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ABSTRACT: Hybrid perovskites are currently the fastest
growing photovoltaic technology, having reached a solar cell
efficiency of over 20%. One possible strategy to further
improve the efficiency of perovskite solar cells is to tune the
degree of octahedral tilting of the halide frame, since this in
turn affects the optical band gap and carrier effective masses. It
is commonly accepted that the ion sizes are the main control
parameter influencing the degree of tilting in perovskites. Here
we re-examine the origin of octahedral tilts in halide
perovskites from systematic first-principles calculations. We
find that while steric effects dominate the tilt magnitude in inorganic halides, hydrogen bonding between an organic A-cation and
the halide frame plays a significant role in hybrids. For example, in the case of MAPbI3, our calculations suggest that, without the
contribution from hydrogen bonding, the octahedra would not tilt at all. These results demonstrate that tuning the degree of
hydrogen bonding can be used as an additional control parameter to optimize the photovoltaic properties of perovskites.

■ INTRODUCTION

Over the past decade, hybrid organic−inorganic perovskites
such as methylammonium lead iodide (MAPbI3, MA =
CH3NH3) have received enormous interest in the scientific
community as low cost and highly efficient solar cell
materials.1−11 To further advance their already impressive
power conversion efficiency,12 it would be highly desirable to
rationalize new design concepts by furthering our fundamental
understanding of these materials. Through first-principles
calculations and modeling the search for modified perovskites
with optimized device properties can be streamlined. For
example, it was predicted and confirmed experimentally13 that
an intimate structure−property relationship exists in halide
perovskites, whereby a certain cooperative structural distortion
to the perovskite can systematically tune the electronic band
structure including the band gap and band edge effective
masses.13,14 By controlling the magnitude of this distortion, one
can optimize various photovoltaic properties such as light
absorption and electron−hole separation.
MAPbI3 undergoes several structural phase transitions with

temperature,15 whereby the aforementioned cooperative
distortions which govern the electronic properties, known as
octahedral tilts, enter into the ground state. The octahedral tilts
consist of a rigid rotation of the anion cage, and can appear
around any of the three Cartesian directions in the crystal with

either in-phase or out-of-phase ordering. MAPbI3 displays a
very common sequence of tilted phases observed by many
perovskites;16−23 the high temperature parent untilted cubic
phase, a0a0a0 in Glazer’s notation,24 distorts upon cooling
toward room temperature to a tetragonal phase with one out-
of-phase rotation (a0a0c−) and eventually to a ubiquitous
orthorhombic low temperature structure with both in-phase
and out-of-phase rotations (a−b+a−) (see Figure 1a,b). In
inorganic perovskites, it is commonly accepted that these
distortions appear, at least in a simplified picture, due to steric
effects whereby the relative ionic sizes are not ideally matched,
driving the octahedral rotations to better satisfy their local
environments. This is semiquantitatively described by the
Goldschmidt tolerance factor,25 which would indeed tentatively
predict MAPbI3 to exhibit a distorted structure on the basis of
steric effects alone.26,27

Here we re-examine, using first-principles density functional
theory (DFT) calculations, the origin of octahedral tilting in
halide perovskites, in the hope that this understanding can be
used to tune photovoltaic properties. The orthorhombic
structure, o-MAPbI3, is investigated for theoretical ease since
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within this phase the MA ions are ordered, unlike the higher
temperature tetragonal and cubic phases. However, our results
are also relevant to tetragonal and cubic MAPbI3

28 due to the
dynamic appearance of these tilts as soft phonon modes.29 We
note that, for o-MAPbI3, neutron diffraction data30 confirm the
ordered positions of the MA ions, and these agree well with our
DFT calculations. We find a clear trend between A-cation size
and the propensity to tilt in inorganic halides, in line with
standard steric arguments, which we argue to be more
accurately described as a second order Jahn−Teller effect
whereby tilts aid orbital hybridizations. Pb lone pair bonding
influences the strength of this steric (or more accurately second
order Jahn−Teller) effect in lead-based halide perovskites.
However, MA-I hydrogen bonding is shown to play an even
more significant role in hybrid organic−inorganic lead halide
perovskites.31 In the case of MAPbI3, our results suggest that
without the contribution from H-bonding the structure would
remain untilted at all temperatures. We argue whether it is in
fact coincidental that MAPbI3 shows an identical tilt pattern to
many inorganic oxide perovskites, being driven instead by a

particular pattern of highly directional hydrogen bonds. The
results suggest that hydrogen bonding can be used as an
additional control parameter to optimize photovoltaic proper-
ties, and electronic properties more generally, in perovskites.

