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Abstract: We propose a state-of-charge (SOC) estimation method for Li-ion batteries that combines
a fuzzy sliding mode observer (FSMO) with grey prediction. Unlike the existing methods based on
a conventional first-order sliding mode observer (SMO) and an adaptive gain SMO, the proposed
method eliminates chattering in SOC estimation. In this method, which uses a fuzzy inference
system, the gains of the SMO are adjusted according to the predicted future error and present
estimation error of the terminal voltage. To forecast the future error value, a one-step-ahead terminal
voltage prediction is obtained using a grey predictor. The proposed estimation method is validated
through two types of discharge tests (a pulse discharge test and a random discharge test). The SOC
estimation results are compared to the results of the conventional first-order SMO-based and the
adaptive gain SMO-based methods. The experimental results show that the proposed method not
only reduces chattering, but also improves estimation accuracy.

Keywords: lithium-ion battery; state-of-charge (SOC); fuzzy sliding mode observer (FSMO);
grey prediction

1. Introduction

Lithium-ion batteries, which have advantages, such as high energy density and low cost, are
widely used in portable electronic devices, electric vehicles and energy storage systems. In order to
improve the efficiency and safety of batteries, a battery management system (BMS) has been studied
for several decades [1,2]. Among the various functions of a BMS, monitoring the state-of-charge
(SOC) is especially important to prevent overcharge and over-discharge of a battery. Therefore, in
recent years, many studies have endeavored to estimate the SOC accurately and have proposed
the ampere-hour counting [3], the artificial intelligence-based [4–6], impedance measurement [7,8]
and equivalent circuit model [9–15] methods. The ampere-hour counting method is commonly used
because of its simplicity of implementation; however, it is vulnerable to accumulated errors caused
by measurement noise and an inaccurate initial SOC value. The artificial intelligence-based method
provides a more accurate SOC estimation result than other methods because the nature of battery
dynamics is complex and nonlinear; however, it highly depends on the training data; moreover,
the learning process is not suitable for on-line implementation, owing to its large computational
requirements. The impedance measurement method measures the electrochemical impedance of the
battery for SOC estimation; however, it requires additional sensors for impedance measurement, and
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the impedance is strongly influenced by several factors, including temperature and state-of-health.
To compensate for the drawbacks of these previous methods, several equivalent circuit model-based
methods combined with various state estimation techniques have been suggested. These method are
robust in terms of measurement noise and the inaccurate initial SOC value. In addition, they are
simpler and more suitable for on-line implementation than the artificial intelligence-based and
impedance measurement methods.

In [9–13], the Kalman filter and extended Kalman filter were used to estimate the SOC of
a battery. However, the Kalman filter suffers some drawbacks, such as imperfect modeling,
a non-Gaussian noise distribution and incorrect covariance matrices of process and measurement
noise; these drawbacks may deteriorate the estimation performance.

To cope with the noise and uncertainty problems, the sliding mode observer (SMO)-based SOC
estimation method was presented in [14]. This method demonstrates accurate SOC estimation even
in the presence of modeling errors and internal/external disturbances if the gain is greater than the
upper bound of uncertainties. However, in practice, the upper bound of uncertainties is difficult to
obtain precisely, so the method may give rise to an excessive gain. A large gain induces undesired
chattering, which comprises oscillations with high frequency and finite amplitude [16]. More recently,
the adaptive switching gain SMO for SOC estimation was proposed in [15]. In this method, without
the knowledge of uncertainty bounds, the gains of SMO are adjusted according to the tracking error
of the battery voltage. Nevertheless, there is an over-estimation problem that the adjusted gains are
unnecessarily large with respect to the upper bound of uncertainties [17,18].

In recent years, there have been several attempts to combine fuzzy logic with the sliding
mode approach, which focus on solving the chattering problem via adaptation of the switching
gains. In [19], a robust fuzzy sliding mode controller for the speed tracking of a permanent magnet
synchronous motor is proposed to improve the robustness under motor parameter and load torque
variations. Furthermore, a Type 2 fuzzy sliding mode controller is designed for synchronization of
two nonlinear chaotic gyros in the presence of model uncertainties and external disturbances [20].
Moreover, a fractional order fuzzy sliding mode controller is developed for robotic manipulators [21].

