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1 Introduction

The 3d superconformal index [1–4] has been used to probe the various dualities for N = 2

supersymmetric gauge theories [5–17]. One of the interesting feature of the 3d index is its

factorization into vortex and antivoretx partition function [18, 19]. Schematically

I(z, z̄) = Zvortex(z)Zantivortex(z̄) = |Zvortex(z)|2 (1.1)

where z traces the vortex number and z̄ traces antivortex number. This is the 3d analogue

of the 2d conformal blocks. Previously it was shown that such factorization holds for N = 2

U(Nc)κ gauge theory with Nf fundamental chiral multiplets and Na anti-fundamental chiral

multiplets with Chern-Simons (CS) levels satisfying |κ| ≤ |Nf−Na|2 [20]. Once we have the

factorized form of the 3d index, the proof of the duality is reduced to the proof of some

combinatorial identities at the index level [19]. Hence the structure of the duality is much

more transparent once such factorized index is available.

We extend the previous proof of the factorization into N = 2 U(Nc) theory with one

adjoint chiral multiplets as well as fundamental and anti-fundamental matters. Once we ob-

tain the factorization, we apply the result to two cases. As the 1st application, we consider

the Seiberg-like duality for N = 4 U(Nc) gauge theory with Nf hypermultiplets [21–25].

For Nc ≤ Nf < 2Nc−1 the theory is called “bad” since it contains the monopole operators
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whose conformal dimension violates the unitarity bound. The fate of such monopole oper-

ators in IR is interesting. For the case in hand, such monopole operators are flowing to free

hypermultiplets in IR and there are some evidences put forward at [23–26]. Here using the

factorization of the index, we explicitly prove the conjectured dualities at the index level.

Along with that, we can show how pathological R-charges in UV can mix with accidental

global symmetries in IR to give the correct R-charges in IR. As the second application,

we consider the dualities of N = 2 U(Nc) gauge theories with one adjoint X, fundamental

and anti-fundamental matters [15]. In this case we need to introduce the superpotential

W = trXn to have the dual pair. We generalize the previous work [15] to the cases where

one can have different number of chiral multiplets and anti-chiral multiplets, which we call

chiral-like theories, with Chern-Simons terms. For the above theory and the conjectured

dual pair, we work out the factorized index and the equality of the proof is reduced to the

proof of combinatorial identities, which we carry out the intensive numerical checks. We

also consider the cases where some monopole operators violate the unitarity bounds. For

some cases we understand the fate of such operators in IR. However the understanding is

rather limited compared with N = 4 cases.

The content of the paper is as follows. In section 2 we work out the factorization of

U(Nc) theory with one adjoint, fundamental and antifundamental matters. In section 3, we

consider N = 4 Seiberg-like dualities for N = 4 U(Nc) theory with fundamental hypermul-

tiplets. The equality of the index for such dual pairs are explicitly proved. Meanwhile we

show that the monopole operators which violate the unitarity bound are turned into free

hypermultiplets and are decoupled. In section 4, we consider the N = 2 duality for U(Nc)

theory with one adjoint, fundamental and anti-fundamental matters using the factorized

index. Technical details are relegated to appendices.

2 Factorization with an adjoint matter

In this section we examine the factorization of the superconformal index of the 3d N = 2

U(Nc)κ gauge theory with Nf fundamental, Na antifundamental, one adjoint matters and

without superpotential, where κ is the CS level. We focus on the values of κ satisfying the

condition |κ| ≤ |Nf−Na|2 due to a technical issue we will explain. The matters are denoted

by chiral multiplets Qa, Q̃
b̃, X, where X denotes the adjoint chiral multiplet. The theory

has the global symmetry U(1)R×SU(Nf )×SU(Na)×U(1)A×U(1)X×U(1)T , where U(1)R
denotes the R symmetry. The global charges of each chiral multiplet are summarized in

table 1. The meaning of the global charges should be obvious from the table 1. In particular

U(1)T is the topological charge, which monopole operators carry. Compared to the theory

without the adjoint matter, we have additional U(1)X symmetry, which rotates the phase

of the adjoint chiral multiplet X. In addition, there are BPS bare monopole states labeled

by the GNO [27] charge lattice:

|m1, . . . ,mNc〉 .

If κ± Nf−Na
2 = 0, the bare monopole state |±1, 0, . . . , 0〉 is gauge invariant and corresponds

to the gauge invariant chiral operator V0,±. In addition, it can be dressed by the adjoint
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U(1)R SU(Nf ) SU(Na) U(1)A U(1)X U(1)T

Q ∆Q Nf 1 1 0 0

Q̃ ∆Q 1 Na 1 0 0

X ∆X 1 1 0 1 0

Vi,±
1
2

(1−∆Q)(Nf+Na)

−∆X(Nc−1−i) 1 1 −Nf+Na
2 −Nc + 1 + i ±1

Table 1. The global symmetry charges of chiral operators. The gauge invarint monopole operators

Vi,± appear when κ± Nf−Na

2 = 0.

matter X such that it corresponds to another chiral operator Vi,± ∼ (XU(1))
i |±1, 0, . . . , 0〉

for i = 0, . . . , Nc−1 [15, 28]. The subscript U(1) denotes the U(1) part of the residual gauge

symmetry U(1)×U(Nc− 1) left unbroken by the flux (±1, 0, . . . , 0). The global charges of

those monopole operators appear also in table 1. When one deals with the theory with the

suprepotential, the only role of the superpotential in computing the superconformal index

is just constraining the global charges consistent with the superpotential. Therefore, when

we deal with a theory with a nonvanishing superpotential, we only need to impose proper

global charges in the index computation.

Let us recall the definition of the superconformal index of the 3d N = 2 theory. The

bosonic subgroup of the 3d N = 2 superconformal group is SO(2, 3)× SO(2) whose three

Cartan elements are denoted by E, j and R. Then the superconformal index is defined

by [1, 2]

I (x, ti) = Tr(−1)F exp(−β′{Q,S})xE+j

(∏
i

tFii

)
(2.1)

where Q is a supercharge of quantum numbers E = 1
2 , j = −1

2 and R = 1, while S = Q†.

x is the fugacity for E + j and ti’s are additional fugacities for global symmetries of the

theory. The trace is taken over the Hilbert space of the SCFT on R× S2, or equivalently

over the space of local gauge invariant operators on R3. As usual, only the BPS states,

which saturate the inequality

{Q,S} = E −R− j ≥ 0, (2.2)

contribute to the index. Therefore, the index is independent of the parameter β′.

The matrix integral formula for the superconformal index of a U(Nc) theory is given

by [3, 4]

I(x, t, t̃, τ, υ, w)

=
∑

m∈ZNc/SNc

1

|Wm|

∮
|zj |=1

 Nc∏
j=1

dzj
2πizj

e−SCS(z,m)w
∑
j mjZvector(x, z,m)Zchiral

(
x, t, t̃, τ, υ, z,m

)
.

(2.3)

Here |Wm| is the Weyl group order of the residual gauge group left unbroken by the

magnetic flux m. And zj ’s are gauge holonomies along the time circle. e−SCS(z,m) is the
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classical contribution of the CS term, which is written as

e−SCS(z,m) =

Nc∏
j=1

(−zj)−κmj . (2.4)

w is the fugacity for the U(1)T topological symmetry, whose conserved charge is given by

T =
∑

jmj . If we regard the symmetry as weakly gauged, w corresponds to the background

holonomy of the U(1)T symmetry. Therefore, the term w
∑
j mj comes from a mixed Chern-

Simons term. Zvector and Zchiral are the 1-loop determinant contribution of the vector mul-

tiplet and the chiral multiplets respectively. The vector multiplet contribution is given by

Zvector(x, z,m) =

Nc∏
i,j=1
(i 6=j)

x−|mi−mj |/2
(

1− ziz−1
j x|mi−mj |

)
(2.5)

while the chiral multiplet contribution is given by

Zchiral

(
x, t, t̃, τ, υ, z,m

)
= ZX(x, υ, z,m)

Nf∏
a=1

ZQa(x, t, τ, z,m)

( Na∏
a=1

Z
Q̃b̃

(
x, t̃, τ, z,m

))
(2.6)

where1

ZX(x, υ, z,m) =

Nc∏
i,j=1

(
x∆X−1υ

)−|mi−mj |/2 (z−1
i zjυ

−1x2−∆X+|mi−mj |;x2
)
∞(

ziz
−1
j υx∆X+|mi−mj |;x2

)
∞

, (2.8)

ZQa(x, t, τ, z,m) =

Nc∏
j=1

(
x∆Q−1(−zj)taτ

)−|mj |/2 (z−1
j t−1

a τ−1x2−∆Q+|mj |;x2
)
∞(

zjtaτx∆Q+|mj |;x2
)
∞

, (2.9)

Z
Q̃b̃

(x, t̃, τ, z,m) =

Nc∏
j=1

(
x∆Q−1(−zj)−1t̃aτ

)−|mj |/2 (zj t̃−1
a τ−1x2−∆Q+|mj |;x2

)
∞(

z−1
j t̃aτx∆Q+|mj |;x2

)
∞

. (2.10)

They are the contribution of the adjoint, fundamental and antifundamental chiral multi-

plets respectively. t, t̃, τ, υ are the fugacities, or the background holonomies, for the global

symmetry SU(Nf ) × SU(Na) × U(1)A × U(1)X . By definition the fugacities have norms

smaller than 1; for example, if we recall the E + j fugacity, x, it is written as x = e−β

where chemical potential β, which is related to the radii of S2 and S1, is a positive real pa-

rameter.2 Thus we assume |x| < 1. In the same manner, the other fugacities also have the

1(a; q)n is the q-Pochhammer symbol defined by

(a; q)n =

n−1∏
k=0

(
1− aqk

)
(2.7)

2On the other hand, if we regard those fugacites as background holonomies, their norms are naturally 1.

Since we can interpret those variables in both ways, it shouldn’t affect the final result, which is consistent

with the fact that the index is analytic in those variables.
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norms smaller than 1. Here, for computational purpose, we tune the independent chemical

potentials such that |x| � |t, t̃, τ, υ|. As a result, the locations of the poles are primarily de-

termined by x. This restriction can be relaxed after the computation by the analytic contin-

uation. Also note that x∆Q and x∆X always appear together with τ and υ; i.e., they appear

in terms of x∆Qτ and x∆Xυ.3 This reflects the fact that the U(1)R charge can be mixed with

other global charges. For simplicity, we replace x∆Qτ and x∆Xυ by τ and υ. The original

expression can be restored by τ → x∆Qτ and υ → x∆Xυ. When the theory has superpoten-

tial, we need to impose additional relations to the various fugacities, as we will see later. We

also have included the phase factor (−1)−κ
∑
j mj−

Nf−Na
2

∑
j |mj |, which is originated from the

definition of the fermionic number operator F in (2.1) [14]. We use F = 2j+e·m where e and

m are electric charge and magnetic flux. One can introduce magnetic fluxes of background

gauge fields coupled to the global symmetries [9]. However, we turn them off for simplicity.

The contour integral is iteratively evaluated for each zj along the unit circle, |zj | = 1.

Applying the residue theorem, we choose the poles inside the unit circle or alternatively

choose the poles outside the unit circle with opposite sign because the sum total of the

residues is zero. For a technical reason, we consider |κ| ≤ |Nf−Na|
2 case, which is called

“maximally chiral” in [29]. If Nf > Na, it is convenient to take the outside poles because

there is no pole at infinity. If Nf = Na, although there may exist poles both at the origin

and at infinity, one can show that the residue at each pole vanishes [19, 20]. On the other

hand, for |κ| > |Nf−Na|
2 case, which is called “minimally chiral” in [29], both residues at

the origin and at infinity do not vanish. In that case factorization of the superconformal

index is not clear [20]. Thus, assuming Nf ≥ Na we are going to take the poles outside the

unit circle. The relevant poles are as follows:

zj =

{
t−1
aj τ

−1x−|mj |−2kj , 1 ≤ aj ≤ Nf , kj ≥ 0

ziυ
−1x−|mj−mi|−2kj , 1 ≤ i( 6= j) ≤ Nc, kj ≥ 0

(2.11)

where for each j = 1, . . . , Nc, zj takes either the value in the first line with a choice of aj ,kj
or the value in the second line with a choice of i and kj . Note that the first type of poles

comes from the fundamental matter contribution while the second type of poles comes

from the adjoint matter contribution. If we carry out the unit contour integration of zj by

picking up outside poles, all poles of eq. (2.11) are lying outside the unit circle irrespective

of the value of zi. One can have poles accidentally located outside the unit circle depending

on the value of zi. For example the pole can have the form z1 = p, z2 = z1r
−1 · · · with

|p| > |r| > 1. This is not the type of eq. (2.11). However if we sequentially integrate

over z1, z2, then integration over z2 picks up the residue z2 = pr−1, which is outside the

unit circle of z2 since z1 takes the specific value p. One can show that there is always the

cancelation of the residues for such accidentally picked-up poles. Thus we can consider the

poles specified at eq. (2.11).

One can see that (2.11) defines linearly independent Nc hyperplanes meeting at the

unique point in CNc . That intersection point can be represented by a labeled forest graph of

3As defined at the table 1, ∆Q,∆X are the R-charge of the fundamental and adjoint chiral multiplet

respectively. Due to the BPS condition, this is equal to the conformal dimension of the multiplet.
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(1,1,0)

(2,10)

(3,3,2)

(4,1)

(5,1)

Figure 1. An example of a forest graph for the U(5) theory with three flavors. The graph contains

five nodes, which form two trees in this case. Each root node is labeled by (j, aj , kj) while each

non-root node is labeled by (j, kj).

ordered Nc nodes, which is a graph of multiple trees whose nodes are ordered by a suitable

permutation σ(1) · · ·σ(Nc) and labeled by some additional integers. The precise definition

of the node order will not be important and one definition of such order will be presented

for a simple example. A hyperplane defined by the first line of (2.11) with given j, aj , kj
corresponds to a root node labeled by (j, aj , kj). A hyperplane defined by the second line

of (2.11) with given j, i, kj corresponds to a non-root node labeled by (j, kj). This node is

attached to a node containing the integer i either in (i, ai, ki) or in (i, ai). For instance,

let us consider a U(5) theory with three flavors. The forest graph corresponding to a pole

determined by

z1 = t−1
1 τ−1x−|m1|,

z2 = z1υ
−1x−|m2−m1|−20,

z3 = t−1
3 τ−1x−|m3|−4,

z4 = z5υ
−1x−|m5−m4|−2,

z5 = z1υ
−1x−|m4−m1|−2

(2.12)

is shown in figure 1. Our convention of the node order is to count the node from bottom

to top and from left to right. Thus the node order of the graph in 1 is 1, 5, 4, 2, 3.4 In this

case, there are two hyperplanes of the first type and three hyperplanes of the second type.

Thus, the corresponding forest graph contains two root nodes and three non-root nodes,

which are labeled and connected by the rule we explained. In this way, all relevant poles

shown in (2.11) can be organized by all possible labeled forest graphs we described. As far

as we know the counting of the poles using the forest graph did not appear before.