■ METHODS
First-Principles Calculations. All the DFT calculations employed

the generalized gradient approximation (GGA) implemented with
projector augmented-wave (PAW)32,33 pseudopotentials as supplied in
the Vienna Ab Initio Simulation Package (VASP).34−37 During
relaxation, corrections for the van der Waals dispersion interaction
(optB86b-vdW) were included.38,39 The spin−orbit coupling inter-
action was only included for the band structure and DOS calculations.
The following parameters were adopted: (i) a 4 × 3 × 4 Monkhorst−
Pack k-point mesh centered at Γ, (ii) a 500 eV plane-wave cutoff
energy, and (iii) the tetrahedron method with Blochl corrections for
the Brillouin zone integrations.40 The number of valence electrons
treated explicitly were as follows: 14 for Pb (5d106s26p2), 8 for Ca
(3p64s2), 8 for Ba (5p66s2), 8 for Sr (4p65s2), 7 for I (5s25p5), 9 for Cs
(5s25p66s1), 9 for K (3s23p64s1), 9 for Rb (4s24p65s1), 9 for Fr
(6s26p67s1), 4 for C (2s22p2), 5 for N (2s22p3), and 1 for H (1s1). All

Figure 1. Effect of chemical substitution on the propensity for octahedral tilting in halide perovskites. (a) The ground state (GS) and (b) high
symmetry (HS) structures of orthorhombic (o-) MAPbI3, composed of PbI6 octahedra and MA+ groups. (c) The energy difference between the HS
and the GS structures (EHS−GS) as a function of the tolerance factor for the o-A(=K/Rb/Cs/Fr)B(=Ca/Sr/Ba)I3 inorganic series (red circles), o-
APbI3 inorganic series (green circles), o-MABI3 hybrid series (blue squares), and o-MAPbI3 (yellow square). The horizontal error bars of the o-
MABI3 hybrid structures represent the difference in tolerance factor calculated using the sphere and cylinder methods (see Methods section and SI
Figure S1). Inset shows the computed Kohn−Sham (K−S) energies plotted as a function of the average tilt angle (θavg) between the equatorial (Pb−
IE−Pb) and apical (Pb−IA−Pb) tilt angles for o-MAPbI3. SI Table S3 lists the ground state values of θavg for all the perovskites studied together with
the values of EHS−GS. The variation of θavg with tolerance factor and EHS−GS is given in SI Figure S2.
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structural relaxations were performed with a Gaussian broadening of
0.05 eV.41 The ions were relaxed until the forces on them were less
than 0.01 eV Å−1. The fractional coordinates of all of the ground state
structures are given in Tables S4−S23. All schematic representations
of the crystal structures were generated using the VESTA program.42

For each system, we compute the energy difference, EHS−GS, between
the fully relaxed ground state (GS) orthorhombic structure, and a
“high symmetry” (HS) phase in which (i) the cell is fixed to the GS,
(ii) the octahedra are fixed and untilted, and (iii) the A-cations are
relaxed. In the case of the inorganic perovskites, the HS phase simply
corresponds to the high temperature cubic phase (but with the GS
lattice parameters). For the hybrid perovskites, it is a hypothetical
phase whereby we relax the local MA coordinates but keep them in the
same conformation as the orthorhombic phase (see Figure 1). In order
to be self-consistent we determined the tolerance factor directly from
our DFT electron density, by defining the ionic radii by the volume of
a sphere which contains 95% of the electron density, as done by Filip
et al.13 For the MA+ ion we used both a sphere and a cylinder to
determine two effective radii (see SI Figure S1). The two different
shapes only changed the effective radius by 0.04 Å.