In this paper, an SOC estimation method that uses a grey prediction-based fuzzy sliding mode
observer (GP-FSMO) is proposed to achieve chattering reduction and to solve the over-estimation
problem at the same time. In the proposed GP-FSMO, the grey prediction is applied to predict the
value of battery voltage, and the sliding mode gain is dynamically tuned through the fuzzy inference
system using the predicted battery voltage. Grey system theory was first proposed by Deng [22] and
has been applied in various fields, such as system modeling, clustering, decision making and control.
Particularly, the grey prediction technique has received much attention due to its simplicity and
robustness. In contrast with conventional prediction techniques, it is possible to build a grey model
for time series prediction with only four datasets. In addition, this technique reduces the randomness
of the original data by converting them into monotonically-increasing data by the accumulated
generating operation (AGO). Because of these advantages, the grey prediction techniques have
been widely integrated with many control strategies, such as proportional-integral-derivative (PID)
control, fuzzy control, sliding mode control, etc. Combining the grey prediction with the PID control
algorithm was proposed to control a sliding inverted pendulum [23]. In [24], the grey prediction
was integrated with fuzzy control to develop a constant cutting force control system. Furthermore, a
sliding mode controller combined with grey prediction is designed to improve the performance of an
anti-lock braking system [25].

The remainder of this paper is organized as follows: in Section 2, the equivalent circuit-based
battery model is presented to describe the dynamics of a battery; in Section 3, the SOC estimation
method based on a conventional SMO is explained and discussed; Section 4 provides detailed
explanations of the grey predictor and the design of the GP-FSMO for SOC estimation; Section 5
shows the experimental results of SOC estimation; and conclusions are drawn in Section 6.
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2. Equivalent Circuit-Based Battery Model

In this paper, the dynamic equivalent circuit-based model depicted in Figure 1 is employed
because it can accurately represent the behavior of a Li-ion battery with a simple equivalent
circuit [10,11,14,15]. This model considers the nonlinear open-circuit voltage (OCV) characteristic
and consists of a voltage source Voc(Z), a capacitor Cp and three resistors Rb, Rp and Rt. The voltage
source Voc(Z) is a function of SOC Z and represents the OCV, which is defined as the terminal voltage
of the battery when no load is applied. The capacitor Cp describes the polarization effect of the battery.
Resistors Rb, Rp and Rt represent a propagation resistor, a diffusion resistor and a terminal resistor,
respectively. With three state variables—the terminal voltage Vt, the SOC Z and the polarization
voltage Vp—the state-space equations for the Li-ion battery are obtained as:

ẋ1 = −a11x1 + a12Voc(x2) + b1u

ẋ2 = −a2Voc(x2) + a2x3 + b2u

ẋ3 = a3Voc(x2)− a3x3 + b3u

y = x1

(1)

where:

x = [Vt Z Vp]T , u = I

a11 = 1
Rb(Rb+Rp)

(
Rb
Cp
− Rp

Cn

)
a12 = 1

(Rb+Rp)2

(
Rb
Cp
− Rp

Cn
− R2

p
CnRb

+
Rp
Cp

)
a2 = 1

Cn(Rb+Rp)
, a3 = 1

Cp(Rb+Rp)

b1 = 1
(Rb+Rp)2

{(
Rp + Rt +

RpRt
Rb

)(
Rb
Cp
− Rp

Cn

)
+

R2
p

Cn
+

R2
b

Cp

}
b2 =

Rp
Cn(Rb+Rp)

, b3 = Rb
Cp(Rb+Rp)

and Cn is the nominal capacitance, which is defined as the value of ampere-hours that can be drawn
when the battery goes from 100% SOC to 0% SOC at room temperature.

Figure 1. Equivalent circuit-based battery model.

