
Perturbation-minimized triangular bunch for high-transformer ratio using
a double dogleg emittance exchange beam line

G. Ha,1,2 M. H. Cho,1 W. Gai,2 K.-J. Kim,2 W. Namkung,1 and J. G. Power2
1POSTECH, Pohang, Gyeongbuk 790-784, Republic of Korea
2Argonne National Laboratory, Argonne, Illinois 60439, USA
(Received 26 August 2016; published 16 December 2016)

The longitudinal shape, i.e., the current profile, of an electron bunch determines the transformer ratio in a
collinear wakefield accelerator and thus methods are sought to control the longitudinal bunch shape. The
emittance exchange (EEX) appears to be promising for creating a precisely controlled longitudinal bunch
shapes. The longitudinal shape is perturbed by two sources: higher-order terms in the beam line optics and
collective effects and these perturbations can lead to a significant drop of the transformer ratio. In this paper,
we analytically and numerically investigate the perturbation to an ideal triangular longitudinal bunch shape
and propose methods to minimize it.
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I. INTRODUCTION

Methods for shaping the profile of an electron bunch in
transverse phase space have long been available to the
accelerator designer. However, methods for controlling
the longitudinal phase space are scarce. Manipulation of
the former is relatively straightforward since the transverse
coordinates of the bunch (position and angle) can be
directly manipulated with simple elements, such as mag-
netic quadrupoles and transverse masks. On the other hand,
direct manipulation of the electron bunch longitudinal
coordinates (position and momentum) is not as easily
achieved. While the control of the momentum can be
accomplished with an accelerating cavity, direct control
over the longitudinal position is challenging for ultrashort
electron bunches on the femtosecond to picosecond scale.
At the Argonne Wakefield Accelerator (AWA), we are

developing a longitudinal bunch shaping (LBS) beam line
we call themaskþ EEXmethodwhere a transverse mask is
placed at the entrance to an emittance exchange (EEX)
beam line. The mask is used to select the transverse bunch
profile from the incident bunch at the entrance to the EEX
beam line. The EEX beam line transforms the transverse
bunch properties at its entrance into longitudinal bunch
properties at its exit [1–3]. In principle, this method can
generate a wide variety of extremely high-quality longi-
tudinal bunch shapes. For example, this method can be used
to improve the efficiency of DWFA and PWFA [4] by
flattening the wakefield inside the bunch. Also, it has
previously been used to generate a sub-ps bunch train [5].

The application we concentrate on in this paper is the
collinear wakefield accelerator where a high-charge electron
drive bunch excites wakefields in a high-impedance media
(e.g. dielectric structures and plasma), which, in turn accel-
erates a low-charge electron witness bunch trailing behind on
axis to higher energy [6]. While we focus on the collinear
wakefield accelerator, since it directly bears on our research
program, most of the results in this paper are relevant to
applications requiring precise longitudinal bunch shapes.
In the collinear wakefield accelerator application, a

primary figure of merit is the transformer ratio (R) defined
as the ratio of the maximum accelerating field (Ea)
experienced by the witness bunch to the maximum decel-
erating field (Ed) experienced by the drive bunch,
R ¼ jEa=Edj. Therefore, the energy gained by the witness
bunch is RΔW, where ΔW is the energy lost by the drive
bunch. A high transformer ratio gives the accelerator
designer a convenient way of generating a high-energy
witness bunch from a low-energy drive bunch. Also,
according to the fundamental wakefield theorem, the
transformer ratio has an upper limit of 2 for symmetric
longitudinal current profiles [7]. However, this upper limit
can be overcome with either asymmetric bunch trains (e.g.,
the ramped bunch train [8]) or an asymmetric single bunch
profile (e.g. a triangular current profile [7]).
In this paper, we use the particle tracking simulation code

GPT [9] to numerically examine the efficacyofourLBSbeam
line (the maskþ EEX method) in generating triangular
longitudinal bunch shapes for generating a high transformer
ratio in the collinear wakefield accelerator application. We
begin, in Sec. II, with an analysis of the ideal case in which
perturbations from higher-order terms in the beam line optics
and collective effects are ignored. Our goal in this section is
to develop an intuitive understanding about the exchange
process and to obtain the equation for generating an exact
triangular current profile. Next, in Sec. III, we extend our
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analysis to the realistic case and derive analytic expressions
for each perturbation source that had been ignored in Sec. II.
In Sec. IV, we first describe the distortion of the ideal shape
caused by each perturbation source. Second, to quantify each
perturbation source, we define, as our figure ofmerit, the ratio
of the change of the transformer ratio produced by the
perturbed triangular profile to the exact one, ΔR=R ¼
ðRp − ReÞ=Re, where Rp ¼ the transformer ratio produced
by the perturbed bunch and Rp ¼ the transformer ratio pro-
duced by the exact bunch. Finally, in Sec. V, we conclude the
paper by benchmarking our analytic perturbation approach
(Secs. III and IV) with numerical simulations (GPT) and
evaluate two methods to suppress the perturbations.

II. LONGITUDINAL BUNCH SHAPING
BEAM LINE (IDEAL CASE)

While various beam line configurations are capable of
satisfying the emittance exchange condition [10], we chose
to use a double dogleg EEX beam line throughout this
paper [2,3]. In this section, we show that our LBS beam line
(maskþ EEX based) can generate an exact triangular shape
in the limit of the ideal case where higher-order optics in the
EEX beam line are ignored and all collective effects are
considered negligible [11].