Now let us define a map p such that p(j) = i if the j-th node is a child node of the i-th

node. For convenience, we also assign p(j) = 0 when the j-th node is a root node. We also

4This definition can be more precisely formulated as follows. Any forest graph is located in 2-d plane so

one can associate any node with its 2-d coordinate (x, y). We define (x1, y1) < (x2, y2) if x1 < y1 or x1 = y1

with x2 < y2. We order the node according to the order of its 2d coordinate. But any other consistent

node order is fine with our purpose.
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define pn = p ◦ p ◦ · · · , thus acting p n times. If we act p iteratively, the initial position of

the node is descending toward the tree node it belongs in figure 1. p(4) = 5, p2(4) = 1 and

so on. Then the intersection point can be written as

zj = t−1
bj
τ−1υ−lj+1x

−
∑lj−1

n=0

(
|mpn(j)−mpn+1(j)|+2kpn(j)

)
(2.13)

where bj = ai when j-th child node is connected to the i-th root node. Formally one can

define bj = a
plj−1(j)

and lj is the level of the j-th node, which is the smallest positive

integer such that plj (j) = 0. For example, a root node has the level 1. Note that the nodes

in the same tree have the same bj . Also we have defined m0 = 0. One should note that

the above poles do not guarantee the non-vanishing residues. Indeed, we will see that the

non-vanishing residues come from the forest graphs with just one-branch trees.5

Now we need to evaluate the residue at each intersection point. We slightly modify the

expressions of the 1-loop contributions, which makes evaluating the residue easier. Firstly

one can align the monopole charges as m1 ≥ . . . ≥ mNc using the Weyl symmetry of the

gauge group. Then the 1-loop contributions of the vector multiplet and the adjoint chiral

multiplet can be written as follows:

Zvector(x, z,m) =

Nc∏
i,j=1
(i 6=j)

x−|mi−mj |/2
(

1− ziz−1
j x|mi−mj |

)
(2.14)

=

Nc∏
i<j

x−(mi−mj)
(

1− ziz−1
j xmi−mj

) (
1− zjz−1

i xmi−mj
)
,

ZX(x, υ, z,m) =

Nc∏
i,j=1

(
x−1υ

)−|mi−mj |/2 (z−1
i zjυ

−1x2+|mi−mj |;x2
)
∞(

ziz
−1
j υx|mi−mj |;x2

)
∞

=

((
υ−1x2;x2

)
∞

(υ;x2)∞

)Nc Nc∏
i<j

(
x−1υ

)−(mi−mj)
(
z−1
i zjυ

−1x2+mi−mj ;x2
)
∞(

ziz
−1
j υxmi−mj ;x2

)
∞

×

(
z−1
j ziυ

−1x2+mi−mj ;x2
)
∞(

zjz
−1
i υxmi−mj ;x2

)
∞

. (2.15)

Furthermore, using the identity

Nc∏
j=1

(
x−1(−zj)taτ

)(|mj |−mj)/2
(
z−1
j t−1

a τ−1x2+mj ;x2
)

(|mj |−mj)/2

(zjtaτxmj ;x2)(|mj |−mj)/2
= 1, (2.16)

5We call a tree a one-branch tree if each node has at most one child node.
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the contributions of the fundamental and antifundamental chiral multiplets are written as

follows:

ZQa(x, t, τ, z,m) =

Nc∏
j=1

(
x−1zjtaτ

)−|mj |/2 (z−1
j t−1

a τ−1x2+|mj |;x2
)
∞(

zjtaτx|mj |;x2
)
∞

=

Nc∏
j=1

(
x−1(−zj)taτ

)−mj/2 (z−1
j t−1

a τ−1x2+mj ;x2
)
∞

(zjtaτxmj ;x2)∞
,

(2.17)

Z
Q̃b̃

(x, t̃, τ, z,m) =

Nc∏
j=1

(
x−1z−1

j t̃aτ
)−|mj |/2 (zj t̃−1

a τ−1x2+|mj |;x2
)
∞(

z−1
j t̃aτx|mj |;x2

)
∞

=

Nc∏
j=1

(
x−1(−zj)−1t̃aτ

)−mj/2 (zj t̃−1
a τ−1x2+mj ;x2

)
∞(

z−1
j t̃aτxmj ;x2

)
∞

.

(2.18)

We then insert (2.13) into the above expressions of the 1-loop contributions and sum their

product over the poles we choose, which are represented by the labeled forest graphs we

explained. From now on it is convenient to use mj = mj−mp(j) instead of mj . mj is written

in terms of mj as mj =
∑lj−1

n=0 mpn(j). Then carefully organizing the whole expression, we

observe that the index is factorized into three parts, which we call the perturbative part,

the vortex part and the antivortex part respectively. The perturbative part is independent

of nj = (|mj |+mj)/2 + kj and n̄j = (|mj | −mj)/2 + kj . The vortex part depends on nj but

not on n̄j while the antivortex part depends on n̄j but not on nj . The detailed computation

for each part is relegated to appendix A. After the computation, the superconformal index

is written in the following factorized form:

I(x, t, t̃, τ, υ, w) =
∑
p

Ippert

(
x, t, t̃, τ, υ

)
Zpvortext

(
x, t, t̃, τ, υ,w

)
Zpantivortex

(
x, t, t̃, τ, υ,w

)
(2.19)

where w = (−1)−κ−
Nf−Na

2 w and p = (p1, . . . , pNf ) is a partition of integer Nc into Nf

nonnegative integers satisfying
∑Nf

a=1 pa = Nc. The perturbative part is given by

Ippert(x, t = eiM , t̃, τ, υ = eiν)

=

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

( 6=q if a=b)

2 sinh
iMa − iMb + iν(q − r)

2


 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

(
tat
−1
b υq−r−1x2;x2

)
∞(

t−1
a tbυ−q+r+1;x2

)′
∞



×

Nf∏
a=1

pa∏
q=1

∏Nf
b=1

(
tat
−1
b υq−1x2;x2

)
∞∏Na

b=1

(
tat̃bτ2υq−1;x2

)
∞

∏Na
b=1

(
t−1
a t̃−1

b τ−2υ−q+1x2;x2
)
∞∏Nf

b=1

(
t−1
a tbυ−q+1;x2

)′
∞


(2.20)
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where the prime symbol indicates that the zero factor in the q-Pochhammer symbol is

omitted. Next the vortex part and the antivortex part are given by

Zpvortex(x, t, t̃, τ, υ,w) =
∑
nj≥0

w
∑Nc
j=1

∑lj−1

n=0 nnj Zp(nj)(x, t, t̃, τ, υ), (2.21)

Zpantivortex(x, t, t̃, τ, υ,w) =
∑
n̄j≥0

w−
∑Nc
j=1

∑lj−1

n=0 n̄nj Zp(n̄j)(x
−1, t−1, t̃−1, τ−1, υ−1), (2.22)

Zp(nj)(x = e−γ , t = eiM , t̃ = eiM̃ , τ = eiµ, υ = eiν)

= e
−Sp

(nj)
(x,t,τ,υ)

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

( 6=q if a=b)

∑r
n=1 n(b,n)∏
k=1

sinh iMa−iMb+iν(q−r)+2γk
2

sinh
iMa−iMb+iν(q−r)+2γ(k−1−

∑q
n=1 n(a,n))

2



×

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

( 6=q if a=b)

∑r
n=1 n(b,n)∏
k=1

sinh
iMa−iMb+iν(q−r−1)+2γ(k−1−

∑q
n=1 n(a,n))

2

sinh iMa−iMb+iν(q−r+1)+2γk
2


×

Nf∏
b=1

pb∏
r=1

∑r
n=1 n(b,n)∏
k=1

∏Na
a=1 sinh −iM̃a−iMb−2iµ−iν(r−1)+2γ(k−1)

2∏Nf
a=1 sinh iMa−iMb−iν(r−1)+2γk

2

 , (2.23)

where

e
−Sp

(nj)
(x,t,τ,υ)

=

Nf∏
b=1

pb∏
r=1

(
tbτυ

r−1x
∑r
n=1 n(b,n)

)κ∑r
n=1 n(b,n)

(2.24)

n(b,n) is a shorthand notation for n∑b−1
a=1 pa+n. Note that the antivortex part is obtained from

the vortex part by inverting all the fugacities, x, t, t̃, τ, υ, w → x−1, t−1, t̃−1, τ−1, υ−1,w−1.

We expect that this is the vortex partition function on R2 × S1 of the N = 2 U(Nc)κ
gauge theory with Nf fundamental, Na antifundamental and one adjoint matter under the

condition |κ| ≤ Nf−Na
2 . As far as we know, there is no explicit computation of the vortex

partition function of a 3d N = 2 theory with an adjoint matter. Nevertheless, from the

Higgs branch localization of the 3d superconformal index [20, 30] or the consideration of

holomorphic blocks [18], what we call the “vortex” (“antivortex”) parts should correspond

to the vortex (antivortex) partition function of a 3d N = 2 theory with an adjoint matter.

For the special case of N = 4 theories, the above reduces the known results of the vortex

partition function [23].

3 3d N = 4 Seiberg-like duality

Our first application is the 3d N = 4 U(Nc) gauge theories with fundamental matters.

The theory has the SO(4)R R-symmetry as well as the global symmetry SU(Nf )×U(1)T .

Those theories are classified into 3 classes according to the number of flavors: good, ugly,

bad [21, 22]. A theory is “good” if the number of flavors Nf and the rank of the gauge group

Nc satisfy Nf > 2Nc − 1. In that case the monopole operators appearing in the theory

have the R-charges larger than 1/2. Accordingly they have the conformal dimensions larger
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than 1/2 in IR, which is required for the unitarity of an IR fixed point. A theory is “ugly”

if Nf = 2Nc − 1. In that case the theory has a monopole operator having the R-charges,

hence the conformal dimensions, 1/2. Therefore, they are decoupled in the IR fixed point.

It is also known that the theory has a Seiberg-like dual description, the U(Nc − 1) theory

with Nf fundamental matters and one decoupled free twisted hypermultiplet [21, 22]. The

original and dual theory flow to the same IR fixed point. The decoupled monopole operator

of the original theory corresponds to the decoupled hypermultiplet of the dual theory. A

theory is “bad” if Nc ≤ Nf < 2Nc−1. Such a theory has monopole operators whose UV R-

charges are less than 1/2, and even less than zero. If those UV R-charges are preserved to

IR along the RG flow, the corresponding monopole operators have the unitarity violating

conformal dimensions. However, if there is accidental global symmetries in IR, the R

symmetry in IR can be mixed with such global symmetries. Hence the IR R-charge i.e.,

the conformal dimension of the monopole operators does not need to be less than 1/2.

Indeed, those monopole operators are expected to have the conformal dimensions exactly

1/2 and thus decouple from the theory. Therefore, a “bad” theory has the IR fixed point

consisting of a decoupled free sector and an interacting sector. Interestingly there is another

UV description describing those two sectors separately. In that description, the decoupled

sector is described by 2Nc − Nf free twisted hypermultiplets while the interacting sector

is described by the U(Nf − Nc) theory with Nf fundamental matters [23–25]. Note that

there is no interacting sector if Nf = Nc. This is the N = 4 version of the conjectured 3d

Seiberg-like duality for U(Nc) gauge theories.

Although the localization computations of various partition functions usually provide

powerful tools for testing dualities, they have convergence issues for the “bad” theories. The

definition (2.1) defines the index as a power series in x. However, the matrix integral (2.3)

is not analytic at x = 0 for bad theories since it contains the BPS monopole operators

of negative conformal dimensions. In order to avoid those issues, one can try to find

a quantity that is free of the convergence issue, e.g., the vortex partition function on

R2 × S1 in [23], or to use the analytically continued version of the partition function, e.g.,

the S3
b partition function in [24]. Our strategy is similar. In fact, since the factorized

index is written in terms of the vortex partition functions, the comparison of the indices

of a duality pair reduces to that of the vortex partition functions, which is numerically

performed in [23]. Here we provide an analytic proof of the agreement of the vortex

partition functions and that of the perturbative parts as well. Thus, we provide a complete

proof of the index agreement. This also clarifies the role of accidental R-symmetry relating

UV and IR quantities. Previously comparisons have been made for some limits of the

superconformal index, which correspond to the Hilbert series [26, 28].

3.1 SCI under duality

The superconformal index of a 3d N = 4 theory can be defined as

I (x, ti) = Tr(−1)F exp
(
−β′{Q,S}

)
xE+jyRH−RC

(∏
i

tFii

)
(3.1)
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where RH and RC are the charges of the Cartans of SO(4)R = SU(2)H × SU(2)C R-

symmetry and the other variables have the same meaning as in the N = 2 case. The BPS

condition is given by

{Q,S} = E −RH −RC − j ≥ 0. (3.2)

It is convenient to set y = τ2 such that τ plays the role of the U(1)A fugacity in the N = 2

language. The factorized index of a N = 4 theory can be obtained from the N = 2 result

by appropriately adjusting fugacities. Firstly we substitute t̃a = t−1
a and shift τ → τx1/2

because the fundamental and antifundamental chiral multiplets form the hypermultiplets

whose U(1)R charges are fixed to 1/2. In addition, since the adjoint chiral multiplet is now

a part of the N = 4 vector multiplet, which is a triplet of SU(2)C , it has U(1)R charge

1 and the U(1)A charge −2. There is no U(1)X symmetry independently rotating the

adjoint chiral multiplet because of the superpotential term Q̃XQ. Therefore, we need to

substitute υ = τ−2x. Then it is easy to see that Ipert vanishes if pa > 1 in eq. (2.19). Thus,

for a N = 4 theory the nontrivial poles are labeled by the choices of Nc distinct numbers

between 1 and Nf , which is the same as in the N = 2 case without an adjoint matter [19].

Therefore, the superconformal index of the 3d N = 4 U(Nc) gauge theory with Nf

fundamental matters can be written as follows:

I(x, t, τ, w) =
∑

1≤b1<...
<bN≤Nf

I
{bj}
pert (x, t)Z

{bj}
vortex (x, t, τ, w)Z

{bj}
antivortex (x, t, τ, w) (3.3)

where

I
{bj}
pert (x, t = eiM , τ)

=

 Nc∏
i,j=1
(i 6=j)

2 sinh
iMbi − iMbj

2


 Nc∏
j=1

∏Nf
a=1( 6=bj)

(
tbj t
−1
a x2;x2

)
∞∏

a∈{bj}c
(
tbj t
−1
a τ2x;x2

)
∞

∏
a∈{bj}c

(
t−1
bj
taτ
−2x;x2

)
∞∏Nf

a=1( 6=bj)

(
t−1
bj
ta;x2

)
∞

,
(3.4)

Z
{bj}
vortex(x, t, τ, w) =

∑
nj≥0

w
∑Nc
j=1 njZ

{bj}
(nj)

(x, t, τ), (3.5)

Z
{bj}
antivortex(x, t, τ, w) =

∑
nj≥0

w−
∑Nc
j=1 njZ

{bj}
(nj)

(x, t, τ), (3.6)

Z
{bj}
(nj)

(x = e−γ , t = eiM , τ = eiµ)

=

Nc∏
j=1

nj∏
k=1

Nc∏
i=1

sinh
iMbi

−iMbj
+2iµ+2γ(k− 1

2
−ni)

2

sinh
iMbi

−iMbj
+2γ(k−1−ni)
2

 Nf∏
a∈{bj}c

sinh
iMa−iMbj

−2iµ+2γ(k− 1
2

)

2

sinh
iMa−iMbj

+2γk

2

 .

