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1  Introduction

Climate in the Arctic and the northern high latitudes is and 
will be strongly affected by human-induced forcing from 
factors such as the increasing concentration of greenhouse 
gases in the atmosphere. For example, due to meridional 
heat transport and positive snow/ice-albedo feedback, 
warming in the high latitudes is more rapid than in lower 
latitudes (Alexeev et  al. 2005; Cai and Lu 2007). Warm-
ing has resulted in reductions in snow cover and sea-ice 
extent, and in thawing permafrost (Vaughan et  al. 2013), 
which in turn is causing wide spread changes in the envi-
ronment, affecting the very vulnerable ecosystems in the 
region. There is strong evidence indicating an anthropo-
genic contribution to the very substantial warming in the 
Arctic land surface temperature over the past 50 years (Gil-
lett et al. 2008; Bindoff et al. 2013; Najafi et al. submitted), 
in intensification of Arctic hydrologic cycle (Peterson et al. 
2002; Min et al. 2008a), and in the reduction of Arctic sea 
ice extent (Min et al. 2008b). Changes in high-latitude cli-
mate affect the global climate. For example, changes in the 
high-latitude water cycle affect the fresh-water influx to the 
Arctic Ocean and northern North Atlantic, potentially alter-
ing ocean convection in the subarctic seas and the strength 
of the Atlantic Ocean meridional overturning circulation. It 
is therefore important to understand the possible of causes 
of observed changes in high-latitude water cycle and pre-
cipitation in particular.

Human influence has been detected in multiple fac-
ets of the global water cycle. Anthropogenic influence 
has been detected in the pattern of annual and seasonal 
precipitation over global land and sea areas (Zhang et al. 
2007; Noake et  al. 2012; Marvel and Bonfils 2013; Ter-
ray et  al. 2012). Observed increases in surface and 
atmospheric humidity have also been robustly attributed 
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to human influence on the climate system (Willett et  al. 
2007; Santer et  al. 2007, 2009). The increase in lower 
tropospheric moisture content enhances poleward atmos-
pheric moisture transport, resulting in an increase in high-
latitude precipitation. Indeed, high latitude precipitation 
has showed an increase in various datasets (e.g., Zhang 
et  al. 2007; Min et  al. 2008a; Noake et  al. 2012; Polson 
et al. 2013) though trends in different datasets differ (Pol-
son et al. 2013). An increase in high latitude precipitation 
is also a robust feature of climate model projected pre-
cipitation response to anthropogenic forcing in the future 
(Scheff and Frierson 2012).

We have previously linked the observed intensification 
of high-latitude land area precipitation to human influence 
using simulations from a limited set of climate models par-
ticipating in the Coupled Model Intercomparison Project 
Phase 3 (CMIP3) and observations with limited spatial cov-
erage ending in year 1999 (Min et al. 2008a). These models 
underestimated the observed changes in high-latitude land 
area precipitation, reducing confidence in the understand-
ing of the causes of the observed changes.

It is now appropriate to revisit the detection and attribu-
tion analysis of Min et al. (2008a) because essential data for 
the detection analysis have been improved. These include 
observations for the characterization of past changes and 
model simulations for the estimation of climate response to 
external forcing and internal variability. Better availability 
of Russian climate data, especially for more recent years, 
substantially improves spatial and temporal coverage of 
observational data over the high latitudes. The simulations 
conducted with the climate models participating in the 
Coupled Model Intercomparison Project Phase 5 (CMIP5, 
Taylor et  al. 2012) are now also available. CMIP5 simu-
lations have several advantages relative to their CMIP3 
counterparts: CMIP5 models generally have higher reso-
lution than their predecessors, and they generally include 
a more complete representation of physical and biogeo-
chemical climate processes; CMIP5 simulations cover 
the more recent period; and there are many more models, 
providing more robust estimates of climate responses to 
external forcings as well as better quantification of internal 
variability. The main objective of this paper is therefore to 
revisit the detection and attribution analysis of our earlier 
study (Min et  al. 2008a) using more recent and spatially 
complete observational data and CMIP5 simulations. We 
pay particular attention to the robustness of the results by 
using various sensitivity tests. The remainder of the paper 
is structured as follows: we describe observational and cli-
mate model simulated precipitation data in Sect. 2. Detec-
tion methods and data processing procedures are detailed in 
Sect. 3. The main results are presented in Sect. 4 together 
with results from sensitivity tests. Conclusions and discus-
sion are given in Sect. 6.

2 � Data

2.1 � Observational data

The limited availability of observational data both in space 
and time is a significant challenge for studying changes in 
high-latitude and Arctic precipitation. Coverage from the 
existing global precipitation data sets such as the Global 
Historical Climate Network monthly precipitation data 
version 2 (Peterson and Vose 1997) is very limited over 
the high latitudes especially for the more recent years. For 
example, the GHCN dataset includes only 16 Canadian sta-
tions and 50 Russian stations in 2005. Precipitation trends 
computed from different datasets differ due to differences 
in station coverage and in data processing methods (Noake 
et al. 2012). To reduce these uncertainties, we compile sta-
tion precipitation data from various sources to produce a 
gridded product for the region with improved spatial and 
temporal coverage that is based on as many stations as 
possible.