To verify the observability of the system in Equation (1), the rank of the observability matrix is
investigated, and it has a full rank, because the values of the parameters in the battery model are
non-zero [14].
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3. Two Sliding Mode Approaches for State-of-Charge Estimation

3.1. Conventional Sliding Mode Observer

With the consideration of model uncertainty, the Li-ion battery model in Equation (1) can be
written as:

ẋ1 = −a11x1 + a12Voc(x2) + b1u + ∆d1

ẋ2 = −a2Voc(x2) + a2x3 + b2u + ∆d2

ẋ3 = a3Voc(x2)− a3x3 + b3u + ∆d3

(2)

where ∆di denotes the uncertainties introduced by modeling and linearization errors, which satisfy
the following bounded condition |∆di| < εi where i = 1, 2, 3.

In the conventional SMO [14], the observer for the terminal voltage Vt is described by:

˙̂x1 = −a11 x̂1 + a12Voc(x̂2) + b1u + k1sgn(e1) (3)

where e1 = x1 − x̂1; k1 is an observer gain for the terminal voltage estimation, and sgn is the sign
function defined as:

sgn(e1) =

{
1 if e1 > 0
−1 if e1 < 0

(4)

The switching gain k1 should be selected to guarantee the convergence of the estimation error to
zero (e1 → 0). The equation with respect to ė1 is obtained from Equations (1) and (2):

ė1 = −a11e1 + a12(Voc(x2)−Voc(x̂2) + ∆d1 − k1sgn(e1) (5)

Consider the following Lyapunov candidate function:

V1 =
1
2

e2
1 (6)

The time derivative of the Lyapunov function V1 then becomes:

V̇1 = e1 · ė1 (7)

Then, suppose the following two cases:

Case (1): Assume e1 > 0. If the observer gain k1 satisfies:

k1 > |a12(Voc(x2)−Voc(x̂2)|+ ε1 (8)

then ė1 < 0, and this also guarantees V̇1 = e1 · ė1 < 0.
Case (2): Assume e1 < 0. If k1 is chosen to satisfy the condition in Equation (8) as Case 1,

then V̇1 < 0. Therefore, with bounded initial estimation error, the mismatch between terminal voltage
Vt and its estimate V̂t is reduced to zero. After sliding mode occurs, ė1 = e1 = 0 is obtained using the
equivalent control concept [26]. The sliding mode equation is then derived from Equation (5):

Voc(x2)−Voc(x̂2) =

{
k1

a12
sgn(e1)

}
eq

(9)
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Next, the observers for the SOC Z are derived as:

˙̂x2 = −a2Voc(x̂2) + a2 x̂3 + b2u + k2sgn(x2 − x̂2) (10)

where k2 is an observer gain for SOC estimation. Then, the error dynamics of the SOC is obtained by:

ė2 = −a2
(
Voc(Z)−Voc(Ẑ)

)
+ a2e3 + ∆d2 − k2sgn(e2) (11)

where ei = xi − x̂i, i = 2, 3. With the consideration of a piecewise linear relation between the OCV
and the SOC, which is expressed as Voc(Z) = κZ + ν, Equation (11) can be rewritten as follows:

ė2 = −a2κe2 + a2e3 + ∆d2 − k2sgn(e2) (12)

where κ is not a constant, but varies depending on the SOC [14,15].
In the same manner, we can prove the convergence of SOC error by choosing the Lyapunov

candidate function V2 = 1/2e2
2 and selecting the observer gain k2 > ε2. After that, the error equation

for e3 can be also derived using the equivalent control concept (i.e., ė2 = 0 and e2 = 0) as:

e3 =

{
k2

a2
sgn(e2)

}
eq

=

[
k2

a2
sgn
({

k1

a12κ
sgn(e1)

}
eq

)]
eq

(13)

Finally, the observer for Vp is designed as:

˙̂x3 = a3Voc(x̂2)− a3 x̂3 + b3u + k3sgn(x3 − x̂3) (14)

Then, the error equation is given by:

ė3 = a3κe2 − a3ep + ∆d3 − k3sgn(e3) (15)

As in the two cases’ observers, the Vp error converges to zero if the observer gain k3 is larger
than ε3.