(3.7)

We will show each part is exactly the same as that of the dual theory, the U(Nf − Nc)

theory with Nf fundamental matters possibly with the additional hypermultiplets. Firstly

let us consider the perturbative part, I
{bj}
pert , which is straightforward to prove. Let us have
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a look at the following factor:

Nc∏
j=1

Nf∏
a=1( 6=bj)

(
tbj t
−1
a x2;x2

)
∞(

t−1
bj
ta;x2

)
∞

.

It can be decomposed into two parts as follows:

Nc∏
j=1

Nf∏
a=1( 6=bj)

(
tbj t
−1
a x2;x2

)
∞(

t−1
bj
ta;x2

)
∞

=

 Nc∏
i,j=1
(i 6=j)

(
tbj t
−1
bi
x2;x2

)
∞(

t−1
bj
tbi ;x

2
)
∞


 Nc∏
j=1

∏
a∈{bj}c

(
tbj t
−1
a x2;x2

)
∞(

t−1
bj
ta;x2

)
∞



=

 Nc∏
i,j=1
(i 6=j)

1

1− t−1
bj
tbi


 Nc∏
j=1

∏
a∈{bj}c

(
tbj t
−1
a x2;x2

)
∞(

t−1
bj
ta;x2

)
∞

 . (3.8)

Note that the flavor indices are decomposed into Nc flavors and Nf−Nc flavors. Therefore,

the perturbative part can be written as

I
{bj},Nc,Nf
pert

(
x, t = eiM , τ

)
=

Nc∏
j=1

∏
a∈{bj}c

(
tbj t
−1
a x2;x2

)
∞(

tbj t
−1
a τ2x;x2

)
∞

(
t−1
bj
taτ
−2x;x2

)
∞(

t−1
bj
ta;x2

)
∞

=
∏

a∈{b̃j}c

Nf−Nc∏
j=1

(
tat
−1

b̃j
x2;x2

)
∞(

tat
−1

b̃j
τ2x;x2

)
∞

(
t−1
a tb̃jτ

−2x;x2
)
∞(

t−1
a tb̃j ;x

2
)
∞

= I
{b̃j},Nf−Nc,Nf
pert

(
x, t−1 = e−iM , τ

)
(3.9)

where {b̃j} is defined by {b̃j} = {bj}c. This shows that the perturbative part with a given

choice of {bj} is the same as that of the dual theory with the conjugate choice {b̃j} = {bj}c.
Now let us examine the vortex part. As a first step, we show the following identity:

Z
{bj},Nc,2Nc
vortex (x, t, τ, w) = Z

{bj}c,Nc,2Nc
vortex

(
x, t−1, τ, w

)
. (3.10)

The left hand side is written as

∑
n≥0

wn

 ∑
nj≥0,∑
j nj=n

Z
{bj}
(nj)

(x, t, τ)


Following the method used for 2d theories [31], one can show that the coefficient of wn on

each side coincides with each other. Firstly one can write down the coefficient of wn as the
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following integral expression:∑
nj≥0,∑
j nj=n

Z
{bj},Nc,2Nc
(nj)

(x = e−γ , t = eiM , τ = eiµ)

=
∑
nj≥0,∑
j nj=n

Nc∏
j=1

nj∏
k=1

Nc∏
i=1

sinh
iMbi

−iMbj
+2iµ+2γ(k− 1

2
−ni)

2

sinh
iMbi

−iMbj
+2γ(k−1−ni)
2

 ∏
a∈{bj}c

sinh
iMa−iMbj

−2iµ+2γ(k− 1
2)

2

sinh
iMa−iMbj

+2γk

2



=
1

n!

∫ 2π

φI=0

(
n∏
I=1

dφI
2π

1

sinh γ

) n∏
I 6=J

sinh iφI−iφJ
2

sinh iφI−iφJ+2γ
2

 n∏
I,J=1

sinh iφI−iφJ−2iµ+γ
2

sinh iφI−iφJ−2iµ−γ
2


×

n∏
I=1

(∏
a∈{bj} sinh iφI−iMa−2iµ

2

)(∏
a∈{bj}c sinh iMa−iφI−2iµ

2

)
(∏

a∈{bj} sinh iφI−iMa+γ
2

)(∏
a∈{bj}c sinh iMa−iφI+γ

2

)
(3.11)

where we assume −2iµ > γ > 0 and Ma’s are real. Regarding the integration as a contour

integration along the unit circle |zI | = |eiφI | = 1, one can apply the residue theorem. Then

the relevant poles inside the unit circle are

iφI =


iMa − γ, a ∈ {bj}
iφJ − 2γ, 1 ≤ I( 6= J) ≤ n
iφJ + 2iµ+ γ. 1 ≤ I( 6= J) ≤ n

(3.12)

However, if the last type of a pole is chosen, the residue becomes zero because either

sinh iφI−iφJ−2iµ+γ
2 or sinh iφI−iMa−2iµ

2 in the numerator vanishes. Therefore, only the first

two types of poles can be chosen. Then the intersection point is written as

iφI = iMbj − (2k − 1)γ, k = 1, . . . , nj ,

Nc∑
j=1

nj = n. (3.13)

Thus, one can check that the above integral gives rise to the original vortex partition

function. On the other hand, one can also take the poles from the outside of the unit

circle. In that case, the relevant poles are

iφI =


iMa + γ, a ∈ {bj}c

iφJ + 2γ, 1 ≤ I( 6= J) ≤ n
iφJ − 2iµ− γ, 1 ≤ I( 6= J) ≤ n

(3.14)

but again the last type of a pole gives rise to the vanishing residue. Therefore, the nontrivial

intersection point is written as

iφI = iMcj + (2k − 1)γ, k = 1, . . . , nj ,

Nc∑
j=1

nj = n (3.15)

where cj ∈ {bj}c. Then one can check that the residue is given by∑
nj≥0,∑
j nj=n

Z
{bj}c,Nc,2Nc
(nj)

(x, t−1, τ). Thus, we have proven the identity (3.10).
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In order to prove the agreement of the vortex part for Nf < 2Nc, we consider the large

mass behavior of the vortex partition function. Note that we have assumed |ta| = 1; i.e,

Ma is on the real line. From now on we analytically continue Ma to the whole complex

plane such that its complex part corresponds to real mass of the a-th flavor. In appendix B

we examine the behavior of the vortex partition function under the large real mass limit.

We have two different limits of the vortex partition function depending on whether the

large mass flavor is picked from {bj} or from {bj}c:

lim
iMb→±∞

Z
{bj},Nc,Nf
vortex (x, t, τ, w) (3.16)

= Zhyper(x, τ, wτ
∓(2Nc−Nf−1)x±(2Nc−Nf−1)/2)× Z{bj},Nc−1,Nf−1

vortex (x, t′′, τ, wτ±1x∓
1
2 ),

lim
iMa→±∞

Z
{bj},Nc,Nf
vortex (x, t, τ, w) = Z

{bj},Nc,Nf−1
vortex (x, t′, τ, wτ∓1x±1) (3.17)

where Zhyper is the contribution of the free twisted hypermultiplet whose square gives rise

to the index of the hypermultiplet: Ihyper(x, τ, w) = Zhyper(x, τ, w)Zhyper(x
−1, τ−1, w−1). b

and a are chosen such that b ∈ {bj} and a ∈ {bj}c.
Using those results one can find a set of identities for Nf < 2Nc. Firstly we assume

2Nc is not in {bj}. We then take the limit iM2Nc →∞ for (3.10). Using (3.17) we observe

that the left hand side becomes

lim
iM2Nc→∞

Z
{bj},Nc,2Nc
vortex (x, t, τ, w) = Z

{bj},Nc,2Nc−1
vortex (x, t′, τ, wτ−1x

1
2 ) (3.18)

where t′ = (t1, . . . , t2Nc−1). On the other hand, for the right hand side we should use (3.16)

because 2Nc is an element of {bj}c. Thus, the right hand side becomes

lim
−iM2Nc→−∞

Z
{bj}c,Nc,2Nc
vortex

(
x, t−1, τ, w

)
= Zhyper

(
x, τ, wτ−1x

1
2

)
× Z{bj}

c,Nc−1,2Nc−1
vortex

(
x, t′−1, τ, wτ−1x

1
2

) (3.19)

where the additional contribution of one free twisted hypermultiplet appears. Repeating

this procedure, we eventually obtain the following identity:

Z
{bj},Nc,Nf
vortex

(
x, t, τ, wτ−(2Nc−Nf )x(2Nc−Nf )/2

)
= Z

{bj}c,Nf−Nc,Nf
vortex

(
x, t−1, τ, wτ−(2Nc−Nf )x(2Nc−Nf )/2

)
×

2Nc−Nf∏
i=1

Zhyper

(
x, τ, wτ−(2i−1)x(2i−1)/2

)
,

(3.20)

or equivalently,

Z
{bj},Nc,Nf
vortex (x, t, τ, w)

= Z
{bj}c,Nf−Nc,Nf
vortex

(
x, t−1, τ, w

)
×

2Nc−Nf∏
i=1

Zhyper

(
x, τ, wτ 2Nc−Nf−2i+1x−(2Nc−Nf−2i+1)/2

)
.

(3.21)
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Note that the procedure terminates at Nf = Nc because if Nf = Nc, t dependency of the

identity completely disappears. Thus, the above identity holds for Nc ≤ Nf ≤ 2Nc.

From (3.9) and (3.21), we conclude that the superconformal index of the N = 4 U(Nc)

gauge theory with Nc ≤ Nf ≤ 2Nc flavors satisfies the following identity:

INc,Nf (x, t, τ, w)

= INf−Nc,Nf (x, t−1, τ, w)×
2Nc−Nf∏
i=1

Ihyper

(
x, τ, wτ 2Nc−Nf−2i+1x−(2Nc−Nf−2i+1)/2

)
,

(3.22)

which is strong evidence of the Seiberg-like duality for 3d N = 4 theories. Note that a

similar identity is observed for the S3
b partition functions [24]. In addition, one can rewrite

the free twisted hypermultiplet part as follows:

2Nc−Nf∏
i=1

Ihyper

(
x, τ, wτ 2Nc−Nf−2i+1x−(2Nc−Nf−2i+1)/2

)

=

2Nc−Nf∏
i=1

Ihyper

(
x, τ−2Nc+Nf+2ix(2Nc−Nf−2i+1)/2, w

)
.

(3.23)

Note that if we assign generic U(1)A and U(1)R charges A and R to the twisted hypermul-

tiplet, its index is given by

Ihyper(x, τ
−Ax−R+ 1

2 , w) = PE

[
τAwxR − τ−Aw−1x2−R

1− x2

]
× PE

[
w ↔ w−1

]
. (3.24)

Thus, (3.23) is the index contribution of free twisted hypermultiplets of the U(1)A charges

2Nc−Nf − 2i and the U(1)R charges −(2Nc−Nf − 2i)/2 with i = 1, . . . , 2Nc−Nf . Com-

paring with table 2, those charges are exactly the U(1)A and U(1)R charges of monopole

operators Vi−1,± in the original theory. Note that the free hypermultiplets carry nonstan-

dard U(1)A and R-charges. Such features are also present in other dualities with accidental

symmetries in IR [13]. The peculiar feature of the current example is that some of the op-

erators are carrying negative R-charges in UV. Thus, the above computation supports the

expectation that monopole operators of negative UV R-charges decouple IR.

3.2 Examples

3.2.1 Nc = Nf

Let us examine some examples. Firstly we consider the U(1) theory with one flavor. This

theory is “ugly”, and its monopole operator has the conformal dimension 1/2. Its Seiberg-

like dual theory is a free theory of one twisted hypermultiplet. From (3.22) one can see

that their indices are exactly the same:

I1,1(x, 1, τ, w) = Ihyper(x, τ, w). (3.25)

Let us have a look at the chiral ring elements, especially the generators, which describe the

moduli space of the theory. Candidates of the chiral ring generators of the original theory
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U(1)R SU(Nf ) U(1)A U(1)T

Q 1/2 Nf 1 0

Q̃ 1/2 Nf 1 0

X 1 1 -2 0

Vi,±
1
2Nf −Nc + 1 + i 1 −Nf + 2Nc − 2− 2i ±1

Table 2. The global symmetry charges of chiral operators in the N = 2 language. The U(1)R and

U(1)A charges are given by RH + RC and 2RH − 2Rc respectively where RH and RC are spins of

the SO(4)R = SU(2)H × SU(2)C R-symmetry.

are the meson operator M = QQ̃, two monopole operator V0,± and the Casimir invariant

trX. However, the meson operator is lifted due to the superpotential term Q̃XQ and

there is a nontrivial relation between the monopole operators and the Casimir invariant:

V0,+V0,− = trX [28]. Therefore, the only chiral ring generators are the monopole operators.

Under the duality those monopole operators are mapped to the two chiral multiplets in the

free twisted hypermultiplet, which are again two chiral ring generators of the dual theory.

Their contribution appears in the index as the lowest nontrivial energy term:

I1,1(x, 1, τ, w) = 1 +
√
x

(
w

τ
+

1

τw

)
+ x

(
1

τ2
+
w2

τ2
+

1

τ2w2

)
+O

(
x3/2

)
(3.26)

In addition, it is known that for a superconformal theory with large enough supersymmetry,

the global symmetry as well as the R-symmetry can be read off from the superconformal

index because the conserved currents form supermultiplets [32–34]. For a N = 4 theory,

the global symmetry current forms a supermultiplet whose lowest component is a spacetime

scalar in the representation 3× adj of SO(4)R ×G where G is the global symmetry of the

theory. It is decomposed under U(1)R×U(1)A×G ⊂ SO(4)R×G as adj1,−1+adj0,0+adj−1,1

where adj means the adjoint representation of G while the subscripts denote the charges

of U(1)R and U(1)A. The index captures the BPS sector of that, adj1,−1, whose index

contribution is therefore τ−2χGadjx. In the current example, x1 term in the superconformal

index is xτ−2(w2 + 1 +w−2) = xτ−2χ
SU(2)
adj , which forms the character of the SU(2) adjoint

representation. It tells us that the U(1)T symmetry of the original theory is enhanced to

SU(2).