A. LBS (maskþEEX based) beam line

We begin by writing down the transfer matrices for the
EEX beam line. In our analysis, the double dogleg EEX
beam line (Fig. 1) is subdivided into three sub–beam lines,
“DL1þ TDCþ DL2,” where DL1 is the first dogleg and
DL2 is the second dogleg. [Notice that Fig. 1 includes a
fundamental mode accelerating cavity (FMC) to eliminate
the so-called “thick lens effect” of the transverse deflecting
cavity (TDC) [12]. It is ignored in this section but is
included in the figure since it will be used in later sections
of the paper.] We define Xm ¼ ðxm; x0m; zm; δmÞT to be the
4D particle coordinates along the beam line (Fig. 1).
In the LBS beam line, a transverse mask is followed by a

double doglegEEXbeam line. B1–B4are rectangular dipole
magnets, TDC is a transverse deflecting cavity, and FMC is a
fundamental mode cavity used to suppress the thick-lens
effect. We reference particle coordinates at four locations.
Each dogleg consists of two rectangular dipole magnets

of bending angle αi and length LB, separated by a drift of
length LDL;i with transfer matrix,

Mdog;i ¼

0
BBB@

1 Li 0 ηi

0 1 0 0

0 ηi 1 ξi

0 0 0 1

1
CCCA; ð1Þ

where Li ¼ 2LB= cosðαiÞ þ LDL;i=cos2ðαiÞ, ηi ¼
2LB½cosðαiÞ − 1�= sinðαiÞ cosðαiÞ − LDL;i sinðαiÞ=cos2ðαiÞ
and ξi ¼ LDL;isin2ðαiÞ=cos2ðαiÞ þ 2LB= cosðαiÞ − 2LBαi=
sinðαiÞ [1,13]. The parameters ηi and ξi are, respectively,
the dispersion and momentum compaction generated by
each dogleg. The subscripts fi ¼ 1; 2g are used since, in
general, the two doglegs can be different. The transverse
deflecting cavity of kick strength κ in the thin-lens
approximation [1] is described by

MTDC ¼

0
BBB@

1 0 0 0

0 1 κ 0

0 0 1 0

κ 0 0 1

1
CCCA; ð2Þ

where κ ¼ 2πeV⊥=λE, where E is the electron bunch
kinetic energy, λ is the rf wavelength, and V⊥ is the
cavity’s transverse voltage. Including the two drifts
before and after the TDC (LD, Fig. 1), the total transfer
matrix of the EEX beam line is given by MEEX ¼
MDL2MDMTDCMDMDL1, where MD is the transfer matrix
of a drift of length LD.
The exact emittance exchange condition is given by [2]

0
BBB@

xf
x0f
zf
δf

1
CCCA ¼

�
0 B

C 0

�0BBB@
x0
x00
z0
δ0

1
CCCA; ð3Þ

where B and C are 2 × 2 submatrices.
Equation (3) is equivalent to the following two equa-

tions:

� xf
x0f

�
¼ B

�
z0
δ0

�
; ð4Þ

FIG. 1. The longitudinal bunch shaping (LBS) beam line is based on the maskþ EEX method.
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�
zf
δf

�
¼ C

�
x0
x00

�
: ð5Þ

Therefore, we can say that the EEX beam line eliminates
the dependence of the final horizontal (longitudinal)

coordinates from the initial horizontal (longitudinal)
coordinates.
At the end of the EEX beam line, the full exchange

between the horizontal and the longitudinal phase space is
complete as can be seen from the zero off-diagonal blocks
in MEEX below,

0
BBB@

xf
x0f
zf
δf

1
CCCA ¼

0
BBB@

0 0 κðL2 þ LDÞ η1 þ κξ1ðL2 þ LDÞ
0 0 κ κξ1

κξ2 η2 þ κξ2ðL1 þ LDÞ 0 0

κ κðL1 þ LDÞ 0 0

1
CCCA
0
BBB@

x0
x00
z0
δ0

1
CCCA: ð6Þ

Details of how the EEX beam line works and why the
EEX requires two identical doglegs are described in
Appendix A. We remind the reader that when the two
doglegs are the same, as is usually the case, the subscript i
can be dropped from Eq. (6). In summary, the momentum
exchange occurs in the first section of the beam line
(DL1þ TDC) and the position exchange occurs in the
second (TDCþ DL2) and the entire beam line is needed to
complete the total exchange.

B. The bunch shaping equation

For the longitudinal bunch shaping application that we
are interested in, the key point is that all of the downstream
longitudinal properties ðzf; δfÞ are completely governed by
the upstream horizontal properties ðx0; x00Þ. Thus, if one
can control the horizontal properties upstream of the EEX
beam line, then the downstream longitudinal properties are
determined. Using the matrix of Eq. (6), we can write the
bunch shaping equation for the idealized case, where the
final longitudinal position of a particle is given by its initial
horizontal position and angle as

zf ¼ κξ2x0 þ fη2 þ κξ2ðL1 þ LDÞgx00: ð7Þ

Using TRANSPORT notation, the two terms of the 6D
EEX matrix that control the longitudinal bunch shape are
R51 ¼ κξ2 and R52 ¼ η2 þ κξ2ðL1 þ LDÞ.
The relationship given by Eq. (7) is not yet in a form that

makes it easy to use for longitudinal bunch shaping since
the final longitudinal position (zf) depends on both initial
transverse coordinates ðx0; x00Þ. Ideally, we are seeking a
relationship in which the final longitudinal position (zf)
depends only on the initial position (x0) since that can be
easily controlled with the transverse mask. Fortunately, the
dependence of zf on x00 can be eliminated from Eq. (7)
because the relationship between x00 and x0 can be
expressed in linear theory as S ¼ x00=x0, where S is a
constant. We can now rewrite the above equation as

zf ¼ C0x0; ð8Þ

where the coefficient is C0¼½κξ2þSfη2þκξ2ðL1þLDÞg�.
We finally have an easy to use longitudinal bunch shaping

equation for our LBS beam line (the maskþ EEX based
method) in Eq. (8): the final longitudinal position depends
only on the product of a coefficient and the initial horizontal
position. Equation (8) means that the final current profile is a
simple linear transformation of the initial horizontal profile.
Figure 2 shows several examples with the coefficient (C0) set
to 0.5. At the top of the figure, a Gaussian transverse profile is
transformed into a Gaussian longitudinal profile with its
length compressed by a factor of 2 since C0 ¼ 0.5. In the
second row, a three-particle model is used to visualize the
linear transformation of particles with initial horizontal
position fx1; x2; x3g linearly transformed into its final longi-
tudinal positions, fz1; z2; z3gwhere the initial separation (Δ)
between the particles is a factor of 2 less than the final
separation (Δ=2). The other examples in the figure show that
when a distribution is transformed its length is compressed
by the same factor of 2, but the area of the distribution is the
same since the charge of the distribution is conserved.
One concern that may be raised is that the sharp features