In summary, according to the equivalent control concept, the observers for terminal voltage,
the SOC Z and the polarization voltage Vp are derived as:

˙̂x1 = −a11 x̂1 + a12Voc(x̂2) + b1u + k1sgn(e1)

˙̂x2 = −a2Voc(x̂2) + a2 x̂3 + b2u

+k2sgn
({

k1
a12κ

sgn(e1)

}
eq

)
˙̂x3 = a3Voc(x̂2)− a3 x̂3 + b3u

+k3sgn

( [
k2
a2

sgn
({

k1
a12κ

sgn(e1)

}
eq

)]
eq

)
(16)

Proof: A more detailed proof can be found given in [14].

However, the discontinuous sign function sgn(·) may result in undesired oscillations known
as the chattering phenomenon [16]. In addition, the gain ki should be large enough to satisfy the
condition in Equation (8), because the bound is difficult to know in a practical application. This large
gain may increase the amplitude of chattering oscillations.

3.2. Adaptive Gain Sliding Mode Observer

In [15], an adaptive gain SMO for SOC estimation was proposed as follows:
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˙̂x1 = −a11 x̂1 + a12Voc(x̂2) + b1u + k̂1sgn(e1)

˙̂x2 = −a2Voc(x̂2) + a2 x̂3 + b2u + k̂2sgn(e2)

˙̂x3 = a3Voc(x̂2)− a3 x̂3 + b3u + k̂3sgn(e3)

(17)

where k̂1, k̂2 and k̂3 are the adaptive gains and ei = xi − x̂i. In this approach, the switching gains of
SMO are adapted by the following adaptation laws:

˙̂k1 = γ1|e1|
˙̂k2 = γ2|e2|
˙̂k3 = γ3|e3|

(18)

where γ1, γ2 and γ3 are positive constants for determining the convergence rate of the gains ki. It is
clear that a large γi will force the state variables to converge to the sliding surface at a high speed.
However, this adaptation law is only applicable to ideal sliding mode. In the real sliding mode case,
|ei| cannot reach exactly zero in finite time due to finite switching frequency. Thus, the adaptive gains
k̂i are always increasing, and the over-estimated gains may induce larger chattering. Therefore, in this
method, the adaptive gains k̂i should be calibrated regularly.

4. Fuzzy Sliding Mode Observer with Grey Prediction

In this paper, we propose the GP-FSMO for SOC estimation. The proposed method employs
a grey predictor to forecast a future value of terminal voltage. The predicted error obtained from
the predicted terminal voltage is then used instead of the time derivative of the estimation error.
Finally, the gains of the SMO are adjusted using a fuzzy inference system.

4.1. Grey Prediction for the Terminal Voltage of a Li-Ion Battery

For grey prediction, the grey model GM(1, 1), which consists of a first-order difference equation
with one input variable, is commonly used [27]. The establishing procedure of GM(1, 1) is described
as follows.

Assume that the non-negative original data sequence is defined as:

X(0) = {x(0)(1), x(0)(2), . . . , x(0)(n)}, n ≥ 4 (19)

To weaken the randomness, the original data are converted to monotonically-increasing data,
X(1), using the AGO:

X(1) = {x(1)(1), x(1)(2), . . . , x(1)(n)}, x(1)(1) = x(0)(1) (20)

where:

x(1)(k) =
{ k

∑
i=1

x(0)(i), k = 2, 3, . . . , n
}

The GM(1, 1) model can be constructed by establishing a grey differential equation as [28]:

x(0)(k) + az(1)(k) = b, k = 2, 3, . . . , n (21)

where z(1)(k) is a newly-defined variable called the background value, which is obtained by the
adjacent neighbor mean:

z(1)(k) =
1
2

x(1)(k) +
1
2

x(1)(k− 1), k = 2, 3, . . . , n (22)
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From Equation (21), the constant coefficients a and b can be estimated using the least square
method as:

θ̂ = (BT B)−1BTT (23)

where:

Y =


x(0)(2)
x(0)(3)

...
x(0)(4)

 , B =


−z(1)(2) 1
−z(1)(3) 1

...
−z(1)(4) 1

 , θ̂ =

[
a
b

]

After then, the first-order differential equation is established for future prediction:

dx(1)

dt
+ ax(1) = b (24)

Equation (24) is called a reflection or reflection whitenization equation because it can reflect the
exponential growth trend of the sequence X(1).