Another example is the U(2) theory with two flavors whose dual theory is the free

theory of two twisted hypermultiplets. This theory has two pairs of monopole operators

of the UV R-charges 0 and 1: V0,±, V1,±. It is the simplest example of a “bad” theory,

for which there exist monopole operators of unitarity violating UV R-charges. Thus, if we

compute its index using the UV content, we have infinitely many zero energy terms:

I2,2(x, t, τ, w) =
∑
n≥0

∑
n̄≥

wn−n̄ +O(x) (3.27)

where the term wn−n̄ corresponds to the operator V n
0,+V

n̄
0,−. For this reason, usual pertur-

bative analysis of the index by series expansion is not allowed in this case. Indeed, the
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index we compute is not fully refined because there should be additional IR symmetries

which are not visible in UV. Nevertheless, since we have the analytic identity (3.22). We

can observe that the indices of the original and dual theories coincide if we assign specific

global charges to the free twisted hypermultiplets on the dual side:

I2,2(x, t, τ, w) = Ihyper

(
x, τ, wτx−

1
2

)
× Ihyper

(
x, τ, wτ−1x

1
2

)
. (3.28)

Furthermore, this identity allows us to compare IR symmetry and UV symmetry of the

original theory. First of all, since the dual theory is free, its index is completely deter-

mined by the UV content although the right hand side of (3.28) is not fully refined. We

can introduce fugacities w1 and w2 for U(1)B,1 and U(1)B,2, each of which rotates each

hypermultiplet independently. Then the right hand side of (3.28) can be refined as

Ihyper(x, τ, w1)× Ihyper(x, τ, w2). (3.29)

Due to duality the refined index (3.29) should be that of the original theory.6 The in-

dex (3.29) is reduced to the unrefined index (3.28) by w1 → wτx−
1
2 , w2 → wτ−1x

1
2 . There-

fore, one can identify the UV R-charges and global charges with the IR R-charges and

global charges as follows:

RUV = RIR − 1

2
BIR

1 +
1

2
BIR

2 , (3.30)

AUV = AIR +BIR
1 −BIR

2 , (3.31)

TUV = BIR
1 +BIR

2 (3.32)

where RUV/IR and AUV/IR are U(1)R × U(1)A charges in UV/IR; TUV is U(1)T charge

in UV while BIR
1 , BIR

2 are U(1)B,1 × U(1)B,2 charges in IR. Note that only the diagonal

U(1) of U(1)B,1 × U(1)B,2, which corresponds to U(1)T , is visible in UV on the original

side. From the above equations, with the standard R-charge and U(1)A assignment of

free hypermultiplets, one can read off the original UV charges. For example, one finds

that R-charges of two hypermultiplets are 0, 1, recovering the previous assignments. In

addition, we can again read off the global symmetry from the superconformal index. Series

expanding (3.29):

Ihyper(x, τ, w1)× Ihyper(x, τ, w2)

= 1 +
√
x

(
w1

τ
+
w2

τ
+

1

τw2
+

1

τw1

)
+ x

(
2

τ2
+
w2

1

τ2
+
w2w1

τ2
+

w1

τ2w2
+
w2

2

τ2
+

1

τ2w2
2

+
w2

τ2w1
+

1

τ2w2w1
+

1

τ2w2
1

)
+O

(
x3/2

)
(3.33)

one can see that the x1 term can be written as xτ−2χ
Sp(2)
adj , which represents the BPS sector

of the lowest component of the global current supermultiplet. It implies that the theory

6The refined index is the index with the fugacities of all the global symmetry.
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has a conserved current in the adjoint representation of Sp(2). Therefore, the enhanced IR

symmetry is Sp(2). We already denoted its Cartan as U(1)B,1×U(1)B,2 with the fugacities

w1, w2. For general Nc = Nf = N , one can see that the UV global symmetry U(1)T is

enhanced to Sp(N) in IR.7

3.2.2 Nc < Nf < 2Nc − 1

Let us consider the U(Nc) gauge theory with Nf flavors where Nc < Nf < 2Nc − 1. Its

dual theory is the U(Nf −Nc) gauge theory with Nf flavors and 2Nc −Nf decoupled free

twisted hypermultiplets. One can check that the dual theory is a “good” theory. Thus, we

expect no additional IR symmetry emerges for the dual theory. Then we are able to write

down the refined index of the dual theory by only using the UV content. It is given by

INf−Nc,Nf
(
x, t−1, τ, w

)
×

2Nc−Nf∏
i=1

Ihyper(x, τ, wi). (3.34)

Again this refined index should be that of the original theory. Comparing with (3.22),

the refined index is reduced to the partially refined index (3.22) with wi →
wτ2Nc−Nf−2i+1x−(2Nc−Nf−2i+1)/2. Therefore, the UV charges and IR charges are identified

as follows:

RUV = RIR − 1

2

2Nc−Nf∑
i=1

(2Nc −Nf − 2i+ 1)BIR
i , (3.35)

AUV = AIR +

2Nc−Nf∑
i=1

(2Nc −Nf − 2i+ 1)BIR
i , (3.36)

TUV = T IR +

2Nc−Nf∑
i=1

BIR
i . (3.37)

This result is consistent with the general pattern observed in [35]. The monopole operators

Vi,± in the U(Nc) theory are mapped to either free twisted hypermultiplets or the monopole

operators Ṽi,± in the dual U(Nf −Nc) theory:

(Vi,+, V2Nc−Nf−1−i,−)↔ free twisted hypers,

Vi,± ↔ ṼNf−2Nc+i,±.

i = 0, . . . , 2Nf −Nc − 1

i = 2Nc −Nf , . . . , Nc

(3.38)

Recall that T IR was absent when Nc = Nf . For Nc 6= Nf , the UV global symmetry

SU(Nf ) × U(1)T is enhanced to SU(Nf ) × U(1)T × Sp(2Nc − Nf ) in IR. For instance, if

we consider the U(3) theory with four flavors, its refined index is obtained from the dual

7We adopt the convention that the rank of Sp(N) is N .
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theory index as follows:

I1,3(x, t−1, τ, w)×
2∏
i=1

Ihyper(x, τ, wi)

= 1 +
√
x

(
w1

τ
+
w2

τ
+

1

τw2
+

1

τw1

)
+ x

(
3τ2 +

t2τ
2

t1
+
t3τ

2

t1
+
t3τ

2

t2
+
t4τ

2

t1
+
t4τ

2

t2

+
t4τ

2

t3
+
t1τ

2

t2
+
t1τ

2

t3
+
t2τ

2

t3
+
t1τ

2

t4
+
t2τ

2

t4
+
t3τ

2

t4
+

3

τ2

+ +
w2

1

τ2
+
w2

2

τ2
+
w1w2

τ2
+

w2

τ2w1
+

w1

τ2w2

1

τ2w1w2
+

1

τ2w2
1

+
1

τ2w2
2

)
+O

(
x3/2

)
.

(3.39)

The x1 term is written as x(τ2χ
SU(4)
adj + τ−2 + τ−2χ

Sp(2)
adj ), which indicates that the global

symmetry is SU(4)×U(1)T × Sp(2).

4 3d N = 2 Seiberg-like duality with an adjoint

The second application of the factorization is the duality of 3d N = 2 U(Nc)κ gauge

theories with Nf fundamental Qa, Na antifundamental Q̃a, one adjoint matter X and the

superpotential W = trXn+1. The Chern-Simons coupling κ should satisfy the condition

κ +
Nf+Na

2 ∈ Z due to the quantization of the effective CS coupling. Also we restrict

our interest, as in section 2, to the cases with |κ| ≤ |Nf−Na|
2 . The theory has the global

symmetry SU(Nf ) × SU(Na) × U(1)A × U(1)T as well as the R-symmetry U(1)R. U(1)X
doesn’t exist due to the superpotential. The U(1)R charge of the adjoint chiral multiplet

is fixed to 2
n+1 .

If Nf = Na, it has been proposed that the theory has a Seiberg-like dual, U(nNf −Nc)

gauge theory with Nf pairs of fundamental qb̃ and antifundemental q̃a, one adjoint Y , and

n(Nf
2 + 2) singlet matters Mi

b̃
a and Vi,± where i = 0, . . . , n − 1 [15]. The theory has the

superpotential

W = trY n+1 +

n−1∑
i=0

Miq̃Y
n−1−iq +

n−1∑
i=0

(Vi,+vn−1−i,− + Vi,−vn−1−i,+) (4.1)

where vi,±’s are the monopole operators of the dual theory with the minimal fluxes. Let

us call it KP duality. The global symmetry and charges are summarized in table 3.

4.1 Generalization of KP duality to chiral-like theories

In this subsection, we investigate the generalization of the KP duality for chiral-like theo-

ries, which may include the CS coupling under the condition |κ| ≤ |Nf−Na|2 .

Recall that the theory with Nf = Na and κ = 0 has two SU(Nf ) global symmetries,

which we denote by SU(Nf )1 and SU(Nf )2. The former rotates Q while the latter rotates Q̃.

Considering the combination with the axial symmetry U(1)A and the diagonal U(1)G of the

gauge symmetry, the symmetries can be written as SU(Nf )1×SU(Nf )2×U(1)A×U(1)G ∼
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U(1)R SU(Nf )1 SU(Nf )2 U(1)A U(1)T

Q ∆Q Nf 1 1 0

Q̃ ∆Q 1 Nf 1 0

X 2
n+1 1 1 0 0

q 2
n+1 −∆Q 1 Nf -1 0

q̃ 2
n+1 −∆Q Nf 1 -1 0

Y 2
n+1 1 1 0 0

Mi 2∆Q + 2i
n+1 Nf Nf 2 0

Vi,±
(1−∆Q)Nf

− 2
n+1

(Nc−1−i) 1 1 −Nf ±1

vi,±
−(1−∆Q)Nf

+ 2
n+1

(Nc+1+i) 1 1 Nf ±1

Table 3. The global symmetry charges for the KP duality.

SU(Nf )1 × U(Nf )2 × U(1)G.8 Then we will consider a real mass deformation for U(Nf )2.

In particular, denoting the Cartan subgroup of U(Nf )2 by
∏Nf
ã′=1 U(1)ã′ , we turn on real

masses of U(1)ã′ for ã′ = Na+1, . . . , Nf so that Nf−Na of the antifundamental matters are

integrated out. The real mass corresponds to turning on the scalar vev for the background

vector multiplet of interest. In this procedure, each charged massive fermion of mass m

generates a CS term at level ∆κ = 1
2sign(m) for the gauge symmetry. In fact, it can also

generate a mixed CS term at level

∆κij =
1

2
qiqjsign(m) (4.2)

for each pair of abelian factors of the symmetries labeled by i, j. qi, qj are corresponding

abelian charges of the fermion. We want to avoid extra mixed CS terms associated with

the residual global symmetries after integrating out the fermions. Thus, we first redefine

abelian global symmetries such that the massive fermions are not charged under them:

Rnew = R− (∆Q − 1)

Nf∑
ã′=Na+1

Fã′ , (4.3)

Anew = A−
Nf∑

ã′=Na+1

Fã′ (4.4)

where R,A are the U(1)R,U(1)A charges and each Fã′ is the U(1)ã′ charge. Then the

new charges of Q and Q̃ are given in table 4. In this way, one can avoid the mixed CS

terms associated with the global symmetries U(1)new
R × U(1)new

A × U(1)T × SU(Nf )1 ×
8Here we specify the global symmetry and a part of the gauge symmetry since in the dual theory we have

to consider the mixed Chern-Simons terms bewteen the global symmetry and the gauge symmetry U(1)G.
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U(1)new
R SU(Nf ) SU(Na) U(1)ã′ U(1)new

A U(1)T

Q ∆Q Nf 1 0 1 0

Q̃b̃ ∆Q 1 Na 0 1 0

Q̃b̃
′

1 1 1 δã′b̃′ 0 0

X 2
n+1 1 1 0 0 0

qb̃
2

n+1 −∆Q 1 Na 0 -1 0

qb̃′
2

n+1 − 1 1 1 −δã′b̃′ 0 0

q̃ 2
n+1 −∆Q Nf 1 0 -1 0

Y 2
n+1 1 1 0 0 0

Mi
b̃
a 2∆Q + 2i

n+1 Nf Na 0 2 0

Mi
b̃′
a ∆Q + 1 + 2i

n+1 Nf 1 δã′b̃′ 1 0

Vi,±
1
2

(1−∆Q)(Nf+Na)

− 2
n+1

(Nc−1−i) 1 1 −1
2 −Nf+Na

2 ±1

vi,±
− 1

2
(1−∆Q)(Nf+Na)

+ 2
n+1

(Nc+1+i)
1 1 1

2 Nf ±1

Table 4. The new symmetry charges for the KP duality. The indices ã′, b̃′ and b̃ run over ã′, b̃′ =

Na + 1, . . . , Nf and b̃ = 1, . . . , Na. We will turn on real masses for
∏Nf

ã′=Na+1 U(1)ã′ .

SU(Na). However, the mixed CS terms associated with the abelian factors of SU(Nf )2

are unavoidable. The massive fermions generate extra mixed CS terms between U(1)G
and U(1)ã′ ’s, which look like shifts of the FI coupling in the low-energy theory.9 Thus,

we introduce a bare FI coupling to the theory so that its low-energy theory doesn’t have

the FI term. In particular, if we turn on N+ positive real masses and N− negative real

masses for antifundamental matters, the low-energy effective theory is a U(Nc)κ,ζ theory

with Na = Nf −N+−N− antifundamental matters as well as the Nf fundamental and one

adjoint matters. The CS and FI couplings κ, ζ are given by

κ =
1

2
(N+ −N−), ζ = ζ0 −

1

2

 Na+N+∑
b̃′=Na+1

mb̃′ −
Nf∑

b̃′=Na+N++1

mb̃′

 (4.5)

where ζ0 is the bare FI coupling and mb̃′ is real mass for U(1)b̃′ , which is positive for

b̃′ = Na + 1, . . . , Na +N+ or negative for b̃′ = Na +N+ + 1, . . . , Nf . Thus, by taking a bare

9The N=2 SUSY completion of the mixed Chern-Simons term Aã′ ∧ FU(1)G has the term σã′DU(1)G ∼
mDU(1)G where Aã′ and σã′ are respectively the vector potential and scalar of N = 2 background vector

multiplet of U(1)ã′ .
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FI coupling

ζ0 =
1

2

 Na+N+∑
b̃′=Na+1

mb̃′ −
Nf∑

b̃′=Na+N++1

mb̃′

 , (4.6)

the low-energy effective theory has the vanishing FI term. There are also mixed CS terms

among U(1)ã′ ’s, whose effect is trivial when the background flux for the symmetries is

absent. Note that in this low-energy theory, a gauge invariant bare monopole operator

exists only when the effective CS level at σ → ±∞,

κeff(σ → ±∞) = κ±
Nf −Na

2
= ±N±, (4.7)

vanishes; i.e., N± = 0. Alternatively the monopole operators for chiral-like theories carry

a nonzero zero-point charge, which effectively changes the Chern-Simons level [4].

The real masses in the original theory are translated to real masses in the dual theory

dictated by the global symmetries. Table 4 again shows charges under the new symme-

tries (4.3) in the dual theory. One can see that the fundamental matter qb̃′ has real mass

−mb̃′ , which is negative for b̃′ = Na+1, . . . , Na+N+ or positive for b̃′ = Na+N++1, . . . , Nf .

Similarly, the singlet matter Mi
b̃′
a has real mass mb̃′ . On the other hand, real masses of V±

also include contributions of the FI coupling:

m+ = −1

2

Nf∑
b̃′=Na+1

mb̃′ + ζ0 = −
Nf∑

b̃′=Na+N++1

mb̃′ , (4.8)

m− = −1

2

Nf∑
b̃′=Na+1

mb̃′ − ζ0 = −
Na+N+∑
b̃′=Na+1

mb̃′ , (4.9)

each of which vanishes for N− = 0 or for N+ = 0 respectively.10 This is consistent with

the fact that on the original U(Nc) theory side, a gauge invariant bare monopole operator

exists only when N± = 0. The CS and FI couplings in the low-energy theory are

κdual = −1

2
(N+ −N−) = −κ, (4.10)

ζdual = −ζ0 +
1

2

 Na+N+∑
b̃′=Na+1

mb̃′ −
Nf∑

b̃′=Na+N++1

mb̃′

 = 0. (4.11)

Thus, integrating out the massive fields, the low-energy effective theory of the dual theory

is a U(nNf − Nc)−κ theory with Na fundamental q, Nf antifundamental q̃, one adjoint

Y , nNfNa singlets Mi and possibly n singlet matters Vi,+ or Vi,− depending on κ. Again

there exists a bare monopole operator in the dual low-energy theory if N+ = 0 or N− = 0.