We used monthly precipitation data for more than 450 
Canadian stations from the Second Generation Adjusted 
Precipitation dataset (Mekis and Vincent 2011). We also 
extracted long-term Alaskan station data from NOAA’s 
National Climate Data Center (NCDC) US monthly precip-
itation dataset. This data set contains 737 Alaskan stations, 
but most have only very short records; we therefore use 82 
Alaskan stations with long-term records that satisfy the cri-
teria described below.

The GHCN monthly precipitation data set has Rus-
sian data for about 200 stations until 1995, but this num-
ber drops to about 50 stations after 1996. For this rea-
son, we use monthly precipitation data from the Russian 
Met Service, available online at http://meteo.ru/english/
climate/precip.php, in place of GHCN Russian data. This 
Russian dataset consists of 518 stations with data starting 
from 1966. The dataset providers do not include monthly 
data prior to 1966 due to data homogeneity issues. Grois-
man and Rankova (2001) indicated that in 1966–1967, the 
Hydrometeorological Services of the former Soviet Union 
introduced a wetting correction to each nonzero precipita-
tion measurement (0.2 mm for liquid and 0.1 mm for fro-
zen precipitation) when at least one drop was extracted 
from the gauge to account for light precipitation “to the last 
drop”. This correction resulted in a substantial increase in 
the number of precipitation days and affected annual total 
precipitation. This inhomogeneity in Russian precipita-
tion data is difficult to remove because the number of trace 
events in different years is hard to determine. Fortunately, 
no documented changes in data measurement and process-
ing techniques have occurred subsequently, and thus time 
series of regionally averaged precipitation totals after that 
year can likely be considered to be homogeneous even if 
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individual station data may not be homogeneous. Regional 
averaging over large domains, as conducted in this study, 
would likely include offsetting effects from inhomogenei-
ties causing individual stations to either over- or under-
report precipitation due to changes in station location. This 
dataset offers a substantial improvement in coverage over 
the GHCN dataset, especially after the late 1990s. We also 
used data from 4 high-latitude Chinese stations from the 
GHCN.

High latitude European data are obtained from the 
European Climate Assessment and Dataset (ECA&D, 
http://www.ecad.eu). The ECA&D team collects, quality 
controls, and tests data homogeneity for daily observa-
tions at meteorological stations throughout Europe and the 
Mediterranean. The team receives data from 62 countries 
in the region. The number of stations in the ECA&D data-
set is about 7000 for monthly precipitation amounts, with 
best data coverage between 1960 and 2000 (Klok and Klein 
Tank, 2008). The ECA&D dataset also contains some Rus-
sian stations, which are excluded because we use station 
data directly available from the Russian Meteorological 
Service.

Among all station data used in this study, only Cana-
dian data have been adjusted to correct wind under-catch. 
Since much of the high-latitude winter precipitation falls 
as snow, and as temperature has been increasing, precipita-
tion data that are not corrected for wind under-catch may 
contain small spurious upward trends related to changes in 
catch efficiency. This would occur because the relative fre-
quency of liquid rather than frozen precipitation would rise 
with increasing temperature, thereby improving the catch 
efficiency of the gauge. However, the adjustments that have 
been made to Canadian data do not change annual precipi-
tation trends much because the transition season, i.e., a sea-
son when precipitation can fall as rain or snow, is short and 
contributes only a small fraction of the total precipitation. 
Given this, we do not expect the changes in wind under-
catch would significantly alter precipitation trends reported 
here.

In this analysis, we use stations located in north of 50°N 
since much of precipitation received in this region dis-
charges to the Arctic basin (Peterson et al. 2002). We also 
conducted the analyses using the spatial domain of Min 
et al. (2008a), i.e., stations that are located north of 55°N, 
and found that results were not sensitive to the choice of 
the southern boundary of the spatial domain. As Russia 
covers more than a third of the spatial domain and Russian 
precipitation data are considered to be homogeneous only 
from 1966, we restrict our analysis to the time period start-
ing from 1966. Since most historical climate simulations 
end in 2005, the time period used in this study is therefore 
1966–2005. Overall, a total of 3832 stations from various 
data sources are compiled and used in this study (station 

selection criteria are discussed in Sect.  3.1). Compared 
with the data used in (Min et al. 2008a), which was based 
on GHCN monthly precipitation combined with adjusted 
Canadian precipitation data, this compilational most tri-
ples the number of available stations, providing substantial 
improvements in spatial coverage (Figs. 1, 2).