The solution of Equation (24) is given by:

x̄(1)(k + 1) =
(

x(0)(1)− b
a

)
e−a(k) +

b
a

, k = 1, 2, . . . n (25)

where x̄(1)(k + 1) represents the predicted value for the AGO sequence of X(0). Finally, by applying
the inverse AGO (x(0)(k) = x(1)(k)− x(1)(k− 1)), we have the prediction for the original data X(0):

x̄(0)(k + 1) = x̄(1)(k + 1)− x̄(1)(k) (26)

=

(
x(0)(1)− b

a

)(
1− ea

)
e−ak, k = 1, 2, . . . n

Note that the detailed proof and description of the GM(1, 1) is introduced in [28].

In conclusion, we employ the grey prediction method with the rolling method [29] to obtain the
one-step-ahead predictive value of terminal voltage V̄t(k + 1) defined as:

V̄t(k + 1) =
(

Vt(k− 3)− b
a

)(
1− ea

)
e−ak (27)

where the coefficients a and b are computed from the measured terminal voltage sequence
Vt(k), Vt(k− 1), Vt(k− 2) and Vt(k− 3) using Equation (23).

Remark 1. To obtain the discrete voltage sequence Vt(k), Vt(k− 1), Vt(k− 2) and Vt(k− 3), a discrete-time
equivalent model described in [10] is adopted in this paper. This model is established under the assumption that
the applied input current is constant during each sampling interval.

4.2. Observer Gain Adaptation Law

Consider the first-order SMO Equation (16); the adaptation law for gain k̂i is designed as:

˙̂ki =

{
α(et, ẽt) if k̂i ≥ ki,min
µ if k̂i < ki,min

(28)
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where α is a gain tuning parameter, µ is chosen to be a small positive value, such that the gain ki
satisfies the condition in Equation (8), and ki,min is a positive number that satisfies ki,min > εi, which is
the same condition of the conventional SMO. Finally, the observer gain is obtained by: k1(k + 1)

k2(k + 1)
k3(k + 1)

 =

 k1(k)
k2(k)
k3(k)

+ α

 β1

β2

β3

 (29)

where β1, β2 and β3 are the step size coefficients, which are designed to set the rate of gain adaptation.
In this paper, we choose β1 = β3 = 1 and β2 = 0.5 to reflect the property of terminal voltage
and SOC. From a physical point of view, the SOC varies more slowly than the terminal voltage under
the operation of the battery.

The gain tuning parameter α is determined through a fuzzy inference system in order to
simultaneously improve tracking performance and reduce chattering. The input variables of the
fuzzy inference system are chosen as estimation error et and one-step ahead prediction error ẽt.
The estimation error at the k-th sampling instant is defined as:

et(k) = Vt(k)− V̂t(k) (30)

and the one-step-ahead prediction error is calculated from Equation (27) as:

ẽt(k + 1) = V̄t(k + 1)− V̂t(k + 1) (31)

where V̂t(k + 1) is the estimated terminal voltage from the GP-FSMO and V̄t(k + 1) the
one-step-ahead predictive value of terminal voltage from the grey predictor.