10− 1
2

∑Nf

b̃′=Na+1
mb̃′ of eq. (4.8) corresponds to the scalar vevs of U(1)b̃′=Na+1,...,Nf

and ζ0 is the scalar

vev of U(1)T vector multiplet. We have the BF term AU(1)T ∧FU(1)G so that monopole operator is charged

under U(1)T .
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In particular, when N+ = 0, both Vi,+ and vi,− exist, so the low-energy theory inherits the

superpotential terms
n−1∑
i=0

Vi,+vn−1−i,−. (4.12)

Those superpotential terms are crucial for the duality because they lift the monopole

operators vi,−, which do not appear in the original theory. Likewise, when N− = 0, both

Vi,− and vi,+ exit, so the low-energy theory inherits the superpotential terms

n−1∑
i=0

Vi,−vn−1−i,+, (4.13)

which lift the monopole operators vi,+.

In contrast to the original U(Nc) theory, one should note that there are massive

fermions charged under U(1)new
R in the dual theory. They generate a mixed CS term

between U(1)R and U(1)G at level

κRG =
n

n+ 1
(N+ −N−) =

2κn

n+ 1
(4.14)

since the R charge of the fermion partner of qã′ is given by 2 n
n+1 −2. The additional minus

sign is due to the negative real mass for qã′ .

This mixed CS term shifts the R-charges of monopole operators by

∆R =
2κn

n+ 1
T (4.15)

where T is the U(1)T charge.11 This shift is crucial for the duality. Let us consider

the N+ = 0 case first. In that case, the dual low-energy theory has the gauge invariant

monopole operators vi,− ∼ Xi |1, . . . , 0〉. Without the shift (4.15), the R-charge of a bare

monopole state of flux m is determined by [3, 4]

∆(m) =
1

2

∑
Φ

(1−∆Φ)
∑
ρ∈RΦ

|ρ(m)| − 1

2

∑
α∈G
|α(m)| (4.16)

where Φ denotes every charged chiral multiplet, which is in the representation RΦ. ρ is a

weight of the representation RΦ and α is a root of the gauge group G. (4.16) implies that

the R-charges of vi,− are

RκRG=0 = −1

2
(1−∆Q) (Nf +Na) +

2

n+ 1
(Nc + 1 + i)− n

n+ 1
(Nf −Na). (4.17)

With those R-charges of vi,0, the superpotential terms (4.12) are not available because

their R-charge, 2− n
n+1(Nf −Na) 6= 2, is anomalous. Indeed, the shift (4.15)

∆R =
n

n+ 1
N− (4.18)

11Using the operator-state correspondence of the conformal field theory, this can be understood from

Gauss’ law for U(1)R in the presence of mixed Chern-Simons term AR ∧ FU(1)G on R× S2. Gauss’ law has

the form κRG FluxU(1)G = R-charge. Since AR is not dynamical, we do not have to impose the constraint

that the right hand side vanishes. Thus, Gauss’ law simply dictates the R-charge contribution of the mixed

CS term carried by the monopole operator.
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exactly cancels the last term in (4.17) and compensates the anomalous R-charge of the

superpotential terms. Thus, the superpotential terms (4.12) are available only in the pres-

ence of the mixed CS term (4.14). For the same reason, when N− = 0, the superpotential

terms (4.13) are only available in the presence of the mixed CS term (4.14), which shifts

the R-charges of vi,+. The shifted R-charges are in table 4.

In conclusion, assuming Nf > Na we propose that

• U(Nc)κ theory with Nf fundamental Qa, Na antifundamental Q̃b̃, one adjoint X and

the superpotential W = Xn+1

has a Seiberg-like dual description

• U(nNf −Nc)−κ theory with Na fundamental qb̃, Nf antifundamental q̃a, one adjoint

Y , and

– nNfNa singlet matters Mi
b̃
a with i = 0, . . . , n− 1 and the superpotential

W = trY n+1 +

n−1∑
i=0

Miq̃Y
n−1−iq (4.19)

if |κ| < Nf−Na
2 .

– nNfNa +n singlet matters Mi
b̃
a and Vi,+ with i = 0, . . . , n− 1 and the superpo-

tential

W = trY n+1 +
n−1∑
i=0

Miq̃Y
n−1−iq +

n−1∑
i=0

Vi,+vn−1−i,− (4.20)

if κ = −Nf−Na
2 .

– nNfNa +n singlet matters Mi
b̃
a and Vi,− with i = 0, . . . , n− 1 and the superpo-

tential

W = trY n+1 +
n−1∑
i=0

Miq̃Y
n−1−iq +

n−1∑
i=0

Vi,−vn−1−i,+ (4.21)

if κ =
Nf−Na

2 .

The global symmetry and charges are summarized in table 5. The dual theory also has

the mixed CS term at level (4.14) between the U(1)R R-symmetry and the diagonal U(1)G
of the gauge symmetry.12 The superpotentials (4.19)–(4.21) are crucial for the duality

because they lift dual theory operators q̃Y iq and vi,±, which do not appear in the original

theory. Note that this duality is also a generalization of the Seiberg-like duality for chiral-

like theories without an adjoint matter [29]. If n = 1, the duality we propose is reduced to

that of [29] by integrating out the adjoint matter.

The superconformal indices of KP duality pairs were computed as power series around

x = 0 in [15]. It was checked for several values of Nc, Nf , n that those two indices coincide,

12There are also mixed CS terms among the global symmetries not associated with the gauge symmetry.

However, their effect is trivial when the background flux for the symmetries is absent.
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U(1)R SU(Nf ) SU(Na) U(1)A U(1)T

Q ∆Q Nf 1 1 0

Q̃ ∆Q 1 Na 1 0

X 2
n+1 1 1 0 0

q 2
n+1 −∆Q 1 Na -1 0

q̃ 2
n+1 −∆Q Nf 1 -1 0

Y 2
n+1 1 1 0 0

Mi 2∆Q + 2i
n+1 Nf Na 2 0

Vi,±
1
2

(1−∆Q)(Nf+Na)

− 2
n+1

(Nc−1−i) 1 1 −Nf+Na
2 ±1

vi,±
− 1

2
(1−∆Q)(Nf+Na)

+ 2
n+1

(Nc+1+i)
1 1

Nf+Na
2 ±1

Table 5. The global symmetry charges for the proposed duality for chiral-like theories. The

monopole operators Vi,± and vi,∓ only appear when κ± Nf−Na

2 = 0.

which provides strong evidence of the duality. However, such comparisons were restricted

to the cases satisfying the condition

Nf −
2

n+ 1
(Nc − 1) > 0 (4.22)

because only in those cases, the superconformal indices are analytic at x = 0 such that the

power series of the indices around x = 0 exist. One might think that such cases are enough

because only in those case, the monopole operators of the theory have the positive UV

R-charges. However, as we have seen in the previous N = 4 example, the UV R-symmetry

can be corrected by accidental IR symmetries such that the IR R-charges are larger than

or equal to 1/2, which do not violate the unitarity. Therefore, we need a tool for testing

the cases not satisfying the condition (4.22). Indeed, the factorized index we obtained is

such a tool since it doesn’t require analyticity at x = 0. We will see that one can compare

the factorized indices of a duality pair even if the condition (4.22) is not satisfied.

Furthermore, we investigate exact relations of the factorized indices for the duality

we propose above for chiral-like theories. Those relations are nontrivial evidence of the

proposed duality.

4.2 SCI under duality

In the presence of the superpotential W = trXn+1, the adjoint chiral multiplet X has

the R-charge 2
n+1 and no other global charge. Let us call that value of the R-charge

δ. Therefore, in order to obtain the factorized index for this case, we need to substitute

υ = x
2

n+1 = xδ. Then one can easily see that Ipert vanishes if pa > n in eq. (2.19). Thus,
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the superconformal index for this case is given by

I
(
x, t, t̃, τ, xδ, w

)
=

∑
0≤pa≤n,∑
a pa=Nc

Ippert

(
x, t, t̃, τ, xδ

)
Zpvortext

(
x, t, t̃, τ, xδ,w

)
Zpantivortex

(
x, t, t̃, τ, xδ,w

)
(4.23)

where w = (−1)−κ−
Nf−Na

2 w. p = (p1, . . . , pNf ) is a partition of integer Nc constrained

under conditions 0 ≤ pa ≤ n and
∑Nf

a=1 pa = Nc. Each component is also given by

Ippert

(
x, t = eiM , t̃, τ, xδ = e−δγ

)

=

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

( 6=q if a=b)

2 sinh
iMa−iMb−δγ(q − r)

2


 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

(
tat
−1
b xδ(q−r−1)+2;x2

)
∞(

t−1
a tbxδ(−q+r+1);x2

)′
∞



×

Nf∏
a=1

pa∏
q=1

∏Nf
b=1

(
tat
−1
b xδ(q−1)+2;x2

)
∞∏Na

b=1

(
tat̃bτ2xδ(q−1);x2

)
∞

∏Na
b=1

(
t−1
a t̃−1

b τ−2xδ(−q+1)+2;x2
)
∞∏Nf

b=1

(
t−1
a tbxδ(−q+1);x2

)′
∞

 , (4.24)

Zpvortex

(
x, t, t̃, τ, xδ,w

)
=
∑
nj≥0

w
∑Nc
j=1

∑lj−1

n=0 nnj Zp(nj)

(
x, t, t̃, τ, xδ

)
, (4.25)

Zpantivortex

(
x, t, t̃, τ, xδ,w

)
=
∑
n̄j≥0

w−
∑Nc
j=1

∑lj−1

n=0 n̄nj Zp(n̄j)

(
x−1, t−1, t̃−1, τ−1, x−δ

)
, (4.26)

Zp(nj)

(
x = e−γ , t = eiM , t̃ = eiM̃ , τ = eiµ, xδ = e−δγ

)

= e
−Sp

(nj)
(x,t,τ,υ)

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

( 6=q if a=b)

∑r
n=1 n(b,n)∏
k=1

sinh iMa−iMb−δγ(q−r)+2γk
2

sinh
iMa−iMb−δγ(q−r)+2γ(k−1−

∑q
n=1 n(a,n))

2



×

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

( 6=q if a=b)

∑r
n=1 n(b,n)∏
k=1

sinh
iMa−iMb−δγ(q−r−1)+2γ(k−1−

∑q
n=1 n(a,n))

2

sinh iMa−iMb−δγ(q−r+1)+2γk
2


×

Nf∏
b=1

pb∏
r=1

∑r
n=1 n(b,n)∏
k=1

∏Na
a=1 sinh −iM̃a−iMb−2iµ+δγ(r−1)+2γ(k−1)

2∏Nf
a=1 sinh iMa−iMb+δγ(r−1)+2γk

2

 , (4.27)

where

e
−Sp

(nj)
(x,t,τ,υ)

=

Nf∏
b=1

pb∏
r=1

(
tbτυ

r−1x
∑r
n=1 n(b,n)

)κ∑r
n=1 n(b,n)

. (4.28)

n(b,n) is a shorthand notation for n∑b−1
a=1 pa+n. Again the prime symbol indicates that the

zero factor in the q-Pochhammer symbol is omitted.
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Now we attempt to rephrase the index agreement for a KP duality pair in terms of the

factorized index. Each component is mapped under duality as follows:

I
p,Nc,Nf ,Nf
pert

(
x, t, t̃, τ

)
= I

n−p,Nf−Nc,Nf ,Nf
pert

(
x, t−1, t̃−1, τ−1xδ

)
×

Nf∏
a,b=1

n∏
q=1

Zchiral

(
tat̃bτ

2xδ(q−1)
)

Zchiral

(
t−1
a t̃−1

b τ−2x2−δ(q−1)
) , (4.29)

Z
p,Nc,Nf ,Nf
vortex

(
x, t, t̃, τ, w

)
= Z

n−p,Nf−Nc,Nf ,Nf
antivortex

(
x, t−1, t̃−1, τ−1xδ, w−1

)
×

n∏
i=1

Zchiral

(
x,wτ−Nfx∆i

)
Zchiral

(
x,wτNfx2−∆i

) , (4.30)

Z
p,Nc,Nf ,Nf
antivortex

(
x, t, t̃, τ, w

)
= Z

n−p,Nf−Nc,Nf ,Nf
vortex

(
x, t−1, t̃−1, τ−1xδ, w−1

)
×

n∏
i=1

Zchiral

(
x,w−1τ−Nfx∆i

)
Zchiral

(
x,w−1τNfx2−∆i

) (4.31)

where n − p = (n − p1, . . . , n − pNf ). ∆i = Nf − 2
n+1(Nc − 1 − i) is the R-charge of a

monopole operator of the original theory. Zchiral is defined by

Zchiral(x,w) =
1

(w;x2)∞
= PE

[
w

1− x2

]
(4.32)

such that the index of a singlet chiral multiplet is written in terms of Zchiral as follows:

Ichiral(x,w) = Zchiral(x,w)× Zchiral

(
x−1, w−1

)
. (4.33)

The generalization of (4.29) for the chiral version of the KP duality is straightforward. We

will provide its explicit form and proof shortly. For (4.30) and (4.31), we will show that the

generalizations of them can be obtained by examining large mass behavior of the vortex

partition function. Those identities together imply the index agreement for the duality we

propose for chiral-like theories.

From the duality we propose, we expect (4.29) is generalized as follows:

I
p,Nc,Nf ,Na
pert

(
x, t, t̃, τ

)
= I

n−p,Nf−Nc,Nf ,Na
pert

(
x, t−1, t̃−1, τ−1xδ

)
×

Nf∏
a=1

Na∏
b=1

n∏
q=1

Zchiral

(
tat̃bτ

2xδ(q−1)
)

Zchiral

(
t−1
a t̃−1

b τ−2x2−δ(q−1)
) .
(4.34)

In order to show the generalized identity (4.34), we start from noticing that the following

identity holds: Nf∏
a,b=1

pa∏
q=1

pb−1∏
r=0

(
tat
−1
b xδ(q−r−1)+2;x2

)
∞(

t−1
a tbxδ(−q+r+1);x2

)′
∞

=

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

(
tat
−1
b xδ(q−r)+2;x2

)
∞(

t−1
a tbxδ(−q+r);x2

)′
∞



=

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

( 6=q if a=b)

2 sinh
iMa−iMb−δγ(q−r)

2


−1

.

(4.35)
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It cancels out the first factor of Ippert so that the remaining factors are simply given by Nf∏
a,b=1

pa∏
q=1

(
tat
−1
b xδ(q−pb−1)+2;x2

)
∞(

t−1
a tbxδ(−q+pb+1);x2

)
∞

Nf∏
a=1

Na∏
b=1

pa∏
q=1

(
t−1
a t̃−1

b τ−2xδ(−q+1)+2);x2
)
∞(

tat̃bτ2xδ(q−1);x2
)
∞

 .