■ RESULTS

Effect of Chemical Substitution on Tilting. In order to
try and resolve the factors influencing octahedral tilting in
MAPbI3, we perform first-principles calculations, based on
density functional theory (see Methods), on a variety of
inorganic and hybrid perovskite chemistries. We start by
considering inorganic Pb-free ABI3 (A = K, Rb, Cs, Fr and B =
Ca, Sr, Ba) and subsequently move on to APbI3, MABI3, and
finally MAPbI3. By doing so we can systematically study and

discern the role of steric effects (i.e., cation sizes), Pb electronic
effects (e.g., lone pairs), and H-bonding from the MA cation.
For each system, we compute the energy difference, EHS−GS,
between the fully relaxed ground state orthorhombic structure
(GS), and a “high symmetry” phase which has the octahedra
fixed in their untilted positions (HS) (see Methods for details).
EHS−GS is then a quantitative measure of the propensity of the
system to tilt.
We find that, in all the systems studied, the ground state

structure is distorted with the orthorhombic tilt pattern
(a−b+a−), i.e., EHS−GS is a nonzero positive value. This might
be expected given that all of the materials have a tolerance
factor less than 1, which is the criterion for tilting in
perovskites. The calculated lattice parameters are given in SI
Table S1, the effective ionic radii in Table S2, and the tolerance
factors in Table S3. Figure 1c shows EHS−GS as a function of the
tolerance factor for each of the cases described above.
Considering first the inorganic perovskites without Pb (red
circles in Figure 1c), the tolerance factor appears to be a good
descriptor of the propensity for octahedral tilting. The
calculations show that as the tolerance factor becomes smaller,
i.e. as the cation sizes become less ideally matched to the
untilted perovskite cell, the energy gained by tilting becomes
systematically greater, which is as expected from classical steric
arguments.18 It is, however, surprising that a physically
oversimplified model appears to give an accurate quantitative
description as seen by the precision of the trend line.
Interestingly when MA substitutes on the A site (blue squares
in Figure 1c), octahedral tilting is strongly stabilized. On the

Figure 2. Effect of octahedral tilting on the electronic structure of o-APbI3. (a) The computed band diagrams of the GS and HS structures showing
high symmetry points on the first Brillouin zone of the orthorhombic structure. The k-point-dependent energies of the GS and HS structures are
denoted by the blue and red-dotted lines, respectively. (b) The energy eigenstate diagram at the Γ [k = (0, 0, 0)] point. The first band at the Γ point,
i.e., the valence band maximum (VBM), is indexed as zero. (c) Molecular orbital diagram for the interaction between Pb and I atoms. (d) The top-
most 16 eigenstates below the VBM at the Γ point for five increasing amounts (0 to 1) of octahedral tilting. (e) The Pb 6p−I 5p bonding states at
the Γ point for five increasing amounts (0 to 1) of octahedral tilting. (f) Electronic charge density contours of the top-most four bands below the
VBM at the Γ point of the GS structure. The color saturation levels are between 0 (blue) and 0.017 (red) e/A3. The data shown is for the case of o-
MAPbI3 for illustration.
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other hand, when Pb is substituted on the B site, the propensity
for octahedral tilting systematically decreases across both series
(ABI3 and MABI3). Remarkably in the case of MAPbI3 (yellow
square in Figure 1c), a hypothetical APbI3 perovskite with the
same size A cation as MA (green curve at a tolerance factor of
0.83) would hardly want to tilt at all. In other words the
octahedral tilting in MAPbI3 appears to be induced by a
mechanism related to the chemical nature of the MA ion, and
not its size. The origin of these effects are explored below.
Orbital Interactions. An alternative quantum mechanical

way of viewing the classical steric mechanism for octahedral
tilting is the second order Jahn−Teller effect whereby the tilts
stabilize certain orbital hybridizations.21,23,43−45 This could
explain the difference in Figure 1c between perovskites with
and without Pb; by introducing Pb, new Pb states such as the
lone pair orbitals can rescale (add an extra contribution) to this
inherently electronic effect. If this suggestion is correct, it would
appear from Figure 1c that overall the octahedral tilts have a
destabilizing effect on Pb-based hybridizations. From the

analysis below, we demonstrate that tilting in inorganic
perovskites primarily results from a stabilizing effect on
nonbonding I 5p orbitals, but that destabilizing contributions
from Pb 6p−I 5p bonding states reduces the propensity to tilt
in Pb-based perovskites.
To achieve further insight into the origin of tilting, band

structure calculations and electron orbital analyses have been
performed on o-APbI3. Data for MAPbI3 is displayed here only
for illustration of lead-based halide perovskites, and similar
qualitative results are found in other APbI3 (see SI). As shown
in Figure 2a, the computed band structure of o-APbI3 reveals
that while the HS structure has only a small band gap (0.03
eV), octahedral tilting in the GS structure opens a band gap of
about 0.81 eV (see SI Figure S3 for the other chemistries).
While these band gaps are most likely underestimated using
DFT, it is the trend in behavior that is important here. The
electronic structures of the GS and HS configurations were
aligned by adjusting their eigenvalues with respect to the
vacuum level. Our DFT calculations show that the states

