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1. Introduction

Hot rolling mill accepts a slab produced by continuous 
casting process, then converts it to strip that has predefined 
thickness. The main concern of the hot rolling process is 
to maximize productivity, by minimizing the production of 
poor final product and by stabilizing the process. However, 
problems due to irregular longitudinal shape of the strip 
such as the lateral movement of the strip (side-slipping), 
and the longitudinal bending (camber) are the main fac-
tors that cause defects such as strip-edge folds, scrapes and 
telescoped coils. Also, a curved strip is dangerous because 
it could strike and damage the side of the process line; such 
events can cause production stoppages.

Both camber and side-slipping are caused by asymmetric 
factors during rolling such as thickness deviation, tempera-
ture difference, roll gap difference, mill constant variation, 
and work roll wear of the strip along its transverse direc-
tion. Moreover, camber and lateral motion are coupled to 
each other. When camber generated in the roughing mill 
remains until the strip is fed into the finishing mill, side-
slipping increases during passage through the finishing mill. 
Therefore, camber should be regulated from an early stage 
of roughing mill.

A mathematical model that describes generation of cam-
ber should calculate the curvature of the centerline of the 
strip at the delivery side because shape of the curve can 
be reconstructed if the curvatures of all points and initial 
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tangent vector are known.1,2) To produce straight strip after 
rolling, curvatures should be zero at all points on the cen-
terline.3) Therefore, an accurate model of curvature of the 
centerline of the strip at the delivery side is necessary.

The first study model of the curvature of the centerline 
at the delivery side was produced by Nakajima et al.4) In 
this work, the time varying locations of arbitrary points on 
the centerline were considered to obtain dynamic relation 
between side-slipping and wedge ratio. They also derived 
a model for delivery-side curvature, which is affected by 
the entry-side curvature and wedge ratio. Shiraishi et al.5) 
introduced a modified delivery-side curvature model that 
includes a camber change coefficient that should be tuned 
to account for various rolling conditions such as front and 
back tension.

These two models were obtained by considering two 
fundamental principles: (1) the curvature at the delivery 
side of the strip is affected by entry-side curvature scaled 
by the square of the reduction ratio; (2) the velocity differ-
ence between Drive-Side (DS) and Work-Side (WS) at the 
delivery-side is proportional to the wedge ratio. From these 
two principles, the delivery-side curvature models were rep-
resented using an equation that includes entry-side curvature 
and wedge ratio.

However, the process used to obtain the delivery-
side curvature model contains an inconsistency. Previous 
researchers assumed that the curvature at the delivery-side 
is affected by both delivery-side velocity difference and 
entry-side curvature, but, they also assumed that entry-side 
curvature is affected only by the entry-side velocity differ-
ence; i.e., the cause of the curvature at the entry side differs 
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from the cause at the delivery side. To achieve consistency, 
an assumption that the curved shape of the strip is caused 
by the velocity difference between DS and WS is needed. 
In addition, delivery-side velocity difference should be 
affected by entry-side curvature.

In this paper, a new model for curvature of the centerline 
of the strip at the delivery side is proposed. The delivery-
side velocity difference is represented as an equation that 
uses the mass-flow principle to include entry-side velocity 
difference and wedge ratio. The relation between curvature 
of the strip and velocity difference was found using the 
definitions of curvature, tangential angle, and tangent vector. 
Delivery-side curvature of the centerline is represented as an 
equation that includes entry-side curvature and wedge ratio. 
A three dimensional FEM simulator for rough rolling pro-
cess was used to verify the accuracy of the proposed model.

The rest of this paper is organized as follows. The pro-
cess that obtained the old delivery-side curvature model 
is reviewed in Section 2. A new model based on the new 
assumption is proposed in Section 3. Brief explanation for 
FEM simulator and simulation results are given in Section 
4. Finally, a conclusion is represented in Section 5.

2. The Former Mechanical Model for Curvature at the 
Delivery Side

Shiraishi et al.5) introduced delivery-side curvature model 
that includes entry-side curvature and wedge ratio as
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where 1/ρ2 is delivery-side curvature, λ is reduction ratio 
h/H, 1/ρ1 is entry-side curvature, b is width of the strip, h 
is delivery-side strip thickness, H is entry-side strip thick-
ness, ξ is a camber-change coefficient and Δh and ΔH are 
delivery-side and entry-side wedge respectively. To obtain 
the model, two assumptions were used: (1) that entry-side 
velocity difference Δv1 influences delivery-side curvature 
1/ρ2 scaled by 1/λ2 in addition to the curvature due to 
delivery-side velocity difference Δv2; and (2) that Δv2 is 
proportional to the wedge ratio Δψ:
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According to this model, 1/ρ1 is only determined by Δv1, 
whereas 1/ρ2 is affected by both the Δv2 and 1/ρ1.
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However, ω in Eq. (3) is not the rotation speed of the 
strip but the time derivative of tangential angle dθ/dt which 
is defined as an angle between the tangent vector and the 
x-axis1,2) (Fig. 1); dθ/dt depends only on the shape of the 
strip, and not on its rotation.