(4.36)

Then let us examine each factor. The first factor can be written as Nf∏
a,b=1

pa∏
q=1

(
tat
−1
b xδ(q−pb−1)+2;x2

)
∞(

t−1
a tbxδ(−q+pb+1);x2

)
∞


=

 Nf∏
a,b=1

pa∏
q=pa−n+1

(
tat
−1
b xδ(q−pb−1)+2;x2

)
∞(

t−1
a tbxδ(−q+pb+1);x2

)
∞

 Nf∏
a,b=1

0∏
q=pa−n+1

(
t−1
a tbx

δ(−q+pb+1);x2
)
∞(

tat
−1
b xδ(q−pb−1)+2;x2

)
∞


=

 Nf∏
a,b=1

n−pa∏
q=1

(
t−1
a tbx

δ(q−n+pb−1)+2;x2
)
∞(

tat
−1
b xδ(−q+n−pb+1);x2

)
∞


(4.37)

where it is used that the first factor after the first equality is simply 1. It shows that the

factor is invariant under the change ta → t−1
a and pa → n − pa. This is a crucial feature

when we match the indices of a duality pair. Next the second factor is written asNf∏
a=1

Na∏
b=1

pa∏
q=1

(
t−1
a t̃−1

b τ−2xδ(−q+1)+2);x2
)
∞(

tat̃bτ2xδ(q−1);x2
)
∞


=

Nf∏
a=1

Na∏
b=1

n∏
q=1

(
t−1
a t̃−1

b τ−2xδ(−q+1)+2);x2
)
∞(

tat̃bτ2xδ(q−1);x2
)
∞

Nf∏
a=1

Na∏
b=1

n−pa∏
q=1

(
tat̃bτ

2xδ(−q−1)+2;x2
)
∞(

t−1
a t̃−1

b τ−2xδ(q+1);x2
)
∞


(4.38)

where the first factor of the right hand side is nothing but the contribution of nNfNa

singlets Mi
b̃
a. Combining the results, we prove the identity (4.34), which supports our

proposal.

Now, let us examine large mass behavior of the vortex partition function. Especially

we are interested in the cases that real mass of an antifundamental matter goes to ±∞.

Thus, let us choose the Nf -th antifundamental matter and take its mass large. We first

observe that Zp(nj) has asymptotic behavior

Z
p,Nc,Nf ,Nf
(nj)

(
x, t, t̃, τ

)
∼ Z

p,Nc,Nf ,Nf−1

(nj)

(
x, t, t̃′, τ

)
×

Nf∏
b=1

pb∏
r=1

∑r
n=1 n(b,n)∏
k=1

(
−t̃

1
2
Nf
t

1
2
b τυ

r−1
2 xk−1

)±1 (4.39)

as iM̃Nf → ±∞ where t̃′ = (t̃1, . . . , t̃Nf−1). Thus, in order to obtain a regular expression,

we also need to scale w such that w ∼ t̃
∓ 1

2
Nf

. As a result, the left hand side of (4.30) has
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the following large mass limits:

lim
iM̃Nf

→±∞
Z
p,Nc,Nf ,Nf
vortex

(
x, t, t̃, τ, w′t̃

∓ 1
2

Nf
τ∓

1
2x±

1
2

)
= Z

p,Nc,Nf ,Nf−1,± 1
2

vortex

(
x, t, t̃′, τ,∓w′

)
.

(4.40)

On the other hand, the right hand side of (4.30) is a little bit complicated because there

are additional factors from the singlet chiral multiplets. Firstly we observe that Zn−pantivortex

has similar limits:

lim
iM̃Nf

→±∞
Z
n−p,nNf−Nc,Nf ,Nf
antivortex

(
x, t−1, t̃−1, τ−1xδ, w′−1t̃

± 1
2

Nf
τ±

1
2x∓

1
2

)
= Z

n−p,nNf−Nc,Nf ,Nf−1,± 1
2

antivortex

(
x, t−1, t̃′−1, τ−1xδ,∓w′−1x∓

1
2

(2−δ)
)
.

(4.41)

For the singlet chiral part, it apparently is independent of t̃Nf because
∏Nf
a=1 ta =

∏Nf
a=1 t̃a =

1. However, when we take the limits iMNf → ±∞, we should relax that condition by

shifting τ → τ
∏Nf
a=1 tat̃a because we utilize a holonomy of U(Nf ) ∼ SU(Nf )× U(1)A, not

that of SU(Nf ). Therefore, again putting w = w′t̃
± 1

2
Nf
τ∓

1
2x±

1
2 , we has the following limit of

the singlet chiral part:

lim
iM̃Nf

→±∞

n∏
i=1

Zchiral

(
x,w′t̃

∓ 1
2

Nf
τ∓

1
2x±

1
2 t−

1
2 τ−Nfx∆i

)
Zchiral

(
x,w′t̃

∓ 1
2

Nf
τ∓

1
2x±

1
2 t

1
2 τNfx2−∆i

)

=

n∏
i=1

Zchiral

(
x,w′t′−

1
2 τ−Nf+ 1

2x∆i− 1
2

)δ±,−
Zchiral

(
x,w′t′−

1
2 τNf−

1
2x2−∆i+

1
2

)δ±,+
(4.42)

where t =
∏Nf
a=1 tat̃a and t′ = t/t̃Nf . δ±,− and δ±,+ are the Kronecker delta symbol and

not related to δ = 2
n+1 . Combining the results, we obtain the following relation for Nf − 1

antifundamental matters:

Z
p,Nc,Nf ,Nf−1,± 1

2
vortex

(
x, t, t̃, τ,∓w

)
= Z

n−p,nNf−Nc,Nf ,Nf−1,± 1
2

antivortex

(
x, t−1, t̃−1, τ−1xδ,∓w−1x∓

1
2

(2−δ)
)

×
n∏
i=1

Zchiral

(
x,wτ−Nf+ 1

2x∆i− 1
2

)δ±,−
Zchiral

(
x,wτNf−

1
2x2−∆i+

1
2

)δ±,+ .
(4.43)

Furthermore, repeating this procedure, we finally obtain a relation for Na antifundamental

matters as follows:

Z
p,Nc,Nf ,Na,κ
vortex

(
x, t, t̃, τ,w

)
= Z

n−p,nNf−Nc,Nf ,Na,κ
antivortex

(
x, t−1, t̃−1, τ−1xδ,w−1x−κ(2−δ)

)

×
n∏
i=1

Zchiral

(
x,wτ−

Nf+Na

2 x∆̃i

)δNf−Na,−2κ

Zchiral

(
x,wτ

Nf+Na

2 x2−∆̃i

)δNf−Na,2κ (4.44)
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where w = (−1)−κ−
Nf−Na

2 w and ∆̃i =
Nf+Na

2 − 2
n+1(Nc − 1 − i). Note that only the the

CS coupling κ satisfying |κ| ≤ Nf−Na
2 is obtained in this way. The left hand side is the

vortex partition function for a theory with Na antifundamental matters. The right hand

side is the vortex partition function for a U(nNf − Nc)κ theory with Nf fundamental,

Na antifundamental, one adjoint and additional singlet matters, or equivalently U(nNf −
Nc)−κ theory with Na fundamental, Nf antifundamental, one adjoint and additional singlet

matters. The appearance of additional singlet matters depends on the values of κ± Nf−Na
2 .

For (4.31), exactly the same thing happens if we change x, t, t̃, τ, w →
x−1, t−1, t̃−1, τ−1, w−1. Thus, we have

Z
p,Nc,Nf ,Na,κ
antivortex

(
x, t, t̃, τ,w

)
= Z

n−p,nNf−Nc,Nf ,Na,κ
vortex

(
x, t−1, t̃−1, τ−1xδ,w−1x−κ(2−δ)

)
×

n∏
i=1

Zchiral(x,w
−1τ−

Nf+Na

2 x∆̃i)
δNf−Na,2κ

Zchiral(x,w−1τ
Nf+Na

2 x2−∆̃i)
δNf−Na,−2κ

.
(4.45)

For (4.44) and (4.45), it is important to note that w−1x−κ(2−δ) appears on the right hand

side instead of w−1. The extra factor x−κ(2−δ) indicates the presence of the mixed CS

term (4.14). Indeed, the identities (4.34), (4.44) and (4.45) together imply the index

agreement for the duality we propose for chiral-like theories, which is nontrivial evidence

of the proposed duality. We carry out heavy numerical checks for the identities (4.44)

and (4.45).

4.3 Examples

Let us consider some interesting examples.

Nc = nNf case. The first example is Nc = nNf case. In that case, since the dual

gauge group is absent, the dual theory is only described by singlet matters. Those singlet

matters would be coupled via a nontrivial superpotential. However, when singlet matters

have unitarity violating R-charges, additional IR symmetries would emerge and correct

their unitarity violating R-charges. Then the superpotential becomes irrelevant such that

the theory flows to the free theory in IR. For example, let us consider the U(2) theory

with Nf = Na = 1 flavor Q, Q̃, one adjoint X and the superpotential W = X3, which was

examined in [15]. Its dual theory is described by singlet matters V0,±, V1,±,M0,M1 with

the superpotential

W ∼ V1,+V1,−M0 + V1,+V0,−M1 + V0,+V1,−M1

+ V0,+V0,−M0 (V1,+V0,−M0 + V0,+V1,−M0 + V0,+V0,−M1)

+ (V0,+V0,−M0)3 .

(4.46)

Preserving that superpotential, those six matters cannot have R-charges larger than or

equal to 1/2 simultaneously, which is however required due to the unitarity. In fact, we

expect that in IR new symmetries emerge and mix with the R-symmetry such that their IR

R-charges become 1/2. Then those matters must be free and accordingly the superpotential

is also irrelevant.
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There are many other examples that the dual gauge group is absent and some singlet

matters have even negative R-charges. For example, the U(nNf )0 theory with Nf = Na ≥
2

n−1 flavors has monopole operators of zero or negative R-charges. Even in that case, one

can check the index agreement using the factorized index we obtained. Indeed, we have

checked many of such cases for several values of Nf and n. Thus, we expect, in those cases,

the theories flow to free theories in IR.

Nc = 1 case. Another interesting example is Nc = 1 case. In that case, the original the-

ory is an abelian theory while the dual theory is the U(nNf−1)−κ theory. However, the ad-

joint matter is perturbatively decoupled from the abelian gauge theory. If we assume there

is no nonperturbative effect coupling the adjoint matter to the gauge interacting sector, the

theory is decomposed into two sectors decoupled from each other: the gauge interacting

sector and the singlet matter sector with the superpotential W = Xn+1. Interestingly the

gauge interacting sector has another Seiberg-like dual description with the gauge group

U(Nf − 1)−κ [29], which is also known as the Aharony duality if κ = Nf − Na = 0 [6].

Therefore, we have three different UV theories flowing to the same IR fixed point:

• U(1)κ gauge theory with Nf fundamental and Na antifundamental matters + a de-

coupled matter X with the superpotential W = Xn+1.

• U(nNf − 1)−κ gauge theory with Na fundamental, Nf antifundamental, one adjoint

matters; additional singlet matters and a superpotential determined by (4.19)–(4.21).

• U(Nf − 1)−κ gauge theory with Na fundamental, Nf antifundamental matters; addi-

tional singlet matters and a superpotential determined by (4.19)–(4.21) with n = 1

with a decoupled matter X with the superpotential W = Xn+1.

We have checked for several values of κ,Nf , Na and n that the three indices of them

coincide.

A Detailed computations for factorization

In appendix A we examine the detailed computation to obtain the factorized form of the

3d N = 2 superconformal index in the presence of an adjoint matter. As explained in

section 2, the strategy is that we explicitly compute the contour integral (2.3)

I(x, t, t̃, τ, υ, w)

=
∑

m∈ZNc/SNc

1

|Wm|

∮
|zj |=1

 Nc∏
j=1

dzj
2πizj

e−SCS(z,m)w
∑
j mjZvector(x, z,m)Zchiral

(
x, t, t̃, τ, υ, z,m

)
by evaluating the residue at the following type of a pole:

zj = t−1
bj
τ−1υ−lj+1x

−
∑lj−1

n=0 (|mpn(j)−mpn+1(j)|+2kpn(j)). (A.1)
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Each pole is represented by a forest graph which determines bj , lj , p(j) and kj . The detailed

rules are explained in section 2. Now recall the 1-loop determinant contributions (2.14)–

(2.18) of the vector multiplet and the various chiral multiplets:

Zvector(x, z,m) =

Nc∏
i<j

x−(mi−mj)
(

1− ziz−1
j xmi−mj

) (
1− zjz−1

i xmi−mj
)
,

ZX(x, υ, z,m) =

((
υ−1x2;x2

)
∞

(υ;x2)∞

)Nc Nc∏
i<j

(
x−1υ

)−(mi−mj)
(
z−1
i zjυ

−1x2+mi−mj ;x2
)
∞(

ziz
−1
j υxmi−mj ;x2

)
∞

×

(
z−1
j ziυ

−1x2+mi−mj ;x2
)
∞(

zjz
−1
i υxmi−mj ;x2

)
∞

,

ZQa(x, t, τ, z,m) =

Nc∏
j=1

(
x−1(−zj)taτ

)−mj/2 (z−1
j t−1

a τ−1x2+mj ;x2
)
∞

(zjtaτxmj ;x2)∞
,

Z
Q̃b̃

(x, t̃, τ, z,m) =

Nc∏
j=1

(
x−1(−zj)−1t̃aτ

)−mj/2 (zj t̃−1
a τ−1x2+mj ;x2

)
∞(

z−1
j t̃aτxmj ;x2

)
∞

where X,Qa, Q̃
b̃ denote the adjoint, fundamental and antifundamental matters. At the

pole (A.1), those 1-loop contributions have the following values:

Zvector(x, z,m) =

Nc∏
i<j

x−
∑li−1
n=0 mni +

∑lj−1

n=0 mnj (A.2)

×
(

1− t−1
bi
tbjυ

−li+ljx−
∑li−1
n=0 (|mni |−mni +2kni )+

∑lj−1

n=0 (|mnj |−mnj +2knj )
)

×
(

1− t−1
bj
tbiυ

−lj+lix−
∑lj−1

n=0 (|mnj |+mnj +2knj )+
∑li−1
n=0 (|mni |+mni +2kni )

)
,

ZX(x, υ, z,m) =

((
υ−1x2;x2

)
∞

(υ;x2)∞

)Nc Nc∏
i<j

(
x−1υ

)−∑li−1
n=0 mni +

∑lj−1

n=0 mnj (A.3)

×

(
tbit
−1
bj
υli−lj−1x2+

∑li−1
n=0 (|mni |+mni +2kni )−

∑lj−1

n=0 (|mnj |+mnj +2knj );x2

)
∞(

t−1
bi
tbjυ

−li+lj+1x−
∑li−1
n=0 (|mni |−mni +2kni )+

∑lj−1

n=0 (|mnj |−mnj +2knj );x2

)′
∞

×

(
tbj t
−1
bi
υlj−li−1x2+

∑lj−1

n=0 (|mnj |−mnj +2knj )−
∑li−1
n=0 (|mni |−mni +2kni );x2

)
∞(

t−1
bj
tbiυ

−lj+li+1x−
∑lj−1

n=0 (|mnj |+mnj +2knj )+
∑li−1
n=0 (|mni |+mni +2kni );x2

)′
∞

,
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ZQa(x, t, τ, z,m) =

Nc∏
j=1

(−1)−
∑lj−1

n=0 mnj /2

(
x−1−

∑lj−1

n=0 (|mnj |+2knj )t−1
bj
taυ
−lj+1

)−∑lj−1

n=0 mnj /2

×

(
tbj t
−1
a υlj−1x2+

∑lj−1

n=0 (|mnj |+mnj +2knj );x2

)
∞(

t−1
bj
taυ−lj+1x−

∑lj−1

n=0 (|mnj |−mnj +2knj );x2

)′
∞

, (A.4)

Z
Q̃b̃

(
x, t̃, τ, z,m

)
=

Nc∏
j=1

(−1)
∑lj−1

n=0 mnj /2

(
x−1+

∑lj−1

n=0 (|mnj |+2knj )tbj t̃aτ
2υlj−1

)−∑lj−1

n=0 mnj /2

×

(
t−1
bj
t̃−1
a τ−2υ−lj+1x2−

∑lj−1

n=0 (|mnj |−mnj +2knj );x2

)
∞(

tbj t̃aτ
2υlj−1x

∑lj−1

n=0 (|mnj |+mnj +2knj );x2

)
∞

(A.5)

where we have defined mj = mj − mp(j) and use shorthand notations mn
j = mpn(j) and

knj = kpn(j). The prime symbol indicates that the zero factor in the q-Pochhammer symbol

is omitted. Now mj and kj always appear as a combination of (|mj | + mj)/2 + kj and

(|mj | − mj)/2 + kj . Thus, we define nj = (|mj |+ mj)/2 + kj and n̄j = (|mj | − mj)/2 + kj ,

which will be interpreted as vortex charges.

