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1. Introduction

In recent years, the steel making industry has expended 
significant effort on meeting the quality standards of cus-
tomers. In order to remain competitive, steel companies 
aim to achieve not only high productivity but also high 
product quality. However, steel manufacturing processes 
create a difficult environment for defect inspection because 
of the hot-rolling processes that involve continuous casting 
and rolling. Therefore, many inspection steps are manually 
performed by humans1) or occasional inspections.

In steel manufacturing conditions, many methods have 
been developed to improve the quality of steel and achieve 
automatic inspection. In this introduction, we briefly men-
tion the various inspection techniques that have been 
developed for steel manufacturing environments, which 
include ultrasonic detection methods for stainless steel spot 
welds2) and ductile iron,3) quality monitoring using voltage 
signals for small-scale resistance spot welding,4) 3D X-ray 
tomography inspection for fatigue in aluminum die cast-
ings,5) and optical inspection techniques for slabs,6,7) steel 
bar,8,9) billets,10) and silicon steel.11) Although the several 
studies mentioned above have achieved good performance 
and can effectively detect their respective defects, it is dif-
ficult to apply them directly to defect detection in thick plate 
surfaces because each of these methods is optimized for a 
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specific type of defect and material.
In this study, we propose a new detection method based 

on visual inspection techniques. Dual-light switching light-
ing (DLSL) is a method of image acquisition that uses 
switched lighting techniques. Generally, automated visual 
inspections use a single lighting (SL) method that consists 
of one camera and one lighting module. SL visual inspection 
has been applied in various industries such as textiles,12–14) 
LCD panels,15,16) and circuits17) for its fast speed and diag-
nostic capabilities.18) However, steel surfaces can have many 
uneven surface properties caused by non-uniform surfaces 
and scales, which are composed of oxidized substances 
caused during hot-process manufacturing. These scales are 
not a defined color or shape. In the SL case, uneven surface 
properties such as scales reflect light differently, making 
it difficult to detect the defects among them. In order to 
address this problem, we propose the DLSL method and 
describe its application to periodic defect detection on the 
surface of thick plate. To reduce the effect of scales, in the 
DLSL method, we find defective regions using the Gabor 
filtering method. To distinguish periodic defects from false 
positives, we search for and classify periodic defects using 
“similarity of shapes” features.

The rest of this paper is organized as follows. The DLSL 
method and target defect analysis are presented in Section 
2. A detailed description of the proposed algorithms is 
presented in Section 3. The experimental results and conclu-
sions are presented in Sections 4 and 5, respectively.
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2. Image Acquisition System and Target Defects

The thick plate surface images used in this study were 
directly acquired from an actual production line. Because 
the thick plates are hot steel plates that are transferred by 
rollers, we use line-scan cameras and horizontal arrays of 
cyan LEDs for the lighting source. Figure 1 shows the 
detection system for the thick plates. The thick plates have 
various widths depending on production conditions. There-
fore, sixteen camera and lighting modules are set up to 
handle the wider plates. The left edge of the thick plate is 
always captured by camera 1, and the right edge is captured 
by camera 10–16, depending on the width of the plate. The 
right edge is automatically detected by a laser detection sys-
tem. The vertical and horizontal resolution of the line-scan 
camera used in this system are 0.25 mm, respectively. A 
frame grabber acquires 2 000 lines per frame, and one line 
consists of 2 048 pixels. Therefore, a captured frame from 
one camera has 2 048 ×  2 000 pixels.