The fuzzy rules of the fuzzy inference system are generated from the following simple idea.
First, if the one-step-ahead prediction error becomes greater than the current estimation error
(i.e., ẽt(k + 1) > et(k)), the gain ki should be increased to prevent the destruction of the sliding mode.
Conversely, when the one-step-ahead prediction error becomes smaller than the current estimation
error (i.e., ẽt(k + 1) < et(k)), this means the gain is unnecessarily large with respect to the upper
bound of uncertainties and the gain should be decreased to reduce chattering. In order to reflect this
relationship, the absolute predicted change of error is defined as:

∆et(k) = |et(k)| − |ẽt(k + 1)| (32)

Thus, the estimation error et(k) and absolute predicted change of error ∆et(k) are selected as
input variables to the fuzzy inference system. The triangular type of membership function, shown in
Figure 2, is used for fuzzification of the input variables. The range of the membership functions is
designed according to the maximum et(k) and ∆et(k) that may occur. There are five fuzzy subsets
for et, ẽt and α: positive big (PB), positive small (PS), zero (ZE), negative small (NS) and negative
big (NB).

As shown in Table 1, the set of 21 fuzzy rules is established to represent the relationship between
the input and output variables of the fuzzy inference system. Whether the gain is to be increased or
decreased is determined based on the fuzzy rules. Here, the range of output variable α is designed to
be −0.005 to 0.005.

Remark 2. It should be noted that the proof of the convergence of the GP-FSMO is the same as that of
the conventional SMO, because the gains of the GP-FSMO are always selected to satisfy the conditions
ki ≥ ki,min, i = 1, 2, 3. In this paper, ki,min are determined experimentally by comparing the modeling output
with the actual output. In practice, the uncertainties ∆di are hard to quantify owing to the complex dynamics
of batteries. However, the proposed GP-FSMO is expected to work well, even without knowing the exact value
of ki,min. Suppose that there exists a positive value k∗i such that k∗i = |di|, i = 1, 2, 3. If the gain ki is adapted
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through Equation (28) and decreases below k∗i eventually, then the sliding mode will be destroyed and the sliding
variable e1 will no longer be zero. After that, the gain ki increases until the sliding mode is re-established.

(a) (b)

Figure 2. Membership functions of the input and output variables for the grey prediction-based fuzzy
sliding mode observer (GP-FSMO): (a) membership functions of et(k) and ∆et(k); (b) membership
function of α.

Table 1. Fuzzy rules for gain tuning parameter α. PB: positive big; PS: positive small; ZE: zero;
NS: negative small; and NB: negative big.

∆et(k) e

PB PS ZE NS NB

PB NS - - - NS
PS NS NS - NS NS
ZE NS ZE ZE ZE NS
NS PS PS PS PS PS
NB PB PB PB PB PB

5. Experiment Results

In our experiments, a fresh 18650-type Li-ion battery (LG Chemical Co., Ltd., Seoul, Korea) with
3.0-Ah nominal capacity and 3.75-V nominal voltage was used. The battery test bench consisted of an
electrical load, a power supply and a data acquisition device. The electrical load and power supply
were used to discharge/charge the battery, and the terminal voltage was measured by the NI9229
voltage measurement module with accuracy of 0.001 V. All experiments were conducted at room
temperature, and the sampling interval T is 0.01 s.

Two types of discharge tests for the Li-ion battery were performed: (i) a pulse discharge test;
and (ii) a random discharge test. The estimation performance of the proposed method was verified
through comparisons with the estimation results of the conventional SMO, the adaptive gain SMO
and GP-FSMO. Note that the ampere-hour counting method considering the Coulombic efficiency
was used to obtain the reference SOC value.

5.1. Parameter Extraction

To determine the parameters of the battery model in Equation (1), the battery characterization
test is performed. In this test, 1.0-C discharge pulses in 0.5 s intervals are applied. Using the output
voltage of the battery characterization test in Figure 3, the internal resistance Rint is obtained as:

Rint =
V3 −V2

Idis
(33)

where Idis is the discharge current. Then, in general, it is assumed that Rb and Rp are equivalent to
75% of Rint and Rt is equivalent to 25% of Rint [10].
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Figure 3. Prediction result of the terminal voltage based on the grey predictor.