at the ends of the horizontal distribution (Fig. 2) may not
properly propagate through the EEX beam line thus
negatively affecting the final longitudinal shape. We note
that the sharp features created by the mask have been
simulated and found to be negligible in many publications
[11,14,15]. Our GPT simulations also confirm that these
are negligible and even our experiment showed that there is
no issue with beam transport of the sharp feature, at least to
the levels that we are capable of simulating and measuring
[16]. Therefore, in the following formal analysis, the sharp
features are neglected.
In summary, we have shown in this section that our LBS

beam line (using the maskþ EEX layout) can generate
perfectly shaped, arbitrary current profiles in the limit of the
ideal case (negligible higher-order optics in the EEX beam
line, negligible collective effects, low emittance, and linear
phase space). For completeness, we note that the final
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horizontal properties ðxf; x0fÞ are governed by the initial
longitudinal properties ðz0; δ0Þ but since the focus of this
paper is longitudinal bunch shaping we do not cover this
aspect.

C. Limitations of the ideal case

To motivate the analysis in the rest of this paper, we
briefly compare the quality of the triangular current profile
generated in the ideal case [Eq. (8)] with the realistic EEX
beam line based on GPT simulations that includes finite
emittance, thickness of TDC, higher-order optics, space
charge (SC), and 1D coherent synchrotron radiation (CSR)
[17]. Our comparison does not directly compare the quality
of the two triangular current profiles since this cannot be
quantified with a single number. Instead, we use the figure
of merit the ratio of the change of the transformer ratio
generated in the ideal case to the realistic one, or ΔR=R.
Our comparison is based on the fact that the transformer
ratio depends on the quality of the triangular current profile.
The transformer ratio produced by an exact triangular
current profile is R ¼ πN [7], where N is the ratio of
the bunch length to the wavelength of the wakefield.
However, if the current profile is not exactly triangular
then the transformer ratio will usually be less than this
value, R < πN, thus we have a method of comparison that
can be quantified. Unfortunately, using an R-based figure
of merit has one drawback: there are some nearly triangular
shapes where R exceeds that of a triangle (e.g. a paraboli-
cally rising shape [18]). After considering the alternatives,
we decided that using R was still the best choice and we
will point out in the paper where difficulties occur.

Comparison of the two transformer ratios is based
on a single mode wakefield with N ¼ 3 (final bunch
length ¼ 3λ, where λ is the wavelength of the fundamental
mode wakefield) thus R ¼ 3π ≈ 9.4 in the ideal case. In
both the ideal case and the realistic case, GPT was used to
generate the beam distribution at the entrance to the mask.
For the ideal case, the initial distribution from GPT,

which was Gaussian in the transverse dimension before the
mask, was propagated through mask and then through
the EEX beam line using the linear matrix above, Eq. (6).
The final longitudinal bunch shape is expected to be an
exact triangle [based Eq. (8) and Fig. 2] with N ¼ 3, so R
should not have any dependence on the initial beam
condition. The plot on the left of Fig. 3 is in good
agreement with the expectation, where R ≈ 9 for a wide
range of the Courant-Snyder parameters, alpha and beta.
For the realistic case, the initial distribution fromGPTwas

again propagated through mask and then through the EEX
beam line using GPT. The plot on the right of Fig. 3 shows a
clear dependency on the initial Courant-Snyder parameters.
Except for the region around alpha of 10 and beta of 150 m,
the transformer ratio drops significantly from its peak value
(R ≈ 9) by as much as 50% for alpha near −10.
The discrepancy in R between the ideal case and the

realistic case (Fig. 3) shows that perturbations to the
exact triangle arise from higher-order optics in the EEX
beam line, SC and CSR effects, all which serve to degrade
the quality of the triangular current profile. The remainder of
this paper will analyze these perturbations and examine
methods to suppress them in order to produce a high-
quality triangular current profile and, therefore, a high
transformer ratio.

FIG. 2. The mask is used to produce the initial x-distribution after the mask (left) and the ideal EEX beam line linearly transforms this
initial x-distribution to produce the final z-distribution (right). In the four examples shown, the coefficient (C0) in Eq. (8) x is equal to 0.5
(i.e. zf ¼ 0.5xi) so that the separation (Δ) between the particles (top) and beamlets (second from top) is reduced by a factor of 2 (Δ=2).
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III. PERTURBATION SOURCES

In this section, we present an analysis of the EEX beam
line that extends the beam dynamics to include perturba-
tions. Studies of first-order perturbation source [3,11] and
reduction of the first-order effects with sextupoles have
been discussed before [15]. Here we include the second-
order perturbations and the collective effects from SC
and CSR.
First-order perturbations arise from two sources in the

EEX beam line: finite emittance coupled with nonzero R52
and the thick lens effect in the TDC. The effect due to the
finite thickness of the TDC is included by replacing the
TDC transfer matrix [1] of Eq. (2) with

MTDC ¼

0
BBB@

1 Lc
Lc
2
κ 0

0 1 κ 0

0 0 1 0

κ Lc
2
κ Lc

4
κ2 1

1
CCCA; ð9Þ

where Lc is the length of the TDC. Note that when Lc ¼ 0
we recover the thin-lens TDC matrix [Eq. (2)] and the first-
order perturbation source is absent.
The first-order perturbation from finite emittance is

typically not very large since rf photoinjectors are capable
of producing very low emittance beams. As long as R52 �
Δx0 < 10% of the ideal bunch length then transformer ratio
error is negligible. This condition applies for the study we
present in this paper. In Ref. [15], the perturbation due to
R52 was eliminated by using quadrupoles placed between
the mask and DL1 to make R52 ¼ 0. We do not take this
approach, of eliminating R52, since we are focused on
studying the limitations of longitudinal bunch shaping with
an elementary EEX beam line.
In the remainder of this section we assume identical

doglegs and drop the subscript i in Eq. (1).