Let us have a look at the 1-loop contribution of the vector multiplet (A.2). The first

monomial factor is written in terms of nj and n̄j in a simple way as follows:

x−
∑li−1
n=0 mi+

∑lj−1

n=0 mj = x−
∑li−1
n=0 (nni −n̄ni )+

∑lj−1

n=0 (nnj −n̄nj ) (A.6)

where nnj = npn(j) and n̄nj = n̄pn(j). The other factors are also written in terms of nj , n̄j .

Note that the second factor is independent of nj while the third factor is independent

of n̄j . Furthermore, we can decompose them into various factors to extract perturbative

contributions, which are independent of nj , n̄j . For example, the third line is decomposed

as follows:(
1− t−1

bj
tbiυ

−lj+lix−2
∑lj−1

n=0 nnj +2
∑li−1
n=0 nni

)

=

(
t−1
bj
tbiυ

−lj+lix−2
∑lj−1

n=0 nnj +2
∑li−1
n=0 nni ;x2

)
∞(

t−1
bj
tbiυ

−lj+lix−2
∑lj−1

n=0 nnj +2
∑li−1
n=0 nni +2;x2

)
∞

=

(
−t−1/2

bj
t
1/2
bi
υ−(lj−li)/2x−

∑lj−1

n=0 nnj +
∑li−1
n=0 nni

)(
2 sinh

iMbi − iMbj + iν(li − lj)
2

)
(A.7)

×


∑lj−1

n=0 nnj∏
k=1

2 sinh
iMbi

−iMbj
+iν(li−lj)+2γk

2

2 sinh
iMbi

−iMbj
+iν(li−lj)+2γ

(
k−1−

∑li−1
n=0 nni

)
2



×


∑li−1
n=0 nni∏
k=1

2 sinh
iMbj

−iMbi
+iν(lj−li)+2γk

2

2 sinh
iMbj

−iMbi
+iν(lj−li)+2γ

(
k−1−

∑lj−1

n=0 nnj

)
2


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where we have used the following identities:13(
t−1
bj
tbiυ

−lj+lix−2
∑lj−1

n=0 nnj +2
∑li−1
n=0 nni ;x2

)
∞

=
(
t−1
bj
tbiυ

−lj+li ;x2
)
∞

(A.8)

×


∑lj−1

n=0 nnj∏
k=0

−t−1
bj
tbiυ

−lj+lix−2−2k


(
tbj t
−1
bi
υlj−lix2;x2

)∑lj−1

n=0 nnj(
t−1
bj
tbiυ

−lj+lix−2
∑lj−1

n=0 nnj ;x2

)
∑li−1
n=0 nni

,

(
t−1
bj
tbiυ

−lj+lix−2
∑lj−1

n=0 nnj +2
∑li−1
n=0 nni +2;x2

)
∞

=
(
t−1
bj
tbiυ

−lj+lix2;x2
)
∞

(A.9)

×


∑lj−1

n=0 nnj∏
k=0

−t−1
bj
tbiυ

−lj+lix2
∑li−1
n=0 nni −2k


(
tbj t
−1
bi
υlj−lix−2

∑li−1
n=0 nni ;x2

)∑lj−1

n=0 nnj(
t−1
bj
tbiυ

−lj+lix2;x2
)∑li−1

n=0 nni

.

The second line of (A.2) gives the same expression but i and j are interchanged and nj is

replaced by n̄j . As a result the vector multiplet contribution Zvector can be written as

Zvector(x, z,m) =

Nc∏
i,j=1
(i 6=j)

(
2 sinh

iMbi − iMbj + iν(li − lj)
2

)
(A.10)

×


∑lj−1

n=0 nnj∏
k=1

sinh
iMbi

−iMbj
+iν(li−lj)+2γk

2

sinh
iMbi

−iMbj
+iν(li−lj)+2γ

(
k−1−

∑li−1
n=0 nni

)
2


×


∑lj−1

n=0 n̄nj∏
k=1

sinh
iMbi

−iMbj
+iν(li−lj)+2γk

2

sinh
iMbi

−iMbj
+iν(li−lj)+γ

(
k−1−

∑li−1
n=0 n̄ni

)
2

 .

One can see that it consists of three parts: the nj , n̄j-independent part, the nj-dependent

part and the n̄nj -dependent part. The other 1-loop contributions can be written in the same

manner. The adjoint matter contribution ZX is given by

ZX(x, υ, z,m) =

((
υ−1x2;x2

)
∞

(υ;x2)∞

)Nc Nc∏
i,j=1
(i 6=j)

(
tbit
−1
bj
υli−lj−1x2;x2

)
∞(

t−1
bj
tbiυ

−lj+li+1;x2
)′
∞

(A.11)

×


∑lj−1

n=0 nnj∏
k=1

sinh
iMbi

−iMbj
+iν(li−lj−1)+2γ

(
k−1−

∑li−1
n=0 nni

)
2

sinh
iMbi

−iMbj
+iν(li−lj+1)+2γk

2


×


∑lj−1

n=0 n̄nj∏
k=1

sinh
iMbi

−iMbj
+iν(li−lj−1)+2γ

(
k−1−

∑li−1
n=0 n̄ni

)
2

sinh
iMbi

−iMbj
+iν(li−lj+1)+2γk

2


13Recall (a; q)n =

∏n−1
k=0 (1− aqk).
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where the following identities are used:(
tbit
−1
bj
υli−lj−1x2+2

∑li−1
n=0 nni −2

∑lj−1

n=0 nnj ;x2

)
∞

=
(
tbit
−1
bj
υli−lj−1x2;x2

)
∞

(A.12)

×


∑lj−1

n=0 nnj −1∏
k=0

−tbit
−1
bj
υli−lj−1x2

∑li−1
n=0 nni −2k


(
t−1
bi
tbjυ

−li+lj+1x−2
∑li−1
n=0 nni ;x2

)∑lj−1

n=0 nnj(
tbit
−1
bj
υli−lj−1x2;x2

)∑li−1
n=0 nni

,

(
t−1
bi
tbjυ

−li+lj+1x−2
∑li−1
n=0 n̄ni +2

∑lj−1

n=0 n̄nj ;x2

)′
∞

=
(
t−1
bi
tbjυ

−li+lj+1;x2
)′
∞

(A.13)

×


∑li−1
n=0 n̄ni −1∏
k=0

−t−1
bi
tbjυ

−li+lj+1x−2−2k


(
tbit
−1
bj
υli−lj−1x2;x2

)∑li−1
n=0 n̄ni(

t−1
bi
tbjυ

−li+lj+1x−2
∑li−1
n=0 n̄ni ;x2

)∑lj−1

n=0 n̄nj

,

(
tbj t
−1
bi
υlj−li−1x2+2

∑lj−1

n=0 n̄nj −2
∑li−1
n=0 n̄ni ;x2

)
∞

=
(
tbj t
−1
bi
υlj−li−1x2;x2

)
∞

(A.14)

×


∑li−1
n=0 n̄ni −1∏
k=0

−tbj t
−1
bi
υlj−li−1x2

∑lj−1

n=0 n̄nj −2k


(
t−1
bj
tbiυ

−lj+li+1x−2
∑lj−1

n=0 n̄nj ;x2

)
∑li−1
n=0 n̄ni(

tbj t
−1
bi
υlj−li−1x2;x2

)∑lj−1

n=0 n̄nj

,

(
t−1
bj
tbiυ

−lj+li+1x−2
∑lj−1

n=0 nnj +2
∑li−1
n=0 nni ;x2

)′
∞

=
(
t−1
bj
tbiυ

−lj+li+1;x2
)′
∞

(A.15)

×


∑lj−1

n=0 nnj −1∏
k=0

−t−1
bj
tbiυ

−lj+li+1x−2−2k


(
tbj t
−1
bi
υlj−li−1x2;x2

)∑lj−1

n=0 nnj(
t−1
bj
tbiυ

−lj+li+1x−2
∑lj−1

n=0 nnj ;x2

)
∑li−1
n=0 nni

.

Similarly the fundamental and the antifundamental matter contributions ZQa and Z
Q̃b̃

are

given by

ZQa(x, t, τ, z,m) =

Nc∏
j=1

(−1)−
∑lj−1

n=0 (nnj −n̄nj )/2
(
tbj t
−1
a υlj−1x2;x2

)
∞(

t−1
bj
taυ−lj+1;x2

)′
∞

(A.16)

×


∑lj−1

n=0 nnj∏
k=1

2 sinh
iMa − iMbj − iν(lj − 1) + 2γk

2


−1

×


∑lj−1

n=0 n̄nj∏
k=1

2 sinh
−iMa + iMbj + iν(lj − 1) +−γk

2


−1

,
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Z
Q̃b̃

(x, t̃, τ, z,m) =

Nc∏
j=1

(−1)
∑lj−1

n=0 (nnj −n̄nj )/2

(
t−1
bj
t̃−1
a τ−2υ−lj+1x2;x2

)
∞(

tbj t̃aτ
2υlj−1;x2

)
∞

(A.17)

×


∑lj−1

n=0 nnj∏
k=1

2 sinh
−iM̃a − iMbj − 2iµ− iν(lj − 1) + 2γ(k − 1)

2


×


∑lj−1

n=0 n̄nj∏
k=1

2 sinh
iM̃a + iMbj + 2iµ+ iν(lj − 1)− 2γ(k − 1)

2


where the following identities are used:(

tbj t
−1
a υlj−1x2+2

∑lj−1

n=0 nnj ;x2

)
∞

(A.18)

=
(
tbj t
−1
a υlj−1x2;x2

)
∞
× 1(

tbj t
−1
a υlj−1x2;x2

)∑lj−1

n=0 nnj

,

(
t−1
bj
taυ
−lj+1x−2

∑lj−1

n=0 n̄nj ;x2

)′
∞

(A.19)

=
(
t−1
bj
taυ
−lj+1;x2

)′
∞
×


∑lj−1

n=0 n̄nj −1∏
k=0

−t−1
bj
taυ
−lj+1x−2−2k

(tbj t−1
a υlj−1x2;x2

)∑lj−1

n=0 n̄nj

,

(
t−1
bj
t̃−1
a τ−2υ−lj+1x2−2

∑lj−1

n=0 n̄nj ;x2

)
∞

(A.20)

=
(
t−1
bj
t̃−1
a τ−2υ−lj+1x2;x2

)
∞
×


∑lj−1

n=0 n̄nj −1∏
k=0

−t−1
bj
t̃−1
a τ−2υ−lj+1x−2k


×
(
tbj t̃aτ

2υlj−1;x2
)∑lj−1

n=0 n̄nj

,(
tbj t̃aτ

2υlj−1x2
∑lj−1

n=0 nnj ;x2

)
∞

(A.21)

=
(
tbj t̃aτ

2υlj−1;x2
)
∞
× 1(

tbj t̃aτ
2υlj−1;x2

)∑lj−1

n=0 nnj

.

Those 1-loop contributions together with the classical contribution

e−SCS(z,m) =

Nc∏
j=1

(−1)−κ
∑lj−1

n=0 (nnj −n̄nj )
(
tbjτυ

lj−1x
∑lj−1

n=0 (nnj +n̄nj )
)κ∑lj−1

n=0 (nnj −n̄nj )
, (A.22)

are summed over the poles classified by the labeled forest graphs we introduce in section 2

and over all possible monopole fluxes:∑
m∈ZNc/SNc

1

|Wm|
∑
f∈F
↔ 1

Nc!

∑
m∈ZNc

∑
f∈F

(A.23)
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where the arrow means that they are equivalent sums. |Wm| is the Weyl group order of the

residual gauge group left unbroken by the magnetic flux m. F is a set of the labeled forest

graphs of ordered Nc nodes in which each root node is labeled by (j, aj , kj) while each

non-root node is labeled by (j, kj); j ∈ {1, . . . , Nc} is the order of each node and aj , kj are

additional labeling integers in ranges 1 ≤ aj ≤ Nf , 0 ≤ kj . Since we sum over all possible

labelings, we can extract the kj assignment for each node as an explicit summation:

1

Nc!

∑
m∈ZNc

∑
f∈F
↔ 1

Nc!

∑
m∈ZNc

∑
g∈G

∑
kj≥0

(A.24)

where G is a set of the labeled forest graphs that the kj assignment is removed; i.e., each

root node is now labeled by (j, aj) while each non-root node is only labeled by j. Now

recall nj and n̄j , which are defined by nj = (|mj |+ mj)/2 + kj and n̄j = (|mj | −mj)/2 + kj
where mj = mj−mp(j). One can reorganize the magnetic flux and kj summations in terms

of nj and n̄j as follows: ∑
m∈ZNc

∑
kj≥0

↔
∑
nj≥0

∑
n̄j≥0

. (A.25)

Thus, we have the following summation equivalent to (A.23):

∑
m∈ZNc/SNc

1

|Wm|
∑
f∈F
↔ 1

Nc!

∑
g∈G

∑
nj≥0

∑
n̄j≥0

. (A.26)

Since each residue factor consists of three parts: the nj , n̄j-independent part, the nj-

depdendent part and the n̄nj -dependent part, one can write down the index in the following

factorized form:

I(x, t, t̃, τ, υ, w) =
1

Nc!