2.2 � Climate model simulations

We use monthly precipitation totals from the CMIP5 
archive to estimate precipitation responses to different 
external forcings and to estimate natural internal variabil-
ity. At the time of analysis, the following simulations were 
available and are used in this study: 158 simulations con-
ducted with 32 models under historical forcing (ALL) that 
includes both natural and anthropogenic forcing combined, 
59 simulations conducted with 14 models under histori-
cal natural forcing only (NAT), 41 simulations conducted 
with 8 models under historical anthropogenic forcing only 
(ANT), 45 simulations under historical greenhouse gas 
forcing only (GHG) from 11 models, 33 simulations under 
historical anthropogenic aerosol forcings only (AA) from 
7 models and 15 simulations under land use forcing only 
(LU) from 3 models. All of the forced simulations start in 
the late nineteenth century and end in the early twenty-
first century. Over 24000 model-years of pre-industrial 
control (CTL) simulations conducted with 48 models are 
also available from the Program for Climate Model Diag-
nosis and Intercomparison (PCMDI) website. The number 
of simulations used from each model for different forcing 
experiments is listed in the Table  1. Different horizontal 
resolutions have been used by different models; we inter-
polated monthly precipitation from individual models to 
the 5° ×  5° grid of the observations using a simple dis-
tance weighting average remapping method implemented 
in the Climate Data Operators (https://code.zmaw.de/
projects/cdo) prior to the analyses. While other interpo-
lation methods could be used, the choice of interpolation 
method should not have much impact on the long-term 
variation of large-region precipitation averages and thus 
should not affect final results.

3 � Methods and data processing

3.1 � Data processing

We conduct detection and attribution analyses based on the 
space–time evolution of observed precipitation amounts, 
considering both annual and two half-year amounts for 
winter (from October to March) and summer (from April 
to September). Anomalies of annual and half-year amounts 
are computed for individual stations as the average of the 

http://www.ecad.eu
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available monthly anomaly values if there are at least 7 or 
4  months of data within the year or the half-year respec-
tively. Estimates of annual or half-year precipitation anom-
alies were obtained by multiplying the annual or half-yearly 
averages of monthly values by 12 or 6 respectively. Station 
anomalies were computed relative to the 1966–1995 mean 

for stations that have at least 20 years of non-missing data 
during this period, and were gridded at the 5° × 5° latitude-
longitude resolution by averaging available station anomaly 
values within each grid box. Grid box values were aver-
aged into non-overlapping 5-year mean annual and half-
year precipitation anomalies for 1966–1970, 1971–1975, 
to 2001–2005. A 5-year mean grid box value is only com-
puted if annual or half-year values are available for the grid 
box for at least three of the five years. Grid boxes that have 
at least 6 non-missing five-year means during 1966–2005 
are retained for the subsequent analysis. There are 256 
such grid boxes north of 50°N (Fig. 1). Among the 256 grid 
boxes, 207 are located north of 55°N, giving 20 % increase 
in number of grid boxes compared toMin et  al. (2008a) 
who had only 171 grid boxes in the region.

As will be described further in Sect. 3.2, we assume that 
observed precipitation change consists of an externally 
forced component plus additive “noise” that reflects the 
effects of natural internal variability in the climate system. 
Detection and attribution analysis is usually based on a low 
dimension description of observed changes so that there 
is enough model control run output to estimate the covari-
ance structure of this noise. Thus the dimensionality of the 
space in which the analysis is conducted is typically much 
smaller than the space–time dimensionality of the origi-
nal raw data. Dimension reduction involves filtering data 

Fig. 1   Left: spatial distribution of long-term precipitation stations. 
Long-term stations (with at least 20 year non-missing values during 
1966–1995) used in this study only are marked as red dots. While 
those used in Min et  al. (2008a) only are marked as blue dots, and 
stations used in both studies are marked as black dots. Right spatial 

distribution of grid boxes with sufficient data for the analyses. The 
number of stations within a 5° × 5° longitude by latitude grid box is 
marked by a numerical value; grid boxes with more than 5 stations 
are marked with asterisks

Fig. 2   Time series of the number of stations with monthly reports 
used in this study (black) and the GHCN combined with Canadian 
stations (blue) for the period 1966–2005. Only long-term stations that 
have at least 20 year data in the 1966–1995 base period are consid-
ered in both datasets
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in space and/or time. There is currently not a commonly 
accepted objective method to perform dimension reduction.

Here, we reduce temporal dimension by using 5-year 
mean values. We reduce the spatial dimension by com-
puting area-weighted averages over different sizes of land 
regions. These includes (1) one region, i.e., considering the 
entire spatial domain as one region, (2) two regions, i.e., 
dividing the spatial domain into southern (50°N–60°N) and 
northern (north of 60°N) subdomains, (3) three regions, 
dividing the spatial domain into northern North America 
(40°W–180°W, NA), western Eurasia (30°W–60°E, EU) 
and eastern Eurasia (60°E–180°E, AS), 4) six regions, fur-
ther sub-dividing each of these three regions into southern 
(50°N–60°N) and northern (north of 60°N) sub-regions. 
That is, our detection and attribution analysis is conducted 

on space–time series of non-overlapping 5-year means for 
1966–2005 over the land regions in four different configu-
rations that are designated by the number of sub-regions (1, 
2, 3 or 6 respectively). This produces descriptions of high-
latitude precipitation change of 8, 16, 24 and 48 space–time 
dimensions respectively.