The polarization capacity Cp is derived from the following equations:

Vno_load = V1 = V3 + (V4 −V3)(1− e−t/τ)

τ = −∆t ln(1− V4−V3
V1−V3

)τ = Cp(Rb + Rp)

∴ Cp_init =
τ

Rb+Rp

(34)

The identified parameters of the equivalent circuit based at 100% SOC are determined as:

Cp = 17.6735 F, Rb = 0.165 Ω, Rp = 0.165 Ω, Rt = 0.055 Ω.

5.2. Pulse Discharge Test

In the first experiment, the fully-charged battery was discharged at 5% SOC intervals with a
sequence of 0.5C 360-s discharge pulses and 3600-s rests in the voltage range of 2.6 V to 4.3 V. Figure 4
shows the discharge current profile and terminal voltage. As a result, the OCV-SOC curve in Figure 5
was obtained from the steady-state voltage after each 3600-s rest.
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Figure 4. Cont.
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Figure 4. (a) Pulse discharge current profile; and (b) measured terminal voltage.
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Figure 5. Open-circuit voltage (OCV)-state-of-charge (SOC) curve at room temperature.

In order to validate the equivalent circuit-based battery model described in Section 2, the curves
of the measured terminal voltage and the model-based output voltage are given in Figure 6. It shows
that the battery model can accurately describe the terminal voltage in a high SOC range. On the
other hand, in a low SOC range, some modeling errors exist, because the parameters are extracted
from the battery with 100% SOC. However, this can be compensated by the SMOs used in this paper.

Time (h)

0 5 10 15 20

T
e
rm

in
a
l 
V

o
lt
a
g
e
 (

V
)

2.5

3.0

3.5

4.0

4.5

Measurement

Equivalent-circuit Model

Figure 6. Validation of the equivalent circuit-based battery model.
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In this experiment, the switching gains for the conventional SMO were selected and fixed as:

L1 = [0.02 0.01 0.02 0.1]T (35)

and the positive constants for the adaptive gain SMO were set small enough as γ1 = 0.003,
γ2 = 0.0015 and γ3 = 0.003. The gains for the GP-FSMO were adapted based on the comparison
between the estimation error and the prediction error as explained in Section 4. In order to
demonstrate the prediction performance of the grey predictor, the grey prediction result for terminal
voltage during 0 to 5 h was plotted and is shown in Figure 7. It can be seen that the prediction value
is accurate, except in cases when the current changes suddenly. Note that the effect of the impulse
prediction error is weakened during the gain adaptation process, because the absolute predicted
change of error ∆et(k) is mapped into a bounded fuzzy variable through the fuzzification stage.
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Figure 7. Prediction result of the terminal voltage based on the grey predictor. (a) Predicted terminal
voltage; and (b) prediction error.

The SOC estimation results are depicted in Figure 8. In addition, to provide a clear view,
we present the zoomed-in plots of the SOC range of 20% to 40% in Figure 9. As can be seen,
the GP-FSMO can estimate the SOC more accurately than the other two methods and enhances
the estimation performance in terms of chattering reduction. In contrast, the SOC estimation error
for the conventional SMO experiences sudden changes of more than 5%, as well as the chattering
phenomenon. In the case of the adaptive gain SMO, the estimated SOC seems to track the reference
the SOC well in the beginning. However, the SOC estimation error and the chattering become large,
because the switching gain has been over-estimated through Equation (18). To compare the accuracy
of three estimation methods, the absolute values of the SOC estimation error at different SOC ranges
are shown in Table 2.
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Figure 8. Estimation results of SOC in the pulse discharge test: (a) conventional SMO; (b) adaptive
gain SMO; and (c) GP-FSMO.

Table 2. Comparison of SOC estimation error in the pulse discharge test.