Also, the first assumption was based on the idea that the 
rotated angle of the strip at the delivery side θ2 is reduced 
to rotated angle at the entry side θ1 divided by λ. From 
the definition of curvature (Eq. (3)), they explained that 
additional curvature is generated by the rotation of the 
strip scaled by λ2 because dx2 increases to λx1, whereas dθ2 
decreases to dθ2/λ.

The basis of the first assumption was established in the 
first study4) of side-slipping which represented the time-
varying location of points on the centerline (Fig. 2). If the 
strip is regarded as a rigid body, the location of a point on 
its centerline can be represented as a function of time. If the 
longitudinal direction of the strip is defined as the x-axis, 
and the transversal direction of the strip as the y-axis, the 
velocity of the point v(t) at time t can be represented as

 v t y t v t( ) ( ) ( ),= ⋅ +ω 1  ......................... (4)

 u t x t( ) ( ),= − ⋅ω  ............................. (5)

where v, u are velocity along the x, and y-axis respectively, 
v1 is the average speed of the strip at the entry side, and 
ω is the rotation speed of the strip. Then, time-varying 
location of the point (x1(t), y1(t)) at the entry side can be 
represented as
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Side-slipping is defined as the distance between centerline 
of the strip and center of the roll (x=0). Consequently, the 
model of side-slipping can be obtained as

Fig. 1. Definition of tangential angle.
Fig. 2. Coordinate system of hot rolling process and cross-section 

of the strip.
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Similar to Eqs. (6) and (7), the location of the point (x2(t), 
y2(t)) at the delivery side can be represented as

 x v t2 2= −( )τ  ............................... (9)
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where τ is the time at which the point passes the center of 
the roll.

From Eqs. (4)–(7), tangential angle and curvature at the 
entry and delivery side can be represented as
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Then the relations of tangential angle and curvature between 
entry and delivery side are
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In Eq. (13), θ2 consists of three terms; the first one 

−v
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0 ( )  is related to the original shape of the strip, the 

second one − ∫v t dt1 1
0
ω
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( )  is the effect of rotation of the strip 

at the entry side, and the last one − ∫v t dt
t

2 2ω
τ
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of rotation of the strip at the delivery side. That means the 
curvature change due to elongation difference was not con-
sidered but the effect of rotation of the strip is considered 
in the equation. From the definition of tangential angle dy/
dx, Eq. (15) is natural because dx2 increases to λdx1 while 
dy2 is remains the same.

To summarize, the previous model of curvature after roll-
ing is based on two important assumptions. However, one 
of these assumptions is not true (Eq. (1)) because 1/ρ1 is not 
related to ω. Also, the basis of the effect 1/ρ1 on 1/ρ2 (Eq. 
(15)) is valid only when no elongation difference occurs at 
the delivery-side.

The inconsistency of Eq. (1) can be represented when 
a series of rolling stands are assumed (Fig. 3); 1/ρ2 is the 
delivery-side curvature at the first rolling stand (Fig. 3(a)), 
and also the entry-side curvature at the second rolling stand 
(Fig. 3(b)). 1/ρ2 can be represented using both 1/ρ1 and Δv2 
because it is delivery-side curvature at the first rolling stand 
(Fig. 3(b)), whereas it is also the entry-side curvature at the 
second rolling pass, and represented as only Δv2 at the third 

rolling stand (Fig. 3(a)). Although these two curvatures 
should be identical, different definition were used in the 
existing model. To produce a reasonable explanation, cur-
vature of the centerline should depend only on the velocity 
difference, and the effect of the entry-side curvature should 
be included in the delivery-side velocity difference.

3. Proposed Delivery-Side Curvature Model

It is known that if the width of the bar is more than 10 
times of thickness of it, strain in the width direction is 
under 3% which is not taken to be significant.6) If the width 
of the strip b is assumed to not change during rolling, the 
thickness and velocity difference between DS and WS can 
be represented as
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If the average value of thickness and velocity at the entry 
and delivery side are represented as
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then the thickness and velocity of each side are obtained 
using Eqs. (17) and (18) as

Fig. 3. Curvature of the bar at the multiple stands.
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If the mass-flow principle is valid both in the DS (20) and 
the WS (21),
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then substitution of (21) into (20) yields

 H v H v h v h v⋅ + ⋅ = ⋅ + ⋅∆ ∆ ∆ ∆1 1 2 2 . ............. (22)

Due to the mass-flow principle Hv1=hv2, so dividing the 
left side of Eq. (22) by Hv1 and the right side by hv2 yields
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To formulate the 1/ρ2 as an equation that includes Δv2, 
the definition of curvature and tangential angle are used. At 
the entry side of rolling (Fig. 4(a)), entry-side velocity at 
the centerline of the strip v1 is constant, then the length ds1 

that the strip moves into the roll during infinitesimal time 
dt is constant. When a cambered strip is fed into the roll for 
constant distant ds1, the length of the strip which is fed into 
the roll is different at the work side and drive side.