Figure 3. Stabilized and destabilized molecular orbitals through octahedral tilting in o-APbI3. Orbital interaction diagrams illustrating antibonding,
nonbonding, and bonding molecular orbitals that aid (top two panels) and hinder (bottom two panels) the octahedral tilting in o-APbI3. Both the
HS and GS structures are shown. The dotted red lines indicate favorable orbital interactions, and the arrows indicate the direction of the orbital
displacement. (a) Pb 6s−I 5p* antibonding state and (b) its electronic charge density contour corresponding to the four bands immediately below
the VBM at the Γ point. (c) I 5p nonbonding state and (d) its electronic charge density contour corresponding to bands 9−12 below the VBM at the
Γ point. (e) Pb 6p−I 5p bonding state and (f) its electronic charge density contour corresponding to the four bands immediately below the first Pb
6p−I 5p bonding state (see Figure 2b). (g) Pb 6s−I 5s* antibonding state and (h) its electronic charge density contour corresponding to bands
100−103 below the VBM at the Γ point. The color saturation levels are between 0 (blue) and 0.017 e/A3 (red). The data shown is for the case of o-
MAPbI3 for illustration.
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toward the top of the valence band region are stabilized by the
octahedral tilting, and this agrees with previous studies on the
correlation between tilting and band gap opening.28 The
character of the wave functions at the Γ-point [k = (0, 0, 0)]
has been analyzed to identify the orbital interaction relevant to
octahedral tilting in the GS structure. To do this, the band
index is labeled in descending order of energy beginning at the
valence band maximum (VBM), which is given a band index of
0. As shown in Figure 2b, the top of the valence band consists
of Pb 6s−I 5p* antibonding states (whose electronic density
profile is shown in Figure 2f), followed by (i) nonbonding I 5p
states, (ii) Pb 6p−I 5p bonding states, (iii) MA+ (or more
generally A+) states, (iv) Pb 6s−I 5s* antibonding states, and
(v) Pb 6s−I 5p bonding states. The partial charge densities of
these states are shown in SI Figure S4. On the basis of these
results, a Pb−I molecular orbital diagram is constructed and
shown in Figure 2c.
According to the energy band index diagram shown in Figure

2b, the only molecular orbital states that are stabilized by the
octahedral tilting are the Pb 6s−I 5p* antibonding and
nonbonding I 5p orbitals. This is consistent with our calculated
partial densities of states (PDOS) results (see SI Figure S5). In
Figure 2d the Kohn−Sham (K−S) energies of the Pb 6s−I 5p*
antibonding and nonbonding I 5p states are shown as a
function of the amount of octahedral tilting, and found to all
decrease with increasing tilt angle. The points labeled 0 to 1
represent the degree of tilting between the HS and GS
structures, which correspond to the five points between the HS
and GS in Figure 1c (inset). The decrease in the K−S energy
with increasing amount of octahedral tilting can be attributed to
the stabilization of the Pb 6s−I 5p* antibonding and
nonbonding I 5p states near the VBM. By contrast, the Pb
6p−I 5p bonding states at higher band indices are destabilized
by the octahedral tilting as shown in Figure 2e.
To understand the structural stabilization of o-APbI3 in terms

of the electronic structure of the Pb 6s−I 5p* antibonding and
nonbonding I 5p molecular orbitals, we propose two orbital
interaction mechanisms which are schematically depicted in
Figure 3. As shown in Figure 3a, I 5px (ϕ5px) orbitals tend to