SOC range Error (%) Methods

Conventional SMO Adaptive gain SMO GP-FSMO

100% to 70% Maximum 5.89 3.05 2.28

Mean 2.4 1.36 1.07

70% to 40% Maximum 6.75 4.97 3.83

Mean 3.71 2.87 1.92

40% to 5% Maximum 8.16 5.54 4.11

Mean 3.73 3.01 1.94
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Figure 9. Zoomed-in plots of the SOC range of 20% to 40%: (a) conventional SMO; (b) adaptive
gain SMO; (c) GP-FSMO; and (d) comparison of the estimation errors between the conventional SMO,
adaptive gain SMO and the GP-FSMO.
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To further evaluate the estimation performance, the estimation results of the terminal voltage
between the conventional SMO, adaptive gain SMO and the proposed GP-FSMO are compared in
Figure 10. We can see that the terminal voltage estimation results for the conventional SMO include
the undesirable chattering phenomenon with an average absolute error of 0.0074 V. Furthermore,
the adaptive gain SMO suffers from the over-estimated switching gains, and the terminal voltage
estimation error increases gradually to about 0.01 V. On the contrary, the GP-FSMO improves the
estimation performance in terms of terminal voltage estimation accuracy and chattering reduction,
since the average absolute error is less than 0.002 V.
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Figure 10. Cont.
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Figure 10. Estimation results of the terminal voltage in the pulse discharge test: (a) conventional SMO;
(b) adaptive Gain SMO; (c) GP-FSMO; and (d) comparison of the estimation errors between the
conventional SMO, adaptive gain SMO and GP-FSMO.

5.3. Random Discharge Current Test

In the second experiment, to describe the real situation of battery usage, the random discharge
current in Figure 11 was applied repeatedly 40 times over the 100% to 30% SOC range. For this
experiment, it was necessary to increase the gains for the conventional SMO, because the fluctuation
in terminal voltage was larger than that in the previous experiment. Thus, the switching gains for the
conventional SMO were selected as:

L2 = [0.035 0.02 0.035 0.1]T (36)
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Figure 11. (a) Random discharge current profile; (b) measured terminal voltage.
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Figure 12 and Table 3 present the SOC estimation results of the conventional SMO, adaptive
gain SMO and GP-FSMO. Furthermore, for a precise and clear comparison of the SOC estimation
performance of both methods, zoomed-in plots between 1.3 h and 1.8 h are shown in Figure 13.
The estimation error of the conventional SMO exceeds 4% with the chattering phenomenon, and the
adaptive gain SMO suffers from the over-estimated switching gains, as expected. On the other hand,
we can see that the SOC estimation result of the GP-FSMO accurately follows the reference SOC value
with an estimation error of less than 3% and also reduces chattering.
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Figure 12. Estimation results of SOC in the random discharge test: (a) conventional SMO; (b) adaptive
Gain SMO; and (c) GP-FSMO.
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Figure 13. Zoomed-in plots of the SOC range of 35% to 65%: (a) conventional SMO; (b) adaptive gain
SMO; (c) GP-FSMO; and (d) comparison of estimation errors between the conventional SMO, adaptive
gain SMO and the GP-FSMO.
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Table 3. Comparison of SOC estimation error in the random discharge test.

SOC Range Error Methods

Conventional SMO Adaptive Gain SMO GP-FSMO

100% to 65% Maximum 2.81 1.41 1.29

Mean 1.91 1.42 1.27

65% to 30% Maximum 5.72 4.82 2.13

Mean 3.42 3.31 1.78

6. Conclusions

This paper presents an SOC estimation method for Li-ion batteries with a combination of
FSMO and grey prediction. The SOC estimation results using the conventional SMO suffer from
the chattering phenomenon, which deteriorates the estimation accuracy. In the case of the adaptive
gain SMO, the switching gains are easy to over-estimate due to the real sliding mode behavior. On
the other hand, in the proposed method, the gain is adjusted through a comparison between the
present estimation error and the predicted future error using a fuzzy inference system. The estimation
performance of the proposed method is verified using two types of discharge tests. The results
from the discharge tests demonstrated that the use of the GP-FSMO for terminal voltage and SOC
estimation, as compared to the conventional SMO and the adaptive gain SMO, not only reduces
chattering, but also enhances the estimation accuracy.
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