From Eq. (8), ds1 can be represented as curvature mul-
tiplied by differential tangential angle. Because ρ1 is the 
radius of the circle that approximates the arc that ds1 makes 
(Fig, 4(a)), the differential of tangential angle dθ1 is equal 
to the differential of subtended angle dϕ1:
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When the centerline of the strip is fed distance ds1 into the 
roll, the lengths that strip at the drive side and work side 
feeds into the roll are
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Therefore, velocity difference can be represented as the 
equation that includes dϕ1 as
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From Eqs. (24) and (26), the relation between Δv1 and 1/ρ1 
is obtained as
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Similar analysis can be applied to the delivery side as (Fig. 
4(b)) to yield Eq. (28). Using Eq. (23) we obtain a model 
for 1/ρ2 curvature at the delivery side as

1 1 1 1

2 2

2 2

2

1

1 1ρ
φ

ψ
ρ

ψ
= =

⋅
= ⋅ −






 = −

v

d

dt

v

b v b

v

v b

∆ ∆
∆

∆
. ....... (29)

Compared to Eq. (29), Eq. (1) has scaling terms related 
to the λ, and different signs for the Δψ. The previous stud-
ies assumed that 1/ρ2 of the strip will be influenced by 1/ρ1 
scaled by the λ2 due to the rotation of the strip at the entry 
side ω1. Also they showed that Δv2 is proportional to the Δψ. 
As a result, 1/ρ2 is not only affected by the Δv2 but also by 
1/ρ1. In contrast, the proposed delivery-side curvature model 
is constructed based on the fact that elongation difference 
is the cause of a curved strip. Δv2 is represented as Δv1 and 
Δψ (Eq. (23)). Because Δv1 is related to 1/ρ1 and is already 
included in Δv2, the inconsistency that was shown in Section 
2 is not generated.

4. Results

4.1. Set-up
The FEM is used to build a simulator for the hot roll-

ing process to verify the accuracy of the proposed model 
of delivery-side curvature. To simplify the process and to 
reduce simulation time, the FEM simulator was composed 
only of roll, strip, and pusher using mirror symmetry on the 
lower side of the bar (Fig. 5) with the aid of the commercial Fig. 4. Relation between curvature and velocity difference.
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FEM software DEFROM 3D. The roll was assumed to be a 
rigid body, and the strip was assumed to be a rigid plastic 
body. Consequently, the thickness of the strip was equal 
to the roll gap. The bar was assumed as AISI 1015 carbon 
steel, and yield strength of the material was 325 MPa. Shear 
friction coefficient was set as 0.7.7) More detailed specifica-
tions of the simulator are shown in Table 1.

The simulator implemented 130 steps of simulation: each 
simulation step describes 0.05 s of the rolling process and 
was composed of rolling and tilting processes. During the 
rolling process, the strip was rolled for 0.05 s with a roll 
gap difference which was adjusted during the tilting process.

The DEFORM 3D cannot design a curved strip directly. 

Fig. 5. FEM simulator configuration.

Fig. 6. Width variation after rolling.

For this reason, a strip that had a straight rectangular shape 
was designed and rolled with a predefined history of roll 
gap difference to produce a curved strip that had a wedge. 
Two test bars were produced in this way: Test Bar 1 (Fig. 
7(a)) had an ‘S’ shape and 2.5-mm maximum entry-side 
wedge (Fig. 8(a)). Test Bar 2 (Fig. 7(b)) had a ‘C’ shape and 
maximum 3.5-mm entry-side wedge deviation (Fig. 8(b)).

The two test bars were composed of hexahedral elements: 
301 layers of cross sections composed of 138 nodes. Among 
them, 301 nodes in the mid-width of the upper side were 
regarded as the centerline of the strip and were used when 
calculating its curvature. Locations of the nodes that consist 
centerline of the strip was extracted from the simulator, and 
fitted to a 10th order polynomial using least squares regres-
sion. The curvature of the centerline was calculated from 
this polynomial.

4.2. Results
Because the new model is obtained using the assumption 

that width of the bar is not changed during rolling, we first 
verified width variation after rolling. In simulation, there 
was no restriction in width variation of the bar. The results 
show that width variation is ignorable except head and tail 
part of the bar (Fig. 6). Width of the bar is increased about 7 
mm and the value is less than 0.6% of the bar width. Width 
of the bar at the head and tail part increased up to 50 mm 
and 20 mm, nevertheless, these parts are extremely small 
than other parts.