displace from the linear Pb−IE−Pb bond line to stabilize the
orbital interaction energy in the Pb 6s−I 5p* antibonding
molecular orbitals, which is in accordance with the computed
electronic density profile of the Pb 6s−I 5p* antibonding states
presented in Figure 3b. Furthermore, the nonbonding I 5py
orbitals (ϕ5py) are also displaced away from the linear Pb−IE−
Pb bond line (see Figure 3c). The computed electronic density
profile of the nonbonding I 5p orbitals support this orbital
interaction as shown in Figure 3d. All these computed results
thus clearly indicate that the octahedral tilting in o-APbI3 is
closely linked with the stabilization of the Pb 6s−I 5p*
antibonding and nonbonding I 5p molecular orbitals.
Equivalent orbital interaction mechanisms for the Pb 6p−I 5p
bonding and Pb 6s−I 5s* antibonding states have been
sketched in Figure 3e−h, which we argue plays a role in
destabilizing octahedral tilts. It is the sum of all of these
contributions which determines the propensity of the octahedra
to tilt.

Hydrogen Bonding. So far we have attempted to
rationalize octahedral tilting in inorganic perovskites on the
basis of tilting induced orbital hybridizations, otherwise known
as the second order Jahn−Teller effect. This has successfully
accounted for the behavior of EHS−GS as a function of tolerance
factor, and the effect of Pb substituted perovskites (Figure 1c).
The greater propensity for hybrid perovskites to tilt compared
to inorganic perovskites with similar ionic sizes still needs
understanding. This cannot be explained as a second order
Jahn−Teller effect since the MA electronic states are either
seen to be unaltered by tilting, or slightly destabilized (see
Figure 2b).
It has been shown previously that strong hydrogen bonding

exists between the MA cation and the iodine framework, and
this affects octahedral tilting.31 We begin by re-examining this
interplay between hydrogen bonding and tilting. In a previous
study it was found that hydrogen bonding is noticeably weaker
in the HS structure.46 This was demonstrated by calculating the
noncovalent interaction (NCI)47 contours of both structures,
and these are shown in Figure 4a,b. For the GS structure
(Figure 4a), the NCI contour shows the presence of three

Figure 4. Hydrogen-bonding induced octahedral tilting. (a) Noncovalent interaction (NCI) density isosurface (top) and reduced density gradient
(s) as a function of Sign(λ2)ρ (bottom) for the GS structure. (b) NCI density isosurface (top) and s as a function of Sign(λ2)ρ (bottom) for the HS
structure. ρ is the electron density, and λ2 is the second eigenvalue of the electron density Hessian matrix. The isosurfaces shown in parts a and b
were generated for s = 0.3 au and −0.03 au < ρ < −0.015 au. (c) Hydrogen bonds (indicated by red arrows) between IA and HN(1) atoms in the GS
structure which are directly related to the antiphase rotational mode (a−b0a−). (d) Hydrogen bonds (indicated by green arrows) between IE and
HN(2)/HN(2′) atoms in the GS structure which are correlated with both in-phase and antiphase rotational modes, simultaneously (a−b+a−).
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strong hydrogen bonding interactions: (i) between HN(1) and
the axial iodine atom labeled IA(1), (ii) between HN(2) and the
equatorial iodine atom labeled IE(2), and (iii) between HN(2′)
and IE(2′). The three contours clearly indicate the presence of
three strong hydrogen bonds and two types of bonding modes
(axial and equatorial). However, in the HS structure (Figure
4b) there is only one contour which is between HN(1) and
IA(1), indicating that the HN(1)IA(1) interaction is slightly
weakened in the HS structure and that the other H−I
interactions are absent. The NCI contours are supported by
plots of the reduced density gradient (s) as a function of
Sign(λ2)ρ where ρ is the electron density and λ2 is the second
eigenvalue of the electron density Hessian matrix. A trough and
singularity in the reduced density gradient indicate the presence
of a noncovalent interaction. λ2 can be either positive or
negative depending on the type of interaction. When there is
hydrogen bonding, λ2 < 0. On the other hand, λ2 > 0 indicates
there are nonbonded interactions such as steric repulsion. In
the case of van der Waals interactions, λ2 approaches zero. ρ
indicates the interaction strength, and thus higher values of |ρ|
suggest stronger interactions. The isosurfaces shown in Figure
4a,b were generated for s = 0.3 au and −0.03 au < ρ < −0.015
au. Thus, a singularity in the reduced gradient density within
this window indicates strong hydrogen bonds. The reduced
density gradient plots show that hydrogen bonds are present in
both the GS and HS structures but that they are stronger in the
GS structure.
In Figure 4c,d we also sketch the pattern of iodine motions