2.1. DLSL Method
To achieve good inspection algorithm performance, good 

lighting methods are essential. Our objective was to develop 
a detection algorithm that satisfactorily identified vari-
ous defect shapes. The surface properties of the defective 
regions vary depending on various factors, such as the type 
of steel and manufacturing conditions. Therefore, defects 
have individual characteristics including size and shape. To 
address this issue, we proposed the DLSL method. Figure 
2(a) shows the architecture of the SL method. The lighting 
module in the SL method is always activated, regardless of 
the scan rate. In this case, objects are always illuminated 
from one side. Therefore, various defect illumination pat-
terns appear, depending on the defect direction, size, and 
thickness. In contrast, the DLSL method consists of one 
camera module and two lighting modules, as illustrated in 
Fig. 2(b). The two lighting modules are set up opposite each 
other on either side of the object, and each lighting module 
has an inverted on-off cycle that depends on the scan rate. 
Therefore, odd scan lines are illuminated by lighting module 
1, and even scan lines are illuminated by lighting module 
2. Because the two lighting modules are set up opposite 
each other at the same angle, the appearance of the normal 
surface does not change, as compared to the SL method. 
However, when the surface is lumpy, a black and white pat-
tern appears because of the differently illuminated patterns 
generated by the on/off lighting cycle.

Figure 3 shows different sizes and shapes of defects. In 
the SL case, different illumination patterns are generated 

depending on the size, orientation, and shape of the defect. 
However, in the DLSL case, only black and white patterns 
in the defect areas are observed, regardless of the size, ori-
entation, or shape of the defect. Therefore, when the DLSL 
method is used, detection problems related to the various 
sizes, orientations, and shapes of the defects can easily be 
solved by determining the black and white pattern regions. 
This is the strongest advantage of DLSL over SL, making 
it easier to solve fault detection problems.

2.2. Target Defects
In this paper, we propose an automated visual inspection 

system for the detection of hot leveler (HL) marks in thick 
plates. HL is a quality improvement process that is the final 
step in thick-plate manufacturing. In the HL rolling process, 
thick plate becomes flatter. Figure 4 shows the HL rolling 
process. When damage occurs on the HL roller surface 
caused by the adhesion of foreign materials or by cracks in 
the roller itself, the thick plate surfaces are also damaged 
by the rolling process (Fig. 4). These defects are called HL 
mark defects (HLMDs). Because the HL process is a roll-
ing process, HLMDs occur consecutively and periodically 
in the thick plate surface. When HLMDs are not detected 
quickly, a large quantity of defects can be generated in the 
thick plate surface. Hence, it is important to quickly detect 
HLMDs on the thick plate surface to maintain the quality 
of the final product.

Figure 5 shows images of HLMDs of various shapes 
and sizes. We have summarized several characteristics of 

Fig. 1. Surface defect detection system.

Fig. 2. Architecture of the lighting methods.
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HLMDs from the statistical analysis of a large number of 
samples.

(1) HLMDs can occur anywhere on a thick plate surface 
and have various sizes and shapes depending on the type of 
damage to the rollers. The smallest HLMD size is 2–3 mm 
(8–12 pixels), and the largest HLMD size is the width of the 
roll. To identify the various HLMD sizes, accurate pattern 
extraction techniques are required.

(2) When HLMDs occur once, they occur consecutively 
and periodically in the thick plate surface with the same 
size and shape. The HLMDs are generated in the same 
vertical direction with period L, where L (Fig. 4) is the cir-
cumference of the roll. Therefore, a periodic check must be 
included to detect HLMDs and the similarity of the shape 
must also be checked. In other words, for accurate detection, 
it is necessary to determine a periodic HLMD group in thick 
plate surface through continuous observation.

In the next section, we provide a step-by-step description 
of the HLMD detection algorithm.

3. Defect Detection Algorithm

In this section, we develop an efficient algorithm to 
detect HLMD candidates in thick plates. HLMDs cause 
black and white patterns when DLSL is used. However, the 
main obstacle to HLMD detection is caused by scale (thin 
oxidation layers of the thick plate surface caused during hot-

process manufacturing). Figure 6(a) shows images of the 
thick plate surface covered by scales. These scales can occur 
anywhere on the thick plate surface and be various colors 
and shapes. These scales do not affect the typical quality 
of the thick plate. However, swollen scales (Fig. 6(c)) also 
generate a weak black and white pattern in DLSL method, 
and these scales must be distinguished from HLMDs by the 
inspection algorithm. To improve the detection algorithm, 
we propose a three-step algorithm as follows. First, it deter-
mines the black and white patterns using Gabor filtering 
of the DLSL image. Second, it extracts candidate HLMDs 
by periodic searches. Finally, it classifies the candidates as 
HLMDs or scales using similarity of shape features.