The accuracy of the new model of curvature (Eq. (29)) 
at the delivery side was verified using FEM simulation and 
compared to the old model (Eq. (1), with ξ as 1) for two 

Table 1. Dimensions of simulator.

Quantity Value

Entry-side thickness 105 (mm)

Delivery-side thickness 85 (mm)

Entry-side velocity 1 500 (mm/s)

Delivery-side velocity 1 853 (mm/s)

Length before rolling 9 166 (mm)

Length after rolling 11 113 (mm)

Width of the strip 1 200 (mm)

Radius of roll 650 (mm)

Width of roll 2 080 (mm)

Shear friction 0.7

Temperature of the strip 1 200°C

Temperature of the roll 20°C

Fig. 7. Centerline of the two Test Bars before rolling.
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Fig. 9. History of roll gap difference.

Fig. 10. Curvature of the two Test Bars before rolling.

Fig. 8. Entry-side wedge of the two Test Bars.

test bars. Two test bars were rolled with histories of roll 
gap difference (Fig. 9). As a result, strips having reasonable 
amount of curvature were generated. Predicted curvatures 
were calculated from the proposed model (Eq. (29)) and the 
old model (Eq. (1)) using measured wedge (Fig. 8), entry-
side curvature (Fig. 10), and delivery-side wedge (Fig. 11). 
Measured and predicted curvatures were compared (Fig. 
12).

For the Test bar 1 (Fig, 12(a)), the old model predicted 
delivery-side curvature well when it was between ±5 × 
10 −6 (mm −1), but beyond this range, error increased up to 
10 −5 (mm −1). In contrast, the value predicted by using Eq. 
(29) was within 5×10 −6 (mm −1) of the measured value. For 
the Test bar 2 (Fig. 12(b)), the curvatures predicted by the 
old model had significant error at two peak points whereas 
those from the new model are very close to the measured 
values.

Even though the old model and the new model differ only 
by the scaling factor λ, the new model predicts the curva-
ture better than does the old model. Especially when the 
measured curvature is large, the old model predicts much 
less curvature than does the new model. This means that the 
old model underestimates the curvature of the strip. These 
simulation results indicate that the proposed model is more 
precise than the old model.

Calculated curvatures oscillate due to the entry-side 
wedge (Fig. 8). The wedge of the strip was measured by 
subtracting the thickness of the drive-side from the work-
side in the same layer. As a result, measurement error was 
generated when the strip did not go straight to the roll.



ISIJ International, Vol. 55 (2015), No. 9

© 2015 ISIJ 1986

Fig. 11. Delivery-side wedge of the two Test Bars. Fig. 12. Curvature calculated by old (Eq. (1), green dash-dot line) 
and new (Eq. (29), red dash line) model; blue line: mea-
sured curvature at the delivery side.

REFERENCES

1) J. W. Rutter: Geometry of Curves, Chapman & Hall/CRC, London, 
(2000), 1.

2) A. Pressley: Elementary Differential Geometry, Springer-Verlag, 
London, (2001), 1.

3) Y. Tanaka, K. Omori, T. Miyake, K. Nishizaki, M. Inoue and S. 
Tezuka: Kawasaki Steel Giho, 16 (1987), 12.

4) K. Nakajima, T. Kajiwara, T. Kikuma, T. Kimura, H. Matsumoto, M. 
Tagawa, Y. Shirai and K. Yoshimoto: Proc. 1981 Japanese Spring 
Conf. for the Technology of Plasticity, JSTP, Tokyo, (1981), 147 (in 
Japanese).

5) T. Shiraishi, H. Ibata, A. Mizuta, S. Nomura, E. Yoneda and K. Hirata: 
ISIJ Int., 31 (1991), 583.

6) J. Lenard: Primer on Flat Roling, Elsevier, London, (2007), 1.
7) E. Ceretti, C. Giardini and L. Giorleo: Int. J. Mater. Form., 3 (2010), 

323.

5. Conclusion

This paper presents a new model that describes the 
change in curvature of strip at the delivery side during hot 
rolling process. An inconsistency of the existing model is 
pointed out. Based on the definition of the curvature, tangent 
vector, and tangential angle, the velocity difference between 
DS and WS of the strip is represented as the curvature of the 
centerline. Assuming that the mass-flow principle is valid 
both in DS and WS, the velocity difference at the delivery 
side is represented as the sum of entry-side velocity dif-
ference and wedge ratio. A new mathematical model for 
curvature of the centerline is represented as an equation that 
includes entry-side curvature and wedge ratio. To evaluate 
the accuracy of the proposed model, an FEM simulator 
for the hot rolling process was developed. The simulation 
results show that proposed model is more accurate than the 
existing model.




