated sample was much shorter (80 mm) compared to the present 

UFG rod. 

 

Figure 3. Transmission electron microscope (TEM) micrograph of caliber-rolled Ti-6Al-4V 

rod. The image was taken perpendicular to the rolling direction (RD). 

Figure 4 presents the EBSD results for the investigated materials. The solution-treated microstructure 

consisted of martensitic laths as intended. Beta phase was not confirmed in this alloy, as reported in the 

literature [26,27]. Two types of martensitic laths were observed; coarse primary laths were formed first, 
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and then fine secondary laths were generated between the primary laths [28]. The latter occupies the 

most area in the solution-treated alloy, whose lath thickness is less than 5 μm. The similar lath structure 

with no presence of beta phase was confirmed after the heating step prior to the caliber-rolling (i.e., 1073 K 

for 1 h), although the thickness was increased to ~10 μm. The beta fraction increased to 6% after the 

caliber-rolling. Figure 5 shows two types of beta constituents; most of them exist as a form of nano-sized 

beta precipitations, while fragmented beta lamellae are also observed. The beta lamellae were formed 

parallel to the RD and the thickness was measured to be ~0.2 μm or less. Chao et al. [27] attributed  

this type of phase transformation to adiabatic heating and strain-induced transformation. A fraction  

of high-angle grain boundaries of 0.6–0.8 was confirmed in Ti-6Al-4V alloys groove-rolled at  

923–1023 K [22]. Similar results are expected in the present material as both rolling processes have  

the similar deformation mechanism. 

The confidence index (CI) of caliber-rolled rod was too low to provide meaningful microstructural 

information. Tirumalasetty et al. [29] ascribed the low CI in UFG alloys to distorted Kikuchi patterns in 

region with high dislocation density. Alternatively, the EBSD analysis was conducted after annealing 

the caliber-rolled alloy at 873 K for 1 h, followed by water-quenching; such a condition was reported to 

minimize recrystallization and maintain the texture in this material [30]. Figure 4c,d demonstrate two 

types of grains: fine and coarse-grain groups. The fine grains are closer to the original microstructure of 

caliber-rolled alloy because the clear image and high CI of coarse grains imply the formation of 

microstructure during the subsequent annealing process. It should be noted that the fine grains are 

equiaxed in both planes, supporting the conclusion from TEM observation that the caliber-rolling gave 

rise to the equiaxed UFG structure for the present material. 

 

Figure 4. Electron backscatter diffraction (EBSD) pole figure map of the investigated  

Ti-6Al-4V rod: (a) solution-treated; (b) heat-treated prior to the caliber-rolling; and (c,d) 

caliber-rolled and annealed alloys. Figure 4c is a plane perpendicular to the RD, while  

Figure 4d is parallel to the RD. The black dots indicate the area of confidence index (CI) ≤ 0.1. 

The x and y axes are demonstrated in Figure 1. 
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Figure 5. SEM micrograph of the caliber-rolled Ti-6Al-4V rod. The dark and bright areas 

indicate alpha and beta phases, respectively. The image was taken parallel to the RD marked 

as the arrow in the micrograph. 

Figure 6 presents the texture of the caliber-rolled rod in the form of RD inverse pole figure. The alloy 

exhibited the fiber texture with the basal planes parallel to the RD. The fraction of beta phase is small 

enough to be neglected. Narayana Murty et al. [22] recently reported the similar texture in Ti-6Al-4V 

alloys groove-rolled at 873–1023 K, although their texture showed stronger orientation along <10-10> 

and <2-1-10> directions. According to the work [22], the relatively randomized texture observed in the 

present alloy may be attributed to higher deformation temperature related to martensite decomposition 

and phase transformation during the deformation process as well as the annealing treatment. 

 

Figure 6. RD inverse pole figure for the caliber-rolled Ti-6Al-4V rod obtained by EBSD. 

The manufactured UFG rod can be utilized in two ways in the industry. First, the material can be 

directly machined to be used for biomedical products, such as dental implant fixture, bone screw, bone 

plate, and micro-drill [1]. Room-temperature tensile properties are important in this case to ensure the 

resistance to fatigue fracture for biomedical uses. Second, the rod can be further processed at elevated 

temperature for automobile and aerospace industries, which requires the evaluation of high-temperature 

mechanical properties. Therefore, the tensile properties of the caliber-rolled Ti-6Al-4V alloy were 

investigated at both room and elevated temperatures. 