The forced response, or signal, corresponding to an 
external forcing is estimated by calculating the multi-model 
ensemble mean under that forcing, computed by first cal-
culating ensemble means from individual models and then 
averaging over available models. Model-simulated monthly 
precipitation data under various external forcings, after 
interpolation onto the common 5° ×  5° grid, are masked 
using the availability of the gridded observed precipitation 
data to mimic the availability of observations. Annual and 

Table 1   List of models, 
experiments, and ensemble 
sizes available for this analysis

The experiments include 
simulations under historical 
forcing (ALL), historical 
anthropogenic forcing only 
(ANT), historical natural 
forcing only (NAT), historical 
greenhouse gas forcing only 
(GHG), historical anthropogenic 
aerosol forcing only (AA) and 
land use forcing only (LU). 
Numbers in the parentheses are 
the ensemble sizes of extended 
simulations that end in year 
2012

Model ALL ANT NAT GHG AA LU

ACCESS1-3 3

Bcc-csm1-1 3 (3)

Bcc-csm1-1-m 3 (3)

CNRM-CM5 10 (10) 10 6 (6) 6

CSIRO-Mk3-6-0 10 5 5 (5) 5 5

CanESM2 5 (5) 5 (5) 5 5 5

CCSM4 6 4 3

CESM1-CAM5-1-FV2 4

CESM1-CAM5 3

CESM1-FASTCHEM 3

EC-EARTH 7 (5)

FGOALS-g2 5 3

FIO-ESM 3

GFDL-CM2p1 10 (10)

GFDL-CM3 5 3 3 3 3

GFDL-ESM2G 3

HadCM3 10

HadGEM2-ES 4 (3) 4 (4) 4

IPSL-CM5A-LR 6 3 3 (3) 3

IPSL-CM5A-MR 3 3 (3) 3

MIROC5 5 (5)

MIROC-ESM 3 3 3

MPI-ESM-LR 3

MPI-ESM-MR 3

MRI-CGCM3-p1 3 (3)

NorESM1-M 3 (3)

GISS-E2-R-p1 6 (5) 5 (5) 5 (5) 5 5 5

GISS-E2-R-p2 5

GISS-E2-R-p3 6 (6) 5 (5) 5 (5) 5

GISS-E2-H-p1 5 (5) 5 (5) 5 (5) 5 5 5

GISS-E2-H-p2 5

GISS-E2-H-p3 5 5 (5) 5 (5) 5

SUM (models) 158 (32) 41 (8) 59 (14) 45 (11) 33 (7) 15 (3)
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half-year precipitation anomalies relative to 1966–1995 
are then computed in a way similar to that for the obser-
vations. Figure  3 shows the 5-year mean time series of 

annual precipitation anomalies (relative to the 1966–1995 
climatology) averaged across the northern high-latitude 
land area from observations and multi-model simulations. 
There is a good match in the long-term changes of precipi-
tation anomalies between observations and the multi-model 
ensemble-mean ALL forcing response, but greater discrep-
ancy between observations and the multi-model ensemble 
mean NAT forcing response.

Figure  4 shows the spatial distribution of annual pre-
cipitation trends computed from observations and from 
the ensemble mean of model-simulated responses to ALL, 
ANT, and NAT forcings. Observations show a marked 
increase over the high-latitude land areas except in east-
ern Siberia and the Canadian Prairies. Trends in model-
simulated responses to ALL and ANT forcings are largely 
homogeneous over space, with very little spatial variation 
in magnitude. Trends in the NAT forcing response are of 
very small magnitude and of mixed sign across the domain. 
The fact that model simulated trends in ALL and ANT 
are spatially homogeneous means that spatially averaging 
data over large domains would enhance the signal to noise 

Fig. 3   Five-year mean precipitation anomalies (in mm, relative to 
1966–1995) in the northern high-latitudes from observations (black 
line) and multi-model ensembles under “ALL” forcing (red line), 
“ANT” forcing (blue line) and “NAT” forcing (green line). Shading 
shows the 5–95 % ranges of the individual model simulations

OBS ANT

ALL NAT

Fig. 4   Annual precipitation trends (mm/year) during 1966–2005 computed from the observations (OBS) and model simulated responses to 
ALL, ANT, and NAT forcings. Trends were computed only for grid boxes with at least 30 years of data
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ratio. On the other hand, conducting detection and attribu-
tion analyses with some spatial structure provides greater 
opportunities to evaluate model-simulated internal variabil-
ity via the residual consistency test (discussed in Sect. 3.2), 
thereby potentially increasing confidence of detection 
results.