3.1. Filtering for Pattern Extraction
The Gabor filter is an efficient filtering method in image 

processing. Because of its comprehensive filter design, 
the Gabor filter has been widely used for defect detection 
applications.6,7,19–21) An important property of Gabor filters 
is that they achieve optimal joint localization (or resolu-
tion) in both the spatial and frequency domains.22) In the 
spatial domain, the Gabor function is a complex exponential 
modulated by a Gaussian function. The general form of the 
two-dimensional (2D) Gabor function is given by:
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Equation (1) can be split into a real part and an imaginary 
part. The real part of the 2D Gabor function acts as a blob 
detector, while the imaginary part acts as an edge detector.23) 
Because HLMDs are area-type defects consisting of black 
and white patterns, the real part was applied in this method. 
The real form of the 2D Gabor function is given by:

Fig. 3. Artificial defect images acquired under different lighting 
conditions.

Fig. 4. HL roll process with damaged roll.

Fig. 5. Various shapes and sizes of HLMDs: (a) SL images and (b) 
DLSL images.

Fig. 6. Thick plate surface image acquired by DLSL methods: (a) 
image of thick plate surface with HLMD and scales, (b) 
enlarged region of the image containing an HLMD, and (c) 
region of the image that contains scales.
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where x′ =  xcosθ +  ysinθ and y′ =  −xsinθ +  ycosθ.
The Gabor filter is designed by selecting four param-

eters: θ denotes the rotation parameter, f denotes the radial 
frequency of the Gabor function, and the space constants 
σx and σy define the Gaussian envelope along the x and y 
axes, respectively. In this paper, Gabor designing focusses 
on the characteristics of HLMDs. Because the thick plate is 
transferred by rollers, the direction of movement is verti-
cal with respect to the images. Therefore, continuous thick 
plate surface images are captured by line scan cameras 
along the vertical direction, and black and white patterns 
are represented by the scan rate with respect to the vertical 
direction (Fig. 6(b)). To extract the black and white patterns, 
f is set to 2 (the period of the black and white pattern is 2 
pixels) and θ is set to 90°. Parameters σx and σy represent 
the bandwidth along the x and y axes, respectively, and are 
determined considering the size of the defects. To cover the 
smallest HLMD (8–12 pixels), σx and σy are set to 3. The 
Gabor filter itself is 9 ×  9 pixels. The Gabor filter output 
R(x, y) is defined as follows:
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where (*) denotes 2D convolution, I(x, y) is the gray image 
acquired by the DLSL method, and M ×  N is the size of 
the Gabor filter. The energy of the filtered image E(x, y) is 
calculated by the nonlinear square operator |·|2:

 E x y R x y( , ) = ( , )
2  ........................... (4)

Figures 7(b) and 7(c) show an image obtained using a 
Gabor filter that amplifies the HLMD region. Using the 
energy of the Gabor filtered image, we performed binariza-
tion with an adaptive threshold value. Because the HLMD 
region has a black and white pattern, the energy of the 
Gabor filtered output value in the HLMD region is always 
greater than the mean value of normal surface regions. To 
reduce the irregular image properties caused by scales, the 
adaptive threshold value was calculated using second-order 
statistics:

 T mean E x y std E x y= [ ( , )] [ ( , )]+ ⋅α  .............. (5)

where α is the weighting factor experimentally selected 
using a large number of samples. Because the E(x, y) is 
energy of the Gabor filtered image from one-frame region, 
the value T is adaptively changed depending on the surface 

property. The binary image B(x, y) is given by:
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Figure 7(d) shows the result of binarization on the 
HLMD.