A. Second-order beam dynamics

Using TRANSPORT notation [19], the initial 6D particle
coordinate is given by X ¼ ðx; x0; y; y0; z; δÞT, and the

propagation through the beam line from position “0” to
“1” up to second order is given by

Xmð1Þ¼
X

Rmnð0ÞXnð0Þþ
X

Tmnlð0ÞXnð0ÞXlð0Þ ð10Þ

where R is the linear transfer matrix, and T is the second-
order transfer matrix, m; n; l ¼ ð1…6Þ. In the EEX beam
line, the first-order terms ðRmnÞ generate the idealized
bunch shape (as described in Sec. II) while the second-
order terms ðTmnlÞ generate perturbations to the ideal
triangular shape. Third and higher-order terms are not
included in Eq. (10) since the simulations done in [15]
indicate their effects are negligible for the case in this paper.
In general, if the third-order terms are less than 5% of ideal
bunch length then its effect is negligible which holds in
this paper.
The second-order terms arising from the TDC are

negligible since λ ≫ σz, where σz is the rms bunch length.
The transfer matrix expressions for the dogleg up to second
order were derived from the transfer matrices from the drift
and the rectangular dipole magnet. Among the total 126
possible second-order terms in the second-order matrix
(Tmnl), a rectangular dipole magnet and drift have only a
few nonzero second-order terms [20] resulting in 25 sec-
ond-order terms. Equation (10) for the beam transport
through DL1 which is found to be

x1 ¼ x0 þ Lx00 þ ηδ0 þ T122x020 þ T126x00δ0 þ T133y20

þ T134y0y20 þ T144y020 þ T166δ
2
0; ð11Þ

x01 ¼ x00 þ T233y20 þ T234y0y00 þ T244y020 ; ð12Þ

y1 ¼ R33y0 þ R34y00 þ T313x0y0 þ T323x00y0
þ T324x00y

0
0 þ T336y0δ0 þ T346y00δ0; ð13Þ

y01 ¼ R43y0 þ R44y00 þ T414x0y00 þ T423x00y0
þ T424x00y

0
0 þ T436y0δ0 þ T446y00δ0; ð14Þ

FIG. 3. The transformer ratio of the triangular current profile as a function of the Courant-Snyder parameters at the entrance of an
emittance exchange beam line calculated by the linear matrix beam transport (left) and GPT simulation (right).
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z1 ¼ ηx00 þ z0 þ ξδ0 þ T522x020 þ T526x00δ0 þ T533y20

þ T534y0y00 þ T544y020 þ T566δ
2
0; ð15Þ

δ1 ¼ δ0: ð16Þ

The identical expression holds for the transport through
DL2 if we replace 0 → 2 and 1 → f (Fig. 1).
The expression for the complete EEX beam line (Fig. 1)

was derived using the expressions for the doglegs
[Eqs. (11)–(16)], the drifts (LD), and the TDC [Eq. (9)]
and the terms are summarized in Table I. Using Eq. (7) for
the linear terms and the results of this section, we can write
out Eq. (10) explicitly as follows:

zf ¼ κξ2x1 þ η2x01 þ ξ2δ1 þ C1x20 þ C2x0x00 þ C3x020
þ C4z20 þ C5z0δ0 þ C6δ

2
0 þ C7x0z0

þ C8x00z0 þ C9x0δ0 þ C10x00δ0 þ C11y20

þ C12y0y00 þ C13y020 : ð17Þ

The coefficients of the second-order terms (C1 through
C13) in the equation correspond to the terms in each row
of Table I. For example, we can see from Table I, row 3,
that C3 ¼ T566κ

2ðLþ LD þ Lc2Þ2 þ T122κξ. Note the

numerical values of all second-order terms ðTmnlÞ have
been calculated but are not shown in the paper since the
calculation is tedious and not illuminating.
We propose a simple method to suppress the second-

order perturbation sources based on the results presented in
Table I. In general, sextupoles are used to control second-
order terms, as in Ref. [15], where their simulation results
showed that two sextupoles placed in DL2 almost perfectly
suppressed the second-order effects. However, we suggest
a new method that we call the slope-control method, which
is a special case of the general Courant-Snyder parameter
optimization, but limited to adjusting only the horizontal,
vertical, and longitudinal slopes of the incoming electron
beam. The transverse slopes can be adjusted using quadru-
poles in front of the EEX beam line while the longitudinal
slope (or “chirp”) can be adjusted with the linac. In this
way, second-order effects are suppressed in the EEX beam
line without nonlinear elements. This method potentially
reduces the tight alignment tolerances typically associated
with sextupoles. The slope-control method is the main
interest of the paper. It will be described in detail in Sec. V
and verified using the particle tracking simulation code
GPT [9].
Another method for suppressing the second-order per-

turbation sources is to modify the EEX beam line. One
modification is to insert sextupoles into the EEX beam line

TABLE I. Second-order terms affecting the longitudinal bunch shape and its related particle coordinates. R and T are the first- and
second-order matrix elements of the dogleg. These coefficients correspond to the EEX beam line in Fig. 1.