∑
g∈G

Igpert(x, t, t̃, τ, υ)Zg
vortex(x, t, t̃, τ, υ,w)Zg

antivortex(x, t, t̃, τ, υ,w)

(A.27)

Igpert(x, t = eiM , t̃, τ, υ = eiν) (A.28)

=

 Nc∏
i,j=1
(i 6=j)

2 sinh
iMbi − iMbj + iν(li − lj)

2


 Nc∏
i,j=1

(
tbit
−1
bj
υli−lj−1x2;x2

)
∞(

t−1
bj
tbiυ

−lj+li+1;x2
)′
∞



×

 Nc∏
j=1

∏Nf
a=1

(
tbj t
−1
a υlj−1x2;x2

)
∞∏Na

a=1

(
tbj t̃aτ

2υlj−1;x2
)
∞

∏Na
a=1

(
t−1
bj
t̃−1
a τ−2υ−lj+1x2;x2

)
∞∏Nf

a=1

(
t−1
bj
taυ−lj+1;x2

)′
∞


Zg

vortex(x, t, t̃, τ, υ,w) =
∑
nj≥0

w
∑Nc
j=1

∑lj−1

n=0 nnj Zg
(nj)

(x, t, t̃, τ, υ), (A.29)

Zg
antivortex(x, t, t̃, τ, υ,w) =

∑
n̄j≥0

w−
∑Nc
j=1

∑lj−1

n=0 n̄nj Zg
(n̄j)

(x−1, t−1, t̃−1, τ−1, υ−1), (A.30)
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Zg
(nj)

(x = e−γ , t = eiM , t̃ = eiM̃ , τ = eiµ, υ = eiν)

= e
−Sg

(nj)
(x,t,τ,υ)

 Nc∏
i,j=1
(i 6=j)

∑lj−1

n=0 nnj∏
k=1

sinh
iMbi

−iMbj
+iν(li−lj)+2γk

2

sinh
iMbi

−iMbj
+iν(li−lj)+2γ

(
k−1−

∑li−1
n=0 nni

)
2



×

 Nc∏
i,j=1
(i 6=j)

∑lj−1

n=0 nnj∏
k=1

sinh
iMbi

−iMbj
+iν(li−lj−1)+2γ(k−1−

∑li−1
n=0 nni )

2

sinh
iMbi

−iMbj
+iν(li−lj+1)+2γk

2

 (A.31)

×

 Nc∏
j=1

∑lj−1

n=0 nnj∏
k=1

∏Na
a=1 sinh

−iM̃a−iMbj
−2iµ−iν(lj−1)+2γ(k−1)

2∏Nf
a=1 sinh

iMa−iMbj
−iν(lj−1)+2γk

2

 ,

e
−Sg

(nj)
(x,t,τ,υ)

=

Nc∏
j=1

(
tbjτυ

lj−1x
∑lj−1

n=0 nnj

)κ∑lj−1

n=0 nnj

(A.32)

where w = (−1)−κ−
Nf−Na

2 w and nnj = npn(j), n̄
n
j = n̄pn(j). The prime symbol indicates that

the zero factor in the q-Pochhammer symbol is omitted. G is a set of the labeled forest

graphs of ordered Nc nodes in which each root node is labeled by (j, aj) while each non-root

node is labeled by j; j ∈ {1, . . . , Nc} is the order of each node14 and aj ∈ {1, . . . , Nf} is

an additional labeling integer for a root node. bj , lj and p(j) are determined by the forest

graph g ∈ G as explained in section 2.

Indeed, (A.28) tells us that some of g’s have the vanishing residues because Igpert van-

ishes if bi = bj and li = lj for different i and j. In other words, the residue vanishes unless

the corresponding g only contains one-branch trees whose root nodes all have distinct aj .
15

In addition, let us consider a permutation of aj :

aj → a′j = aσ−1(j), σ ∈ SNc . (A.33)

This permutation changes the residue contribution of a given forest graph g, which is

a product IgpertZ
g
vortexZ

g
antivortex. However, one can make those three factors remain un-

changed by the subsequent permutation j → j′ = σ(j) because a′j′ = aσ−1(σ(j)) = aj .

Those permutations of aj and j are nothing but the following relabelings of the nodes:

(j, aj)→ (j′, a′j′) = (σ(j), aj)

j → j′ = σ(j)

for a root node,

for a non-root node.
(A.34)

Note that those permutations only change the first slot of each label, i.e., the order of the

node. In other words, IgpertZ
g
vortexZ

g
antivortex is invariant under the reorderings of the nodes

in g. Thus, we don’t need to repeat the computation for each equivalent ordering. Instead

we choose one representative ordering among |SNc | = Nc! equivalent orderings and multiply

14The order of the node is given by a suitable permutation of 1, · · ·Nc. One such definition is given at

the footnote 4 of the section 2.
15We call a tree a one-branch tree if each node has at most one child node.

– 38 –



J
H
E
P
1
1
(
2
0
1
5
)
0
2
8

(1,1)

5

(4,2)

3

2

(1,1)

5

(4,3)

3

2

(p1,p2,p3) = (3,2,0) (p1,p2,p3) = (3,0,2)

Figure 2. We illustrate two examples of forest graphs only containing one-branch trees for the

U(5) theory with three flavors. The left graph corresponds to (p1, p2, p3) = (3, 2, 0), in which the

third tree is absent, while the right graph corresponds to (p1, p2, p3) = (3, 0, 2), in which the second

tree is absent. Note that p1 + p2 + p3 = 5. The ordering of the nodes is fixed by (A.35).

its contribution by Nc!, which cancels out the factor 1/Nc! in (A.27). A convenient choice

of ordering is as follows. The ordering starts at the tree whose root node has the smallest

aj .
16 The nodes in that tree, which has only one branch, are monotonically ordered starting

from the root node; i.e, the order is assigned to each node in the monotonically increasing

way following the direction of the branch starting from the root node. Then we move

to the tree whose root node has the next smallest aj and again order the nodes in the

monotonic way. Repeating this procedure one can determine the unique ordering of the

nodes in a given forest graph. One can describe this ordering in a more formal way. For

each a ∈ {1, . . . , Nf} let us call a tree the a-th tree if its root node has aj = a. We also

call the total number of the nodes in the a-th tree pa. If the a-th tree is absent, pa = 0.

Then we assign the order

j =
b−1∑
a=1

pa + n (A.35)

to the level n node in the b-th tree. Using this ordering the relevant forest graphs are

all organized only in terms of Nf -tuples of the form p = (p1, . . . , pNf ) with pa’s being

nonnegative integers satisfying
∑Nf

a=1 pa = Nc. An Nf -tuple p is nothing but a partition

of integer Nc into Nf nonnegative integers, or the one-dimensional reminiscence of an Nf -

colored Young diagram of Nc boxes. One can write down Ipert and Z(nj) in terms of p as

16Since we haven’t determined j yet, aj here is understood just as a number in the second slot of the label.
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follows:

Ippert

(
x, t = eiM , t̃, τ, υ = eiν

)
=

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

( 6=q if a=b)

2 sinh
iMa − iMb + iν(q − r)

2


 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

(
tat
−1
b υq−r−1x2;x2

)
∞(

t−1
a tbυ−q+r+1;x2

)′
∞



×

Nf∏
a=1

pa∏
q=1

∏Nf
b=1

(
tat
−1
b υq−1x2;x2

)
∞∏Na

b=1

(
tat̃bτ2υq−1;x2

)
∞

∏Na
b=1

(
t−1
a t̃−1

b τ−2υ−q+1x2;x2
)
∞∏Nf

b=1

(
t−1
a tbυ−q+1;x2

)′
∞

 , (A.36)

Zp(nj)(x = e−γ , t = eiM , t̃ = eiM̃ , τ = eiµ, υ = eiν)

= e
−Sp

(nj)
(x,t,τ,υ)

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

( 6=q if a=b)

∑r
n=1 n(b,n)∏
k=1

sinh iMa−iMb+iν(q−r)+2γk
2

sinh
iMa−iMb+iν(q−r)+2γ(k−1−

∑q
n=1 n(a,n))

2



×

 Nf∏
a,b=1

pa∏
q=1

pb∏
r=1

( 6=q if a=b)

∑r
n=1 n(b,n)∏
k=1

sinh
iMa−iMb+iν(q−r−1)+2γ(k−1−

∑q
n=1 n(a,n))

2

sinh iMa−iMb+iν(q−r+1)+2γk
2


×

Nf∏
b=1

pb∏
r=1

∑r
n=1 n(b,n)∏
k=1

∏Na
a=1 sinh −iM̃a−iMb−2iµ−iν(r−1)+2γ(k−1)

2∏Nf
a=1 sinh iMa−iMb−iν(r−1)+2γk

2

 (A.37)

where

e
−Sp

(nj)
(x,t,τ,υ)

=

Nf∏
b=1

pb∏
r=1

(
tbτυ

r−1x
∑r
n=1 n(b,n)

)κ∑r
n=1 n(b,n)

. (A.38)

n(b,n) is a shorthand notation for n∑b−1
a=1 pa+n. We claim that this is the vortex parti-

tion function on R2 × S1 of the N = 2 U(Nc)κ gauge theory with Nf fundamental,

Na antifundamental and one adjoint matter under the condition |κ| ≤ Nf−Na
2 . Note

that the antivortex part is obtained from the vortex part by inverting all the fugacities,

x, t, t̃, τ, υ, w → x−1, t−1, t̃−1, τ−1, υ−1,w−1.

B Large mass behavior of the vortex partition function

In order to prove the agreement of the vortex part for N = 4 Seiberg-like duality in

section 3, we are interested in the large mass behavior of the vortex partition function of a

N = 4 theory. In this appendix we will choose one of the flavors and take its real mass to

infinity; i.e., iMa → ±∞. One should note that for the vortex partition function the flavors

are grouped into two distinct sets: {bj} and {bj}c. The large mass behavior of the vortex

partition function depends on whether the flavor is selected from {bj} or from {bj}c. We

first consider the latter case because it is rather simple. If we take the limit iMa → ±∞
with a ∈ {bj}c, we have

2 sinh
iMa−iMbj

−2iµ+2γ(k− 1
2)

2

2 sinh
iMa−iMbj

+2γk

2

−→ τ∓1x±
1
2 . (B.1)
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Therefore,

lim
iMa→±∞

Z
{bj},Nc,Nf
(nj)

(
x = e−γ , t = eiM , τ = eiµ

)
=
(
τ∓1x±

1
2

)∑
j nj

×
Nc∏
j=1

nj∏
k=1

Nc∏
i=1

2 sinh
iMbi

−iMbj
+2iµ+2γ(k− 1

2
−ni)

2

2 sinh
iMbi

−iMbj
+2γ(k−1−ni)
2

 ∏
a∈{bj}c−{a}

2 sinh
iMa−iMbj

−2iµ+2γ(k− 1
2)

2

2 sinh
iMa−iMbj

+2γk

2


=
(
τ∓1x±

1
2

)∑
j nj

Z
{bj},Nc,Nf−1

(nj)

(
x = e−γ , t′ = eiM

′
, τ = eiµ

)
(B.2)

where Z
{bj},Nc,Nf−1

(nj)
contains Nf − 1 flavors whose corresponding fugacities are given by

t′ = (t1, . . . , ta−1, ta+1, . . . , tNf ). From this relation we learn that in the large mass limit

the vortex partition function becomes

lim
iMa→±∞

Z
{bj},Nc,Nf
vortex (x, t, τ, w) = Z

{bj},Nc,Nf−1
vortex (x, t′, τ, wτ∓1x±1). (B.3)

It shows that if we take the large mass flavor from {bj}c, the vortex partition function just

reduces to that of Nf − 1 flavors.

On the other hand, if we now take the bth flavor with b = bj ∈ {bj} and take the limit

iMb → ±∞, we have

2 sinh
iMb−iMbj

+2iµ+2γ(k− 1
2
−ni)

2

2 sinh
iMb−iMbj

+2γ(k−1−ni)
2

→ τ±1x∓
1
2 , (B.4)

2 sinh
iMbi

−iMb+2iµ+2γ(k− 1
2
−ni)

2

2 sinh
iMbi

−iMb+2γ(k−1−ni)
2

→ τ∓1x±
1
2 , (B.5)

2 sinh
iMa−iMb−2iµ+2γ(k− 1

2)
2

2 sinh iMa−iMb+2γk
2

→ τ±1x∓
1
2 (B.6)

where i, j 6= j and a ∈ {bj}c. Then we also have

lim
iMb→±∞

Z
{bj},Nc,Nf
(nj)

(
x = e−γ , t = eiM , τ = eiµ

)
=
(
τ±1x∓

1
2

)∑
j 6=j nj+(Nf−2Nc+1)nj

×

 nj∏
k=1

2 sinh
2iµ+2γ(k− 1

2
−nj)

2

2 sinh 2γ(k−1−nj)
2


×

Nc∏
j=1( 6=j)

nj∏
k=1

 Nc∏
i=1( 6=j)

2 sinh
iMbi

−iMbj
+2iµ+2γ(k− 1

2
−ni)

2

2 sinh
iMbi

−iMbj
+2γ(k−1−ni)
2


×

 ∏
a∈{bj}c

2 sinh
iMa−iMbj

−2iµ+2γ(k− 1
2)

2

2 sinh
iMa−iMbj

+2γk

2


=
(
τ±1x∓

1
2

)∑
j 6=j nj+(Nf−2Nc+1)nj

× Z
{bj},1,1
(nj)

(
x = e−γ , 1, τ = eiµ

)
× Z

{bj},Nc−1,Nf−1

(nj)

(
x = e−γ , t′′ = eiM

′′
, τ = eiµ

)
(B.7)
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where t′′ = (t1, . . . , tb−1, tb+1, . . . , tNf ). Therefore, the vortex partition function becomes

lim
iMb→±∞

Z
{bj},Nc,Nf
vortex (x, t, τ, w) (B.8)

= Z1,1
vortex

(
x, 1, τ, wτ∓(2Nc−Nf−1)x±(2Nc−Nf−1)/2

)
× Z{bj},Nc−1,Nf−1

vortex

(
x, t′′, τ, wτ±1x∓

1
2

)
.

where Z1,1
vortex ≡ Z

{1},1,1
vortex is the vortex partition function of the U(1) theory with one flavor.

Using the q-binomial theorem ∑
n≥0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

, (B.9)

one can show that Z1,1
vortex is written as follows:

Z1,1
vortex(x, 1, τ, w) =

(
τwx

3
2 ;x2

)
∞(

τ−1wx
1
2 ;x2

)
∞

. (B.10)

Note that the right hand appears as a part of the superconformal index of a free twisted

hypermultiplet. If we call the right hand side Zhyper, the index of the twisted hypermultiplet

can be written as

Ihyper(x, τ, w) = Zhyper(x, τ, w)× Zhyper(x
−1, τ−1, w−1) (B.11)

where Zhyper is given by

Zhyper(x, τ, w) =

(
τwx

3
2 ;x2

)
∞(

τ−1wx
1
2 ;x2

)
∞

= PE

[
τ−1wx

1
2 − τwx

3
2

1− x2

]
(B.12)

= Z1,1
vortex(x, 1, τ, w).

The identity Z1,1
vortex = Zhyper reflects the N = 4 mirror symmetry, or equivalently the

N = 4 Seiberg-like duality, between the U(1) theory with one flavor and the free twisted

hypermultiplet theory. From (B.8) and (B.12) we conclude that if we take the large mass

flavor from {bj}, the vortex partition function reduces to the product of the vortex par-

tition function of the U(Nc − 1) theory with Nf − 1 flavors and Zhyper of a free twisted

hypermultiplet.

We have observed the two different limits of the vortex partition function. Using those

results one can find a set of identities applicable to the N = 4 Seiberg-like duality as shown

in section 3.
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