3.2. Periodic Defect Candidate Selection
The proposed algorithm provides detecting periodic 

defects in thick plates. In the filtering stage, black and 
white pattern regions are extracted that include the HLMD 
regions. However, the scales in the thick plate surface can 
generate false positives. Therefore, to increase the perfor-
mance of the inspection algorithm, a periodic search pro-
cedure must be included. To find candidates for periodic 
defects, we use only the position information of the detected 
blobs. Figure 8 shows an example defect map that consists 
of detected blobs. The thick plate surface may have many 
noisy factors that consist of both scales and non-uniform 
surface regions. Therefore, the defect map consists of both 
true and false positives. The goal of the periodic search is 

Fig. 7. Step-wise result of binarization: (a) thick plate surface image with HLMD and scales, (b) result of Gabor filter-
ing, (c) Gabor energy image, and (d) binary image.

Fig. 8. Defect map. Circles are true positives, dotted circles are 
false negatives, and stars are false positives.
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to determine which candidates are periodic defects from 
among the detected false positives.

Because HLMDs are generated by roller damage, HLMD 
period L is equal to the outer circumference of the roll (Fig. 
4). Moreover, a damaged roll generates the HLMDs in the 
same position in the rolling direction (Fig. 8). Therefore, to 
detect periodic defects, we partitioned the defect map region 
along the horizontal direction (Fig. 9). The sub-search 
region width is σw and the sliding interval is Sw =  σw/2. 
When the image width is W, W/Sw−1 search regions are 
generated. The σw can be changed from 1 to W. The large σw 
generates a small number of the search regions, it is excel-
lent for processing speed, but many noise components are 
including in search regions. Therefore, the detection rate of 
small defects is reduced. On the other hand, small σw gen-
erates a large number of the search regions, the processing 
time is increased, and the accuracy of period detection for 
small defects is increased. Therefore, we consider for small 
size of defects, σw is experimentally determined to 64 pixels.

Figure 9 shows the sub-search region division and the 
corresponding position vector Hi(n) in the ith sub-search 
region, where n =  0,1,2, ..., N−1. We compensate for the 
uncertainty of defect position, dividing the length of defect 
map into N equally spaced bins of Lbin along vertical direc-
tion. The number of bins N is N =  Lplate/Lbin, where Lplate 
is size of thick plate along vertical direction and Lbin is 
bin size. Therefore, the size of position vector Hi(n) is N. 
In this paper, we consider for small size of defects, Lbin is 
experimentally determined to 10 pixels. The false positives 
are mainly caused by elements in the noisy background 
such as scales. These false positive results influence the 

performance of the inspection algorithm. To increase the 
detection rate, we detect the periodic occurrence of defects 
in position vector Hi(n).

As mentioned, period L is known information. It is equal 
to the outer circumference of the roll, and is 880 mm (3 520 
pixels). Therefore, we can simply create an artificial position 
vector Sl(n) of period L (Fig. 10(b)). Position vector Hi(n) 
includes both HLMD positions and false positive positions 
(Fig. 10(a)). To determine the sequences of period L, we 
calculate the correlation of Hi(n) and Sl(n) as follows:
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where N is the length of the position vector and Sl(n) is 
defined as follows:
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Because the HLMDs have period L, and Sl(n) is artificial 
position vector of period L and shifted position l, the posi-
tion of maximum correlation represents the start point of a 
candidate HLMD. Figure 10 illustrates the periodic search 
procedure. Position vector Hi(n) includes HLMD positions 
with many noise factors (Fig. 10(a)). After correlation, 
output yi(n) (Fig. 10(c)) represents the correlated values. 
Because HLMDs have period L, the maximum value of yi(n) 
is equal to the start point of the HLMDs and large values 

Fig. 9. Defect map with sub-search regions: (a) defect map parti-
tioned into sub-search regions and (b) the ith sub-search 
region and corresponding position vector Hi(n).

Fig. 10. Periodic defect identification procedure: (a) position vec-
tor Hi(n) includes both HLMD and false positive posi-
tions with period L, (b) artificial position vector S0(n) 
with period L, and (c) output value yi(n).
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appear repeatedly according to the period L. Therefore, we 
can simply chose the start point of the HLMDs, and select 
the candidates of HLMD groups. Figure 11 shows the 
periodic defect candidate groups selected by the periodic 
search process.