Coordinates Coefficient ¼ fDL2g þ fDL1g
x20 C1 ¼ fT566κ

2g þ f0g
x0x00 C2 ¼

n
2T566κ

2
�
Lþ LD þ Lc

2

�o
þ f0g

x020 C3 ¼
n
T566κ

2
�
Lþ LD þ Lc

2

�
2
o
þ fT122κξg

z20 C4 ¼
n
T522κ

2 þ T526Lc2κ
3 þ T566

L2
c
4
κ4
o
þ f0g

z0δ0 C5 ¼
n
2T522κ

2ξþ T526Lcκ
3ξþ T566

L2
c
2
κ4ξ

o
þ f0g

δ20 C6 ¼
n
T522κ

2ξ2 þ T526Lc2κ
3ξ2 þ T566

L2
c
4
κ4ξ2

o
þ
n
T166κξþ T566

Lc
2
κ2ξ

o
x0z0 C7 ¼ fT526κ

2 þ T566Lcκ
3g þ f0g

x00z0 C8 ¼
n
T526κ

2
�
Lþ LD þ Lc

2

�
þ T566Lcκ

3
�
Lþ LD þ Lc

2

�o
þ f0g

x0δ0 C9 ¼ fT526κ
2ξþ LcT566κ

3ξg þ f0g
x00δ0 C10 ¼

n
T526κ

2ξ
�
Lþ LD þ Lc

2

�
þ T566Lcκ

3ξ
�
Lþ LD þ Lc

2

�o
þ
n
T126κξþ T526

Lc
2
κ2ξ

o
y20 C11 ¼ fT533ðR33 þ 2ðLc þ LDÞR43Þ2 þ T534R43ðR33 þ 2ðLc þ LDÞR43Þ þ T544R2

43g
þ
n
T233ηþ T133κξþ T533

Lc
2
κ2ξ

o
y0y00 C12 ¼ fT533ðR33 þ 2ðLc þ LDÞR43ÞðR34 þ 2ðLc þ LDÞR44Þ þ 2T544R43R44

þ T534ðR33R44 þ R34R43 þ 4ðLc þ LDÞR43R44Þg þ
n
T234ðηþ LcκξÞ þ T134κξþ T534

Lc
2
κ2ξ

o
y020 C13 ¼ fT533ðR34 þ 2ðLc þ LDÞR44Þ2 þ T534R44ðR34 þ 2ðLc þ LdÞR44Þ þ T544R2

44g
þ
n
T244ðηþ LcκξÞ þ T144κξþ T544

Lc
2
κ2ξ

o
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to control the second-order terms (e.g. T566 of C1 in
Table I). A second way to modify the EEX beam line to
reduce the second-order effects is to optimize the basic
EEX beam line to reduce the linear parameters that appear
in the second-order terms (e.g. κ of C1 in Table I). Since
most of the terms in Table I include the parameter κ2, which
can be reduced by increasing the bending angle ðαÞ and the
drift length ðLDLÞ, large α and LDL can reduce the second-
order terms (via reduction of the first-order parameter). On
the other hand, this would increase the second-order
coefficient (e.g. T566) from the dogleg and CSR. In
conclusion, this method involves a complicated trade-off
between first- and second-order terms and the overall beam
line parameters must be optimized. However, the focus of
this paper is on the slope-control method and, therefore,
this idea will be investigated in our future work.

B. Collective effects

Collective effects distort the final longitudinal bunch
shape primarily through longitudinal collective forces
creating first-order changes to the particle coordinates.
Numerical simulations with GPT show that the longitudinal
space-charge force dominates over the transverse one. In
addition, numerical 3D CSR simulation [21] as well as 1D
CSR simulations indicate that transverse CSR is negligible.
Therefore, we ignore transverse collective forces in this
subsection and the remainder of the paper.
The collective forces generate an integrated momentum

kick, Δδ, as the bunch propagates along the beam line.
Writing the unperturbed longitudinal momentum as, δ, then
we define the perturbed one as δnew ¼ δþ Δδ. In discus-
sing the change to other coordinates (than δ) it is useful to
divide the LBS beam line into two regions: one where the
dispersion is constant and one where it is not; this is
explained in detail below.
The regions of the LBS beam line (Fig. 1) where the

dispersion is constant are (1) the drift region between the
mask and DL1 (η ¼ 0) and (2) the region between the two
doglegs (η ¼ constant). In these regions, the collective
effects only alter the longitudinal momentum coordinate
leaving the other five coordinates unchanged (to first
order). Here we define the integrated momentum kick
generated by collective effects at the end of first region as,
Δδη¼const

1 , and at the end of the second as, Δδη¼const
2 .

Referring to Fig. 1, these momentum kicks are added to
the unperturbed values of δ0 and δ2,�

δnew0 ¼ δ0 þ Δδη¼const
1 ;

δnew2 ¼ δ2 þ Δδη¼const
2 :

ð18Þ

Note that the magnitudes of these momentum changes
depend on the length of the drift, the bunch length, the
bunch charge, and the longitudinal bunch shape at each
position. We now consider the impact of these two terms on

zf. The top term in Eq. (18) (δnew0 ) is easy to handle since its
contribution to the final bunch length is canceled by the
TDC condition, 1þ κη ¼ 0. On the other hand, δnew2

propagates through DL2 without being canceled [see the
dogleg matrix of Eq. (1)] and contributes a perturbation to
zf with the coefficient ξ2 (i.e. Δzf ¼ ξ2Δδ

η¼const
2 ).

In the region where dispersion is not constant, the
collective forces act directly on the longitudinal momentum
coordinate to generate an integrated momentum kick at
the end of the doglegs (Δδη≠constDL1 ) and (Δδη≠constDL2 ), similar
to above, and indirectly on the position coordinates,
(xnew ¼ xþ Δx) and (znew ¼ zþ Δz). The regions of the
LBS beam line where the dispersion is not constant are
the two doglegs. The indirect effect happens because the
momentum kick (Δδ is coupled to the position coordinates
through the matrix elements of the dogleg: R16 ¼ η and
R56 ¼ ξ respectively, as can be seen from Eq. (1). In
general, this means that the perturbation to zf in the doglegs
is due to all three coordinates fx; z; δg.
The horizontal offset at the end of DL1, Δx1, is not

simply η1Δδ
η≠const
DL1 where (δnew1 ¼ δ1 þ Δδη≠constDL1 ) since the

momentum kick and the dispersion are changing inside
the dogleg. The offset, Δx1, at the end of the dogleg is
calculated as the accumulation of the infinitesimal offsets
(dx) along the dogleg,