The estimates of internal variability required in the 
detection analysis are obtained from within-ensemble dif-
ferences as well as pre-industrial control simulations. 
Forced simulations are typically available for the entire 
twentieth century, so we also make use of within-ensem-
ble differences for the earlier part of the twentieth century 
simulations for estimating internal variability. The monthly 
precipitation data from forced simulations for 1926–1965 
are processed in the same way as the simulations for 
1966–2005, with 1926 treated as 1966, 1927 and 1967, 
and so on. In this way, considering both the 1926–1965 
and 1966–2005 periods, the forced ALL, NAT, ANT, GHG, 
AA, and LU simulations yield a total of 316, 118, 82, 90, 
66, and 30 40 year chunks of within-ensemble differences 
respectively. When using these differences to estimate the 
covariance matrices of internal variability, we account for 
the fact that a given ensemble of size n provides only n-1 
independent realizations of within ensemble differences. 
Pre-industrial control simulations are also divided into mul-
tiples of 40-year chunks, with chunks shorter than 40 years 
discarded. There are 604 40 year chunks in total from con-
trol simulations. When using the control run chunks, we 
also account for the reductions, by one, in the numbers of 
independent realizations that come about because control 
run chunks from different control simulations are treated 
as ensembles. Thus, when combined, 1306 40 year chunks 
of noise data are available, each of which is processed as 
the gridded observations to obtain space–time averages of 
anomalies appropriate for the different domain configura-
tions that are considered. This very large sample of model-
simulated internal variability provides an unprecedented 
opportunity to confidently estimate the covariance struc-
ture of internal variability, even in the highest dimensional 
(48-dimension) analysis space considered in this studied.

3.2 � Detection methods

Space–time series of observations and model simulated 
precipitation responses to external forcings (the “signals”) 
are first compared qualitatively by computing correlation 
coefficients between observations and simulations. The 
statistical significance of the correlations is determined 
by comparing them with correlations between observa-
tions and each of the 1306 chunks of noise data. This sim-
ple method does not optimize the signal-to-noise ratio nor 
provide a quantitative measure of the magnitude of model-
simulated response relative to that in the observations. 

Nevertheless, it provides an easy-to-understand view of the 
similarity between observed and model-simulated changes. 
Santer et  al. (1995) used a correlation-based method to 
conduct detection and attribution analysis for temperature 
changes.

The generalized linear regression based optimal finger-
print method (Allen and Stott 2003) is used to quantify 
the magnitude of model-simulated responses to observed 
changes. This method establishes a linear relationship 
between the observations (y) and the climate responses 
to the external forcings (X) such that y = (X − υ)β + ε 
where β is a vector of regression coefficients or scaling fac-
tors, ε is the regression residual representing internal vari-
ability, and ν represents the effect of internal variability that 
remains in X since multi-model averaging of forced runs is 
not able to remove all vestiges of internal variability. In our 
analysis, vector y and the columns of X have dimension 8, 
16, 24 or 48 depending upon whether we account for the 
time evolution of regionally averaged 5-year mean pre-
cipitation in 1, 2, 3 or 6 Northern Hemisphere subdomains 
north of 50°N. We estimate β using the total least square 
method of Allen and Stott (2003). As the number of runs 
from different models may differ, the variance in the multi-
model ensemble mean X due to noise, that is, the variance 
of ν, is not equal to the internal variability divided by the 
total number of runs used. It is the average of variance from 
individual model ensemble mean.

We conduct single-signal and two-signal analyses 
in which one and two response patterns are considered 
respectively. The response patterns are estimated from 
multi-model ensemble means computed from all available 
models under the ALL, ANT, and NAT forcings to detect 
the presence of response to a particular forcing in the 
observations. Two-signal analyses are conducted to exam-
ine whether the responses to different forcings can be sepa-
rately detected. In this case, the response patterns are esti-
mated from multi-model ensemble means computed from 
8 GCMs that produced both ANT and NAT simulations. 
Alternatively, ANT could have been estimated as the dif-
ference between ALL and NAT as determined from the full 
ensemble of models that provided ALL and NAT simula-
tions. However, this would have introduced the possibility 
that some features of the estimated ANT could have been 
due to differences in the collections of models participat-
ing in the ALL and NAT ensembles. Using signals from 8 
common models avoids that possibility. Two independent 
estimates of the internal variability covariance matrix ĈN1 
and ĈN2 required for optimization and uncertainty analysis 
(Hegerl et al. 1996) are estimated from the noise data con-
sisting of within ensemble differences and pre-industrial 
control simulations constructed as described in Sect.  3.1. 
ĈN1 and ĈN2 are each estimated from 653 40 year chunks 
of noise data, with half of the available control run chunks 
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and within-ensemble differences allocated to each sample 
of noise chunks.

Optimal detection and attribution analysis very often 
requires a reduction of dimensionality. This is typically 
done by projecting both observations and simulations onto 
leading empirical orthogonal functions (EOFs) of inter-
nal variability and using the residual consistency check to 
determine the number of EOFs to be retained in the analy-
sis (Allen and Tett 1999, Allen and Stott 2003). Because 
we have a relatively small number of dimensions (i.e., 
8 – 1 = 7 for the one-region series and 6 × (8 − 1) = 42 
for six-region series) and large samples of noise data, our 
analysis is performed in the full space that is spanned by 
the observations. Note that one temporal degree of free-
dom is lost in each region because all data are expressed 
as anomalies. Consequently, we do not require a subjective 
determination of EOF truncation point. Results of the resid-
ual consistency tests (Allen and Stott 2003) do not suggest 
inconsistency between the model simulated variability and 
the regression residual that is obtained.

We also perform some sensitivity tests to understand dif-
ferences between our results and those reported in Min et al. 
(2008a). There are many differences between the two stud-
ies, including the differences in the analysis period, space–
time coverage of observational data, and in the climate 
models used to estimate signals and internal variability.