3.3.	 Feature	Extraction	and	Classification
Although the pattern extraction and periodic search 

process reduces false positive detections, the influence 
of pseudo-defects remains, caused by scales and noisy 
surfaces. In this section, we apply a classification process 
using the similarity of the periodic defects. The HLMDs are 
generated by damage to the same roll. Therefore, periodic 
HLMDs have the same shapes, orientations, sizes, and posi-
tions in the horizontal direction. To achieve high detection 
accuracy, we apply a support vector machine (SVM) learn-
ing algorithm that uses features extracted from the periodic 

defects.
The ith candidate of a periodic defect consists of the set 

of detected blobs:

 D Blob x y Blob x y Blob x yi
i i

M
i= { ( , ), ( , ), , ( , )}1 2   ..... (9)

where M is the number of defects with the same period 
L and Di is an HLMD or pseudo defect. To classify the 
HLMDs and the pseudo defects, we use the blob informa-
tion. From the set of blob information, we can calculate 
the shape, orientation, and position features. HLMDs have 
the same overall shape as well as shape and position in the 
horizontal direction caused by roller damage from the same 
roll. Hence, the standard deviations (STDs) of the feature 
values must be small. Each feature is described in the fol-
lowing subsections.

3.3.1. Feature Extraction
Because HLMDs are generated by the same roller, 

HLMDs have same size and shape. In contrast, pseudo-
defects are caused by scales or non-uniform properties of the 
thick plate surface. To distinguish the HLMDs from pseudo-
defects, we use the following morphological features:

•  Area
The area represents the total number of pixels in the 
detected blobs. In HLMDs, detected blobs have similar 
areas. The blob area is given by:
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where B(x, y) is the blob binary image, and M ×  N is 
the size of B(x, y).

•  Horizontal position
Given the blob information, we can calculate the hori-
zontal coordinates of the center of gravity of a blob 
as follows:

 

g
C

C

mB m n

B m n
x

n

N

m

M

n

N

m

M
= = =

−

=

−

=

−

=

−

∑∑

∑∑
10

00

0

1

0

1

0

1

0

1

( , )

( , )
.................. (11)

where B(x, y) is a blob binary image and M ×  N is 
the size of B(x, y) and Cij is the central moment of the 
binary blob, as defined by:
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Because HLMDs are generated by a single damaged 
roller, they occur at the same position in the horizontal 
direction.

•  Orientation and Elongation
Figure 12 shows an ellipse with the same normalized 
second central moments as a blob region. Lmajor is the 
length of the major axis of the ellipse, and Lminor is the 
length of the minor axis of the ellipse. Orientation θ 
is given by the angle of the major axis with respect to 
the horizontal axis:

 θ = −
−

0 5
2 11

20 02

. arctan
C

C C
 .................... (13)Fig. 11. HLMD periodic group images selected by the periodic 

search process in the same thick plate surface (DLSL 
images (left) and binary images (right)).
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and the major and minor axis are calculated as fol-
lows:24)
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gx, gy is the centroid of the blob as defined by:
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The length of the two principal axes Lmajor and Lminor 
are equal the eigenvalues λ1, λ2 of the covariance 
matrix C, respectively.
Therefore,

L

L

xx yy xx yy xx yy xymajor

minor

= = + + + − −





=

λ σ σ σ σ σ σ σ1
2 21

2
4( ) ( )

λλ σ σ σ σ σ σ σ2
2 21

2
4= + − + − −












 xx yy xx yy xx yy xy( ) ( )

  ........................................ (17)

The elongation can be calculated:

 1−
L
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The HLMD candidates consist of the set of detected 
periodic blobs. Therefore, to check their similarity, we use 
the STD values of the feature set. A small STD represents 
similarity of shape and position for a set of periodic defects, 
and a large STD value represents dissimilarity. Because 
HLMDs have the same size, shape, and x-position, the STD 
values of the feature set are small compared to those of the 
pseudo-defects. Figure 13 shows the STD values of the fea-
ture set. Here, HLMDs are well represented by small values.