expected from the two different hydrogen modes in the GS
structure. The bonding between IA and HN(1) atoms is
indicated by red arrows (mode 1), and that between IE and
HN(2)/HN(2′) atoms is indicated by green arrows (mode 2).
This pattern of iodine displacements expected from hydrogen
bonding corresponds perfectly with the resulting octahedral
tilting of the orthorhombic phase. It is interesting to note that
while mode 1 induces only the antiphase octahedral rotation,
mode 2 correlates with both in-phase and antiphase rotations.

■ DISCUSSION
The analysis of the first-principles calculations presented above
suggests that the degree of octahedral tilting in hybrid halide
perovskites depends on a subtle balance of orbital interactions
between the inorganic species (second order Jahn−Teller
effects), and hydrogen bonding between the MA cation and the
anion framework. Let us consider the case of the prototypical
hybrid perovskite MAPbI3. If we could hypothetically remove
hydrogen bonding from this system by, for example, replacing
MA by an inorganic (or H-bonding free organic) cation of the
same size, we would expect EHS−GS to be negligible, as shown
by the arrow in Figure 1c. This means that octahedral tilting
does not favor orbital hybridizations; the combined effects of
stabilizing and destabilizing orbital interactions almost exactly
cancel. We then conclude, returning to MAPbI3, that without
hydrogen bonding this perovskite would remain untilted.
If hydrogen bonding is responsible for the orthorhombic

phase, could it also be responsible for the room-temperature
tilted tetragonal phase? This problem is beyond the scope of
the current paper, especially given the complex nature of the
partially disordered MA species within this phase. However, we
note that the hydrogen bonds between IA and HN(1) atoms,
which we predict to exist even in the untilted orthorhombic
phase (i.e., will induce a force on the atoms), are directly
related to the antiphase rotational mode which constitutes the

tetragonal structure. We note related discussions in a recent
study to which we refer for more in-depth analysis.48

Finally, we briefly consider the consequence of hydrogen
bonding for photovoltaic applications. In Figure 5, we plot the

electron effective mass at the Γ point and band gap as a
function of tolerance factor. As expected, across the inorganic
series, as the tolerance factor reduces the effective electron
masses, band gaps increase due to enhanced octahedral tilting.
However, MAPbI3 does not fit the trend lines, which would
otherwise have predicted MAPbI3 to exhibit a favorably reduced
effective electron mass and band gap. Instead, hydrogen
bonding has enhanced octahedral tilting beyond that expected
from the tolerance factor, which in turn has increased the
effective electron mass and band gap (see Figure 5, insets). One
can imagine that, in order to design halide perovskites with
enhanced carrier mobilities and reduced band gaps, hydrogen
bonding should be minimized. Alternatively, one could consider
engineering the direction of the hydrogen bonds to disfavor
octahedral tilting. This appears to be the case, for example, in
FAPbI3 (FA = NH2CHNH2), which has hydrogen bonds on
both sides of the molecule14 rendering the system pseudocubic.

■ CONCLUDING REMARKS
To conclude, first-principles calculations have been performed
on various inorganic and hybrid halide perovskites in an
attempt to resolve the physical origin of octahedral tilting in
these systems. While we find that orbital interactions dominate
in inorganic perovskites, in line with standard arguments,
hydrogen bonding plays a critical role in stabilizing octahedral
tilts in hybrid perovskites such as MAPbI3. Since octahedral tilts
affect band gaps and carrier masses, engineering the strength

Figure 5. Beyond steric effects for photovoltaic engineering. The
computed electron effective mass (me) (a) and band gaps (b) of o-
APbI3 (circles) and o-MAPbI3 (square) plotted as a function of the
tolerance factor. The insets show how the two quantities vary with
average tilt angle.
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and direction of the hydrogen bonding between the organic
molecule and the anion framework could be considered as a
future avenue for optimizing solar cell efficiency. Understanding
new parameters that control tilting is not only important for
photovoltaic engineering in halides, but has implications more
generally for all perovskites where tilts influence many
functional properties including magnetism, ferroelectricity,
and magnetoresistance.
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