Δx1 ¼
X

dxðsÞ ¼
X

ηðsÞdδη≠constDL1 ðsÞ; ð19Þ
where s is the distance along the dogleg. Therefore, we
can write

Δx1 ≈ η�Δδη≠constDL1 ; ð20Þ

where η� is defined as the effective dispersion of the dogleg.
Note that the horizontal offset due to this effective
dispersion is always less than that due to the dogleg’s
final dispersion (i.e. Δx1 < ηΔδη≠constDL1 ). This is because the
momentum kick due to the collective force (Δδη≠constDL1 ) is
zero at the beginning of the dogleg and does not reach its
final value until the end of the dogleg and therefore the
effective dispersion is between 0 and η or f0 < η� < ηg.
The perturbation in zf due to the collective effect in DL1

can now be calculated by tracking the new coordinates from
the end of DL1, Xnew

1 ¼ ðxnew1 ; x01; z
new
1 ; δnew1 ÞT , to the end of

the first-order EEX beam line (Sec. II). In the absence of
collective effects, x1 does not contribute on zf because it is
canceled by the exchange condition, but now the offset
ðΔx1Þ experiences a different “effective dispersion” (η�)
which cannot be fully canceled by the exchange condition.
Note that it is not necessary to write an expression for znew1

since z does not change due to the exchange condition.
Finally, the perturbation to zf caused by collective effects in

DL1 is given byΔzf ¼ ξ2ð1þ κηÞΔδη≠constDL1 . Note that since
f0 < η� < ηg then 0 < 1þ κη� < 1.
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The perturbation to zf in DL2 is only due to the R56 ¼
ξ2 in DL2 and the momentum kick generated inside DL2
(Δδη≠constDL2 ). Therefore, the perturbation to zf caused by the

collective effects in DL2 is given by ξ�2Δδ
η≠const
2 where ξ�2 is

the effective momentum compaction factor that is always
smaller than ξ2 similar to the value of η� above.
Therefore, the total perturbation of the final longitudinal

position due to all collective effects is the sum of the above
three perturbations,

Δzf ¼ ξ2Δδ
η¼const
2 þ ξ�2Δδ

η≠const
2 þ ξ2ð1þ κη�ÞΔδη≠const1 :

ð21Þ

IV. DISTORTIONS DUE TO THE
PERTURBATIONS SOURCES

We now consider the effect of the perturbation sources
on the longitudinal bunch shape and the corresponding
change to the transformer ratio. In the first part of this
section, we group the various perturbation sources into five
categories based on the characteristic distortion they cause
to the ideal shape. In the second part of this section, we
examine the change of the transformer ratio due to this
perturbed shape.

A. Perturbation to the longitudinal bunch shape

Let Xi
f ¼ ðxif; x0if ; yif; y0if ; zif; δifÞT be the position of the

particle at the end of the EEX beam line in the absence of
perturbation (i.e. the ideal final position) that started out at
the mask with the initial position X0 ¼ ðx0; x00; y0; y00;
z0; δ0ÞT . [Note that we are making a slight change to the
notation in this section of the paper. The ideal final
coordinates in this section are the same as the “final
coordinates” given in Sec. II as Xf ¼ ðxf; x0f; zf; δfÞT .]
When perturbation sources are present, the particle is shifted
from its ideal-final-longitudinal-position ðzifÞ to its per-
turbed-final-longitudinal-position (zpf ) which is given by
the sum of the ideal position (zif) and the perturbation (ζ) or

zpf ¼ zif þ ζ; ð22Þ

where zif ¼ C0x0 from Eq. (8) and ζ, which can be negative
or positive. The total perturbation from the ideal position is
given by the sum of the individual perturbation terms listed
in Eqs. (17) and (21),

ζ ¼ C1x20 þ C2x0x00 þ C3x020 þ C4z20 þ C5z0δ0 þ C6δ
2
0

þ C7x0z0 þ C8x00z0 þ C9x0δ0 þ C10x00δ0 þ C11y20

þ C12y0y00 þ C13y020 þ ξ2ðΔδCSR þ ΔδSCÞ: ð23Þ

The total perturbation terms are written out on five lines
to match the five categories we will identify below. In

general, the coefficients (Ci) can be positive or negative.
This means that the final longitudinal position (zpf ) can
either end up in front of or behind its ideal final longitudinal
position (zif). The first thirteen terms in Eq. (23) are the
second-order beam dynamics terms due to the nonlinear
magnetic forces in the beam line while the last term is due
to collective forces. Note that the last term, due to CSR and
SC, is in the form of Eq. (21), but we will not consider the
individual terms separately in the analysis to follow. This
simplifying step was taken because the perturbation to the
profile is of a similar characteristic shape for both SC
and CSR.

1. The ideal longitudinal bunch shape, n0ðzÞ
The ideal triangular bunch shape, n0ðzÞ, can be charac-

terized by the particle density function,

n0ðzÞ ¼
(− 2N0

l2b
zþ 2N0

lb
ð1þ zmin

lb
Þ fzmin < z < zmin þ lbg

0 otherwise;

ð24Þ

where N0 is the total number of particles, lb is the bunch
length, zmin is the location of the tail of the triangle and
zmin þ lb is the location of its head. The origin of the final
longitudinal coordinate system (zif ¼ 0) corresponds to the
origin of the initial transverse coordinate system at the
mask (x0 ¼ 0) through Eq. (8), zif ¼ C0x0.
In the remainder of the paper, our analysis assumes that

the incident bunch (before the mask) has a Gaussian
transverse distribution (Fig. 4). This means that the origin
of the longitudinal coordinate system (zif ¼ 0) corresponds

FIG. 4. Density plot of the transverse Gaussian distribution.
Red curves on each axis show the projected profile that is
Gaussian, and the cyan-dashed curve in the density plot shows the
mask shape for the triangular profile.
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to the transverse center of the Gaussian bunch before the
mask (Fig. 2, first row, x0 ¼ 0), not the center of the mask
(Fig. 2, fifth row, triangular profile).