4 � Detection results

Table 2 summarizes the correlation coefficients between the 
observations and the model-simulated responses, and their 
corresponding statistical significance levels. Results show 
that for annual, winter, summer, or two half-year (winter-
summer) combined precipitation, the model-simulated 
responses to ALL or ANT forcing are generally detected in 
the observations at below the 5 % significance level regard-
less of spatial configuration. One exception to this general 
finding is that ALL was detected in winter precipitation at 
the 6.3 % significance level when the computation includes 
a 2-region domain. NAT is not detected in either annual or 
winter precipitation, even at the 10  % level. Response to 
ALL and ANT is not generally detected in summer precipi-
tation. Response to NAT seems to be sometimes detectable 
but the detection is not robust across different regional con-
figurations. Overall, the use of the correlation-based, non-
optimal method is able to produce robust detection of pre-
cipitation responses to ALL and ANT in annual and winter 
precipitation with different spatial configurations.

Figure 5 shows scaling factors and their 90 % confidence 
intervals for single-signal detection of ALL and ANT under 
different spatial configurations. Results shown here are 
based on full rank estimates of the covariance matrix. The 

residual consistency check does not show evidence of incon-
sistency between the regression residual and model-simu-
lated variability in any configuration. The scaling factors for 
ALL for annual or two half-year combined and summer pre-
cipitation are significantly greater than zero (5 % one-sided 
test) and the 90 % confidence intervals on the scaling factors 
include 1. Thus the combined effect of anthropogenic and 
natural forcings is robustly detected in the observed annual 
and summer precipitation, and is consistent with observed 
changes. The effect of ALL on winter precipitation is also 
detectable, but not robustly. The 90 % confidence intervals 
of the scaling factors for ANT and annual precipitation all 
lie above zero, but in some cases have upper bounds that 
are less than one. This indicates that the model-simulated 
responses to ANT forcing may be larger than the observed 
annual precipitation change. ANT seems to be detectable in 
summer and winter precipitation as well, but not robustly.

Figure  6 displays the 90  % confidence regions and the 
corresponding marginal confidence intervals from the 
two-signal detection analyses based on model simulated 
responses to ANT and NAT forcings by 8 GCMs for the 
5-year non-overlapping means of annual or two half-year 

Table 2   The correlations between observed precipitation amounts 
and model simulated responses

Shown in parentheses is the highest significance level (in percent) 
at which a 1-sided test of the null hypothesis of zero correlation can 
be rejected as determined by a Monte-Carlo method using the 1,306 
chunks of noise data as pseudo observations. Note that smaller values 
indicate greater significance. The correlations significant at the 5 % 
level based on one-sided test are shown in bold

ALL ANT NAT

1-region

Annual 0.86 (0.4 %) 0.88 (0.2 %) 0.30 (27.1 %)

Winter 0.62 (6.3 %) 0.70 (3.1 %) −0.06 (54.3 %)

Summer 0.71 (3.0 %) 0.57 (7.4 %) 0.66 (4.1 %)

Winter + Summer 0.68 (0.2 %) 0.69 (0.1 %) 0.15 (32.4 %)

2-region

Annual 0.73 (0.5 %) 0.72 (0.6 %) 0.29 (24.0 %)

Winter 0.64 (2.8 %) 0.71 (1.5 %) 0.02 (48.2 %)

Summer 0.64 (2.4 %) 0.57 (4.4 %) 0.31 (19.5 %)

Winter + Summer 0.65 (0.2 %) 0.65 (0.2 %) 0.14 (31.2 %)

3-region

Annual 0.50 (1.6 %) 0.41 (4.8 %) 0.28 (12.9 %)

Winter 0.47 (3.5 %) 0.46 (3.8 %) 0.08 (38.5 %)

Summer 0.31 (7.7 %) 0.24 (12.9 %) 0.33 (6.7 %)

Winter + Summer 0.41 (1.0 %) 0.36 (2.1 %) 0.20 (14.3 %)

6-region

Annual 0.32 (2.9 %) 0.32 (3.1 %) 0.21 (11.5 %)

Winter 0.41 (1.2 %) 0.37 (1.8 %) 0.06 (37.9 %)

Summer 0.21 (8.0 %) 0.16 (14.9 %) 0.31 (2.4 %)

Winter + Summer 0.31 (0.3 %) 0.26 (1.8 %) 0.17 (9.7 %)
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combined, winter and summer half-year precipitation with 
different spatial configurations. Results based on the model-
simulated responses to ALL and NAT are very similar (not 
shown). For annual and winter precipitation, the influence of 
ANT can be detected in the 1-and 2-region analysis configu-
rations, but the response to NAT is not detected. For summer 
precipitation, NAT is detected in the 6-region configuration, 
but ANT is not detected. Two-signal analyses conducted 
using multi-model ensemble means computed from all avail-
able model runs produce essentially the same results. Over-
all, the tenuous NAT detection results should not be consid-
ered to be reliable given the inability to detect NAT in annual 
means and unphysical scaling factor estimates for winter 
NAT signals. As noted previously, the estimated NAT signals 
contain little spatial or temporal structure, and therefore pro-
vide little in the way of detection power. Higher dimensional 
analyses (e.g., using 3-year or 1-year annual and half-year 
means rather than 5-year means, and therefore requiring 
higher dimension detection spaces) also fail to detect NAT 
(not shown) and tend to deteriorate detection results.