Figure 7 shows room-temperature tensile properties of the caliber-rolled rod as well as UFG Ti-6Al-4V 

alloys in the literature [5–8]. The caliber-rolled rod provided the high yield stress (YS = 1345 MPa) and 

ultimate tensile stress (UTS = 1425 MPa) due to its UFG structure and resultant grain-boundary 

strengthening. The tensile properties of the manufactured alloy was compared with SPD-processed UFG 
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Ti-6Al-4V alloys in terms of the product of strength and elongation; such an approach has been widely 

used in the field of structural materials as strength increases in sacrifice of elongation in many  

cases [31]. The UFG bulk Ti-6Al-4V rod fabricated in this work exhibited the value of 18,525 MPa%, 

as shown in Figure 7b, which was comparable with most of UFG Ti-6Al-4V alloys in the literature. 

 

Figure 7. (a) True stress-strain curve of caliber-rolled Ti-6Al-4V rod at room temperature 

and (b) comparison of the tensile properties of various ultrafine-grained (UFG) Ti-6Al-4V 

alloys [5–8]. 

Figure 8a shows flow curves of the caliber-rolled alloy at elevated temperatures. Increasing 

deformation temperature or decreasing strain rate increased the ductility in sacrifice of strength.  

High-temperature deformation mechanisms at each condition were discussed in Section 4 on the basis 

of the internal-variable theory. It is of particular note that the caliber-rolled rod deformed at 1073 K and 

5 × 10−4 s−1 exhibited the different characteristics than the others. The sample recorded a total elongation 

of 967% as shown in the inset of Figure 8a, whose flow curve showed a long plateau as generally found 

in superplastic materials. In addition, the SRJT results shown in Figure 8b provided a strain-rate 

sensitivity of 0.44 for the caliber-rolled Ti-6Al-4V at 1073 K. A material with a strain-rate sensitivity of 

0.3–0.8 is considered to possess superplasticity [32]. All of these factors suggest the superplastic 

behavior of the present bulk rod at the high temperature, which will be useful in the related industries. 

 

Figure 8. High-temperature tensile properties of caliber-rolled Ti-6Al-4V rod: (a) true 

stress-strain curve at elevated temperatures and (b) SRJT results obtained at 1073 K.  

The inset in Figure 8a compares the undeformed specimen and the sample deformed at 1073 K 

and 5 × 10−4 s−1. 
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4. Discussion 

The caliber-rolling process gave rise to the strong grain refinement by which the grain size became 

similar to those refined by the SPD processes. Such a microstructural evolution can be understood in 

terms of the dynamic globularization [33–36]. A groove formed at the phase/grain boundaries splits a 

platelet into several pieces by deepening along the boundary in the platelet. The broken-up lamellae are 

transformed into globular grains to stabilize the surface energy. 

Two factors contributed to the effective dynamic globularization and resultant grain refinement in  

the caliber-rolled Ti-6Al-4V alloy. First, the present alloy consisted of fine martensitic laths prior to the 

caliber-rolling process. According to the literature [27,37,38], such a microstructure is beneficial for the 

grain refinement through dynamic globularization because an initial lamellar thickness directly affects a 

final grain size. Second, the globularizing fraction increases with increase in an applied strain following 

an Avrami-type equation in Ti-6Al-4V [39]. The authors have proven that the caliber-rolling imposes 

more than twice as high strain than a conventional rolling with the same reduction of area [30]. In this 

work, the equivalent strain was determined to be 0.7, 1.2, 1.9, 2.4, 3.3, and 4.0 after the one- to six-pass 

caliber-rolling in a two-phase titanium alloy. This is attributed to the redundant strain accumulating 

without the volume change of workpiece [40]. 

Superplastic behavior was confirmed in the manufactured alloy at 1073 K and 5 × 10−4 s−1. The  

high-temperature deformation data were interpreted on the basis of internal-variable theory to investigate 

the deformation mechanisms. Ha and Chang [41] suggested this theory to measure the contribution of 

grain matrix deformation (GMD) and phase/grain-boundary sliding (P/GBS) to deformation behavior at 

elevated temperatures. In the internal-variable theory, stress is composed of internal stress of long-range 

dislocation interactions (σI) and friction stress of short-range dislocation-lattice interactions (σF). Strain 

rate consists of the rate of internal strain (ί), non-recoverable plastic strain (ά), and P/GBS (ή) strain. 