2. The perturbed longitudinal bunch shape, nðzÞ
The perturbed longitudinal bunch shape, nðzÞ, is the

convolution of the ideal profile n0ðzifÞ and a perturbation
function Pðζ ¼ zpf − zifÞ,

nðzpf Þ ¼
Z∞
−∞

n0ðzifÞPðzpf − zifÞdzif: ð25Þ

The perturbation function acts to redistribute the par-
ticles from their ideal position ðzifÞ in the ideal triangular
longitudinal bunch shape, n0ðzifÞ, to their new position ðzpf Þ
in the perturbed longitudinal bunch shape,nðzpf Þ. The
integration of nðzpf Þ over the whole domain is equal to
the original number of particles, N0. The continuous
particle distribution functions [Eqs. (24) and (25)] were
approximated as discrete distribution functions for the
results presented in this paper.
To determine the shape of the perturbed longitudinal

bunch, we first determine the perturbation of the individual
slices of the ideal longitudinal bunch shape (Fig. 5, left) and
then sum the perturbed slices together (Fig. 5, right). In the
absence of perturbations, particles that originate from
position x0 at the mask will arrive at the ideal slice position,
zif ¼ C0x0 after the EEX beam line. For each of the five
categories there is a unique perturbation function, PðζÞ,
that determines how the particles are redistributed from zif
to zpf . Let n0½zifðjÞ� represent the number of particles in the
jth slice of the ideal longitudinal bunch. The perturbation
function, PðζÞ, acts to shift particles in the ideal slice (blue
rectangle in Fig. 5, left), to a new longitudinal positions
(red distribution in Fig. 5, left) with a spread of distances.
We define ζmax to be the maximum perturbation of particles
from the ideal position (Fig. 5, left). In Appendix B, we
provide an analytic form of PðζÞ for each source and

classify the perturbation based on three factors: (1) If PðζÞ
depends on the final longitudinal position, zif, then we
identify it as zif-dependent; otherwise it is z

i
f-independent;

(2) if PðζÞ causes the mean position of the slice to shift
or not; and (3) if PðζÞ causes the slice to spread or not.
In other words, we characterize each perturbation by its
zif-dependence, shift and spread.
The sum of the individual perturbed slices along the ideal

bunch, n0ðzifÞ, produces the perturbed longitudinal bunch
shape, nðzpf Þ, (Fig. 5, right). The perturbation sources are
grouped into five categories based on the characteristic
shape they imparted onto nðzÞ (see Fig. 6). Each of the five
categories has a unique PðζÞ, which leads to ζ unique
characteristic shapes for each category. Note that the
maximum perturbation from each ideal position as (ζmax)
is different for each category (Fig. 5).
The effects of the various perturbation functions on the

longitudinal bunch shape are summarized in Fig. 7 and will
be explained in detail in Appendix B. The strength of the
individual perturbation terms [in Eq. (23)] are normalized
by the ideal bunch length (ζmax=lb) and are varied from 0
to 0.3.

B. Perturbation of the transformer ratio

The ideal longitudinal bunch shape, n0ðzifÞ, produces
the ideal transformer ratio, R0 ¼ πN, and the perturbed
longitudinal bunch shape, nðzifÞ, produces a perturbed

FIG. 5. The general perturbation of a slice (left). The jth slice of the ideal longitudinal bunch shape has n0ðzijÞ particles at the ideal
position (zij). In general, PðζÞ shifts particles in the slice to new locations by a spread of distances. The total perturbed bunch shape,
nðzÞ, is due to the sum of all the slice perturbations (right).

FIG. 6. The four key characteristics of the triangular profile.
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transformer ratio, Rp. In this section, we study the relative
change of the transformer ratio, ΔR=R0, where
ΔR ¼ Rp − R0, induced by the five types of perturbations
introduced in Fig. 7. In Fig. 8, we plot ΔR=R0 vs the
perturbation strength as given by the ratio of the maximum
deviation to the ideal bunch length for all perturbation
sources. To calculate the transformer ratio, a single mode
wakefield with N ¼ 3 is assumed again so that
R0 ¼ πN ∼ 9.4. As the strength of the perturbation
increases, the transformer ratio for most of longitudinal
bunch shapes drops by more than 60%. For equally strong
perturbations: (1) the x20-series causes the largest drop to the
transformer ratio; (2) the SC effect and the CSR effect
cause the next largest change; (3) while the x0z0 series and

y20 series (with a negative coefficient) actually show a
transformer ratio rise (initially). This rise is an enhancement
of the transformer ratio. This rise happens because a
concave shaped head generates a higher transformer ratio
than the linear head [18] and it therefore shows a small
enhancement for the triangular profile. However, this
change still means that the longitudinal bunch shaping
mechanism is not well controlled.

V. SUPPRESSION OF THE PERTURBATIONS

In this section, we present methods for suppression of the
perturbations based on the analysis given in Sec. IV.
Results were benchmarked with realistic beam dynamics
simulations of the complete LBS beam line (Fig. 1) using
GPT simulations. The GPT simulation begins with a round
beam before the mask that becomes a triangle horizontal
profile with sharp edges after the mask. The simulation
includes all physics (nonlinear dynamics, space-charge and
CSR) and the beam is transported without any particle loss.
The perturbation terms due to the second-order effects

and the collective effects in Eq. (23) are the product of two
terms: a coefficient (Ci or ξ) due to the beam line and a
bunch coordinate (x20, x0z0, etc.). In general, the perturba-
tion terms can be suppressed by two methods: (1) bunch
control: adjusting the initial bunch coordinates (e.g. size
and slope of the incident bunch) or (2) beam line control:
modifying the beam line to reduce the coefficients.
The method we use for suppressing the second-order

effects we term the slope-control method. In method
(1) above, we can control either the incident bunch’s size
or slope. However, the adjustment of the bunch transverse

FIG. 7. The perturbed longitudinal bunch shapes for: x20-series with C1 < 0 (a), z20-series with C4 > 0 (b) and C4 < 0 (c), x0z0-series
with C7 ≠ 0 (d), y20-series with C11 > 0 (e) and C11 < 0 (f), SC effect (g), and CSR effect (h). The color corresponds to the ratio of the
maximum deviation ζmax to the ideal bunch length (lb): ζmax=lb.