Overall, the analyses based on 5-year mean precipita-
tion with different spatial dimension reductions indicate 
that the simulated response to combined external forcing 

(ALL) on high-latitude precipitation can be detected in 
annual and summer half-year accumulations. The scaling 
factor is in general consistent with one, indicating a con-
sistency between observations and the model simulated 
response. There is also some evidence of the influence of 
ALL in winter precipitation. The detection result on annual 
precipitation accumulations is robust to the use of differ-
ent detection methods (e.g., optimized versus unoptimized) 
and to different ways of considering spatial information. 
The influence of anthropogenic (ANT) forcing can also be 
detected in annual precipitation. Two-signal detection anal-
ysis seems to be able to detect ANT forcing in annual and 
winter precipitation, and possibly NAT in summer precipi-
tation, but the detection results are not as robust.

We repeated the detection analyses using 8- and 10-year 
mean precipitation anomalies. Results are very close to 
those of 5-year mean series. One exception is that NAT is 
not detectable in either single-signal or two-signal analyses 
(not shown). As some models extended their simulations 
to 2012 and human influence is expected to increase with 
time, we also conducted an analysis for the period 1966–
2012. Fewer model runs available for the signal estimation 
for this period (as indicated in the parentheses in Table 1); 

Fig. 5   Scaling factors and their 
5–95 % uncertainty ranges for 
ALL (upper panel), ANT (lower 
panel) in single-signal analyses 
for annual, two half-year 
combined, winter, and summer 
precipitation and for different 
spatial configurations
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in total, 66 historical ALL runs are available from 13 mod-
els, together with 35 ANT runs from 6 models and 46 NAT 
runs from 10 models. In this case, detection analysis is 
conducted in 6-year non-overlapping mean series with the 
last data values being average from 5-year. Results from 
the extended analysis are essentially the same. As an exam-
ple, Fig. 7 shows scaling factors and their 90 % confidence 
intervals for single-signal detection of ALL and ANT under 
different spatial configurations.

5 � Comparison with earlier results

Min et  al. (2008a) concluded that anthropogenic forc-
ing from greenhouse gases and sulfate aerosols combined 

had contributed to the observed high-latitude precipitation 
increase during the latter half of the twentieth century and 
that climate model simulated precipitation responses to 
anthropogenic forcing are weaker than in the observations. 
The updated analyses discussed here confirm Min et  al. 
(2008a)’s finding with regard to the detection of anthro-
pogenic influence in northern high-latitude precipitation. 
However, there is also a notable difference with regard to 
the magnitude of model-simulated changes: the Min et al. 
(2008a) results suggested models underestimated observed 
changes by a factor of 2 or more, whereas this study 
shows that model simulated responses are consistent with 
observations, if not too large. Many aspects are different 
between the two studies, including different model simu-
lations, sampling uncertainties in the estimation of model 

Reg Annual Winter+Summer Winter Summer

1

2

3

6

Fig. 6   Scaling factors and their joint 90 % uncertainty regions from two-signal analyses with model simulated responses to ANT and NAT. The 
marginal 5–95 % confidence intervals for the scaling factors are also shown. Scaling factors are shown in green when the forcing is detected
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responses and internal variability, different space–time cov-
erage of observational data, and different data processing 
procedures. All these factors could have contributed to the 
difference in the conclusions between the two studies, as 
we will briefly discuss in the following.

5.1 � CMIP3 and CMIP5 simulations

We compare the average precipitation responses to ALL, 
ANT, and NAT forcings over all land grid boxes north 
of 50°N as simulated by the CMIP3 models used in Min 
et al. (2008a) and by the CMIP5 models used here. In each 
case, we compute the time series of non-overlapping 5-year 
mean annual precipitation anomalies relative to the 1961–
1990 climatology for individual runs, then average these 
individual runs to obtain individual model ensembles, and 
finally compute multi-model ensemble averages. Figure  8 
displays the time series for 1951–2000, including the multi-
model ensemble means and model simulated spread (5–
95 % ranges). Overall, long-term trends and model spread 
from CMIP5 models are very similar to those from CMIP3 
models. The large-scale patterns of trend for ALL and ANT 
between CMIP3 and CMIP5 simulations are generally 

similar. Judging by these, similarities in the precipitation 
responses to external forcings, differences between CMIP3 
and CMIP5 models does not appear to be an important con-
tributor to the difference in the scaling factors.

5.2 � Sampling uncertainty

Sampling uncertainty in covariance estimation can have 
profound impacts in the estimation of scaling factors and 
their confidence intervals as larger numbers of independent 
noise data samples are associated with smaller sampling 
errors (Ribes and Terray 2013). Zhang et  al. (2007, Table 
S2) showed that the use of different combinations of noise 
data for optimization and testing may result in different 
scaling factors and their associated confidence intervals. 
Noise data that were used to estimate covariance matrices 
in Min et  al. (2008a) were relatively limited, with about 
200 samples in contrast to 1,306 samples available for this 
study.