Among these factors, the friction stress and internal strain rate are negligible under the present 

conditions, providing stress and strain rate as follows: 

σ = σI + σF ≈ σI (3a) 

έ = ί + ά + ή ≈ ά + ή (3b) 

The internal stress, non-recoverable plastic strain rate, and P/GBS strain rate at a deformation 

temperature of T are determined from the following relations: 

(σ*/σI) = exp(ά*/ά)p (4a) 

ά* = νI (σ*/G)n(I) exp(−QI/RT) (4b) 

(ή/ήo) = [(σ − Ση)/Ση]1/M (4c) 

ήo = νη(Ση/μη)n(η) exp(−Qη/RT) (4d) 

Here, σ* and Ση are stress for GMD and P/GBS, respectively. ά* and ήo are their conjugate reference 

strain rates. νI and νη are the jump frequency for dislocations. QI and Qη are the activation energy for 

GMD and P/GBS, respectively. R is the gas constant and other parameters are material constants [4]. 
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Figure 9 shows LRT results and corresponding internal-variable analysis. The GMD curve deviated 

from the experimental data at lower strain rates of Figure 9a and almost entire range of Figure 9b. These 

deviations were corrected by the P/GBS curve. It is thus concluded that P/GBS was not activated at  

873 K and a strain rate of 5 × 10−3 s−1, whereas both mechanisms contributed to the high-temperature 

deformation in the other cases. The relative contribution of each mechanism was quantified on the basis 

of the LRT data. At 873 K and a strain rate of 5 × 10−4 s−1, GMD mainly contributed to the deformation 

behavior (92% for GMD and 8% for P/GBS). Similar results were obtained at 1073 K and a strain rate 

of 5 × 10−3 s−1 (85% for GMD and 15% for P/GBS) from the extrapolated data in Figure 9b. These results 

explain why the superplasticity was not observed under the three conditions mentioned above. 

On the other hand, the contribution of P/GBS significantly increased at 1073 K and a strain rate of  

5 × 10−4 s−1 (55% for GMD and 45% for P/GBS). This is rationalized in light of the decreasing activation 

energy for deformation with increasing temperature and decreasing strain rate. The authors have reported 

that the activation energy decreased to that for interphase/grain-boundary diffusion under such conditions, 

resulting in the increasing contribution of P/GBS [4]. This conclusion is also supported by the fact that 

the friction stress for P/GBS decreased as the deformation temperature increased; the value of log Ση 

was −2.7 at 873 K and −5.7 at 1073 K. This is in good accord with the superplastic behavior observed 

at 1073 K and 5 × 10−4 s−1. 

  

(a) (b) 

Figure 9. Internal-variable analysis of caliber-rolled Ti-6Al-4V rod at (a) 873 K and (b) 1073 K. 

5. Conclusions 

In this work, the multi-pass caliber-rolling process successfully manufactured Ti-6Al-4V bulk rod 

with the UFG microstructure. The dimension of the manufactured rod (1200 mm in length) was 

significantly larger than most UFG Ti-6Al-4V samples fabricated by SPD processes and large enough 

to be directly used in the industry. The length can be even increased by tailoring the dimension of initial 

material. The alloy consisted of equiaxed ultrafine grains with a mean size of 0.2 μm. Such an effective 

grain refinement originated from the fine lath structure in the initial material and redundant strain 

accumulating without the volume change of workpiece. A small amount of beta particles was formed 

during the caliber-rolling process due to adiabatic heating and strain-induced phase transformation. The 

caliber-rolled rod showed the fiber texture with the basal planes parallel to the RD. The grain refinement 

through the caliber-rolling affected the grain-boundary strengthening at room temperature and superplastic 
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behavior at high temperature. The product of strength and elongation of the alloy at room temperature 

was calculated to be 18525 MPa%, which was similar to the values of most SPD-processed UFG  

Ti-6Al-4V alloys in the literature. The manufactured rod exhibited the superplastic behavior at 1073 K 

and 5 × 10−4 s−1. The internal-variable analysis revealed the increasing P/GBS contribution to 

deformation under these conditions, while GMD controlled the deformation at the lower temperature 

and/or higher strain rate. 
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