3.3.2. Defect Classification
In this section, we classify the HLMDs using an SVM 

classifier. SVM is basically an approximate implementa-
tion of the method of structural risk minimization.25,26) The 
unique attribute of SVM is that it provides an excellent 
generalization performance on pattern classification prob-

lems in high dimensional spaces without the need to incor-
porate problem domain knowledge. Given a training set of 
instance-label pairs (xi,yi), i =  1,2, ... , N where xi∈Rn and 
y∈{1,−1}, SVM constructs an optimal hyperplane to sepa-
rate the training patterns into two classes with the margin 
of separation maximized. The equation of hyperplane g(x) is

 g x w x bT( ) sgn( ( ) )= +φ  ..................... (19)

where b is the bias, w is the optimal weight vector, and ϕ is 
a mapping function that maps training or feature vector xi 
into a higher dimensional space. SVM requires the solution 
of the following optimization problem:
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subject to

Fig. 13. STD values on the feature set: (a) area, (b) orientation, (c) 
elongation, and (d) position in the x direction (horizon-
tal).

Fig. 12. (a) Ellipse with the same normalized second central 
moments and (b) major, minor axis, and orientation.



ISIJ International, Vol. 55 (2015), No. 9

© 2015 ISIJ1949

 y w x bi
T

i i i( ( ) )φ ξ ξ+ ≥ − ≥1 0and  ............ (21)

where C >  0 is the penalty parameter, and ξi is a slack 
variable that incorporates non-separable data. Furthermore, 
K(xi,xj) =  ϕ(xi)Tϕ(xj) is called the kernel function.

4. Experimental Results

To test detection performance, we prepared a thick plate 
surface image directly captured by the DLSL method from 
a real production line. A total of 1 602 candidate periodic 
defects were used to build the SVM classifier. The number 
of HLMDs was 94. The number of pseudo-data that were 
false detections cause by scales was 1 508. To evaluate the 
SVM classifier, 50% of the data were set aside to validate 
the performance of the classifier. Forty-seven HLMDs and 
754 pseudo-data were used to training the SVM classifier. 
Each feature vector contained four STD values on the set 
of the features. The SVM kernel function adopted a radial 
basis function (RBF).27) There are only two parameters to 
be determined in this SVM model: penalty parameter C 
and kernel parameter γ. To determine the best classification 
results, we performed a cross-validation and parameters C 
and γ were selected using grid search. Table 1 summarizes 
the results of the classification.

In order to evaluate the performance of the proposed 
algorithm, we performed an experiment on 217 defect 
images and 2 010 normal images that were independent 
of the classification experiment. The proposed algorithm 
achieved 100.00% (217/217) accuracy for the detection of 
HLMDs with a false positive rate of 0.75% (15/2 010). Con-
sequently, the proposed algorithm using the DLSL method 
and periodic search was effective at detecting HLMDs in 
the thick plate surface.

5. Conclusion

In this study, we developed an automated vision-based 
surface inspection method for thick plate. To enhance the 
features of defective regions compared to noisy surfaces, 

we proposed the DLSL method that makes it easier to solve 
fault detection problems by generating black and white 
patterns. The black and white patterns extracted by Gabor 
filtering and an adaptive thresholding method formed can-
didates of the periodic defect groups that were selected by 
a periodic search. To classify HLMDs and pseudo-defects, 
we proposed using shape similarity and classifying HLMDs 
and pseudo-defects using an SVM classifier. The proposed 
inspection algorithm was shown experimentally to be effec-
tive at detecting HLMDs in real thick plate surface images.
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Table 1. Classification results using the SVM classifier.

Defect Normal

Training data 100.00% (47/47) 100.00% (754/754)

Test data 100.00% (47/47) 100.00% (754/754)

Accuracy 100.00% (94/94) 100.00% (1 508/1 508)