To provide some understanding of the magnitude of 
sampling uncertainty in the scaling factors due to sam-
pling errors in covariance matrix estimation, we conducted 
detection analyses using the ALL signal computed from the  

Fig. 7   Same as Fig. 5 but using 
data over 1966–2012
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32 CMIP5 models with different noise samples. In one 
case, we use randomly chosen samples of 653 noise data 
segments for optimization and the remaining noise data for 
testing. In another case, we use randomly chosen samples 
of 100 noise data segments for optimization and additional 
randomly chosen samples of 100 noise data segments for 
testing. Both cases were repeated for 1,000 times. Results 
are summarized in Fig.  9. As expected, sampling uncer-
tainty in both the scaling factor and confidence interval 
width are much larger when covariance matrices are esti-
mated from small 100-chunk noise samples. However, the 
90th percentile of scaling factors estimated with 100 sam-
ples of noise data is still much smaller than those obtained 
in Min et al. (2008a), which suggests that sampling errors 
in the covariance matrix estimation is also not a plausible 
explanation for the difference in scaling factors between the 
two studies. Figure 9 also shows that our annual detection 
result (based on the 3-region configuration) is very robust 
against sampling uncertainty in covariance estimation; the 
5th percentile of the lower bound of the 90 % confidence 
intervals of the scaling factor is still above zero.

5.3 � Data coverage and processing procedures

The time periods (1950–1999) used in Min et  al. (2008a) 
and spatial coverage of data used in the two studies are both 
different. This would have an effect on the scaling factor 
estimate though the size of this effect is difficult to quan-
tify. The main results shown in Min et al. (2008a) are based 

Fig. 8   Five-year mean northern high-latitude (north of 50°N) land 
precipitation anomalies (in mm, relative to 1961–1990) simulated by 
all CMIP5 models (green line) that are used in this study and simu-
lated by CMIP3 models that were used in Min et al. 2008a (red line). 
Thick lines represent multi-model ensemble means while shading 
shows the 5–95 % ranges from relevant ensembles

Fig. 9   Influence of sampling uncertainty in the covariance estimation 
on the scaling factors and their lower 5 % and upper 95 % confidence 
bounds for ALL using 3-region 5-year mean annual precipitation. The 
median scaling factor, median 5  % lower bound and median 95  % 
upper bound for 1,000 re-samplings of the noise data are shown, 
together with the 5–95 % range of the 1,000 realizations of each of 
these three statistics. Red bars are for the results based on 653 piece 
samples of noise data while green bars describe results based on 100 
piece samples of noise data. See text for additional details
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on the projection of both observations and model simulated 
signals onto the first several leading space–time EOFs of the 
model simulated internal variability. This data processing 
procedure is different from what has been conducted here. 
Min et al. (2008a) also showed, in the supplementary infor-
mation, a detection result based on precipitation averaged 
over the entire domain. They found in that analysis that the 
model simulated response was consistent with the observa-
tions. This finding is consistent with the results that have 
been reported here. It therefore appears that differences 
in data pre-processing procedures play an important role. 
Combined with the different time periods, they can produce 
a large difference in scaling factor, possibly explaining dif-
ferences between Min et al. (2008a) and this study.

6 � Conclusion and discussion

Using an optimal fingerprinting method, we have compared 
annual and semi-annual precipitation from observations 
and CMIP5 simulations for 1966–2005 over northern high-
latitude land north of 50°N. We conclude that the multi-
model simulated responses to the effects of anthropogenic 
forcing or anthropogenic and natural forcing combined are 
consistent with observed changes. These detection results 
are robust to the use of a correlation-based method and 
the optimal fingerprint method. We also find that the influ-
ence of anthropogenic forcing may be separately detected 
from that of natural forcings, albeit less robustly, and that 
observed changes may be attributable to anthropogenic 
forcing.

To avoid potential data inhomogeneity due to changes 
in observing practices in the former USSR and to have as 
much spatial coverage as possible, we have compiled high 
quality station data from different sources and restricted 
our analysis primarily to 1966–2005. This provides much 
better data coverage over Northern Hemisphere high lati-
tude land areas when compared with our earlier study 
(Min et al. 2008a). The model simulations for the estima-
tion of precipitation responses to external forcings and 
internal variability are completely different from those 
used in Min et al. (2008a). Details in data analysis proce-
dures are also different from those used earlier. Yet, the 
main finding of Min et  al. (2008a) that influence of com-
bined effect of natural and anthropogenic forcings, or of 
anthropogenic forcing alone, can be detected in northern 
high-latitude land precipitation, is confirmed. In contrast 
with Min et  al. (2008a), who suggested that models may 
have underestimated the observed precipitation response to 
external forcing, this study shows that the model simulated 
response is consistent with observations, if not too large. 
The difference is unlikely due to the use of different model 
simulations but is more plausibly due to differences in the 

space–time coverage of observations and in the details of 
data processing procedures.
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