FIG. 8. The relative change of the transformer ratio versus the
ratio of the maximum deviation (ζmax) to the ideal bunch length
(lb) for each of the perturbation cases.
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size (or bunch length) turns out not to be a good option since
it interferes with other important requirements (e.g. a large
beam size at the mask is preferred to improve tolerance). On
the other hand, the slope is both available and simple to use
for suppression of second-order effects. The slope is easily
controlled by adjustment of the four quadrupoles upstream
of the LBS beam line for transverse slope control or with the
linac phase for longitudinal chirp control.
The method we use for suppressing the perturbations due

to the collective effects we term the asymmetric-dogleg
method. Our studies have shown that the slope-control
method can conflict with minimizing conditions for other
perturbation sources and the conditions needed to suppress
the collective effects can hurt the transverse optics.
Therefore, we used method (2) above, beam line control,
and found that by reducing the bending angle and increas-
ing the drift length of DL2 both CSR and SC were
suppressed without increasing the complexity of the
beam line.
Before presenting the results in this section, we make

two comments about the simulations. First, a fundamental
mode mavity (FMC) was added to the beam line to simplify
our analysis since the FMC eliminates the thick-lens effect
of the TDC and thus serves to avoid confusion between the
thick-lens effect and the collective effects [3,12]. While we
are aware that the thick-lens effect from the TDC can be
minimized with an initial longitudinal chirp without the
FMC [1], the magnitude of this chirp needed would create
serious collective effects [3]. Second, we are also aware that
the R52-emittance effect [3] in the EEX beam line can be
eliminated with the addition of four quadrupoles between
the mask and entrance to EEX (B1 in Fig. 1) [15]. However,
we did not include these quadrupoles in our EEX beam line
since their ζmax=lb factor is less than 3% and therefore
causes a negligible perturbation to the longitudinal bunch
shape.

A. Control of the second-order effects

The perturbations from the four sets of second-order
series (x20, z

2
0, x0z0, and y20) identified in Table I and in

subsection A of Sec. IV can be minimized by introducing
appropriate correlations (i.e. slopes) between the terms in
each series. We call this the slope-controlmethod and begin
this section by deriving the value of the horizontal slope
that minimizes the perturbation due to the x20-series. We
only present the results for the x20-series since the derivation
for the other series are similar.
In order to suppress the perturbations to the ideal

longitudinal bunch shape, n0ðzifÞ, we minimize the pertur-
bations to each slice of the ideal longitudinal bunch. Based
on the results of Sec. IV, the perturbation of the ideal slice
can be described by the errors: the mean shift ζ and the
spread ζ2. We will suppress the perturbation to n0ðzifÞ by
minimizing ζ and ζ2 for all the slices in the bunch.

In the absence of all other perturbations, one can
calculate the mean and standard deviation of the perturba-
tion due to the x20-series [Eq. (23)] as

ζ ¼ C1hx20i þ C2hx0x00i þ C3hx020 i; ð26Þ

hζ2i ¼ C2
1hx40i þ 2C1C2hx30x00i þ ð2C1C3 þ C2

2Þhx20x020 i
þ 2C2C3hx0x030 i þ C2

3hx040 i: ð27Þ

Defining the initial horizontal slope of the beam as Sx0 ¼
x0x00=x

2
0 then, in the limit of very low horizontal emittance,

we have, x00 ≅ Sx0x0 and we can write

hζi ¼ ðC1 þ C2Sx0 þ C3S2x0Þhx20i; ð28Þ

hζ2i ¼ ½C2
1 þ 2C1C2Sx0 þ ð2C1C3 þ C2

2ÞS2x0 þ 2C2C3S3x0
þ C2

3S
4
x0 �hx40i: ð29Þ

To minimize the perturbation due to the x20-series we take
the partial derivative with respect to Sx0 and set it equal to
zero. The optimal value of the horizontal slope that
minimizes the perturbation [i.e. minimizes both Eq. (28)
and Eq. (29)] due to the x20-series is Sx0 ¼ −C2=2C3. We
call this value of Sx0 the minimizing horizontal slope and it
represents the horizontal slope on the incident bunch
(before the mask) that minimizes the perturbation due to
the x20-series.
The procedure outlined above for finding the minimizing

horizontal slope (Sx0 ¼ −C2=2C3) that minimizes the
perturbations for the x20-series is essentially the same for
the other three series. The initial vertical (Sy0 ¼ y0y00=y

2
0)

slope is used to minimize the perturbation due to the y20-
series. The last two series, z20-series and x0z0-series, can be
simulaneously minimized by proper adjustment of the
initial horizontal slope (Sx0 ¼ x0x00=x

2
0) and the longi-

tudinal slope (Sz0 ¼ z0δ0=z20), hereafter referred to as the
chirp. In summary, for each of the three series, the
minimizing horizontal slope, the minimizing chirp, and
the minimizing vertical slope that suppress the perturba-
tions due to the second-order series are

Sx0 ¼ σx0x00=σ
2
x0 ¼ −C2=2C3 ≅ −1

��
Lþ LD þ LC

2

�
;

ð30Þ

Sz0 ¼ σz0δ0=σ
2
z0 ¼ −C5=2C6 ≅ −1=ξ2; ð31Þ

Sy0 ¼ σy0y00=σ
2
y0 ¼ −C12=2C13 ¼ −B=2A; ð32Þ

where A and B are the summation of all coefficients related
to y20 and y0y00 in Table I.
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1. Benchmarking results

GPT simulations were used to verify the effectiveness of
the slope-control method for minimizing the four sets of
second-order series. The procedure we followed was to
generate a Gaussian distributed beam with the parameters
listed in Table II and with a given slope fSx0 ; Sy0 ; Sz0g, pass
it through the EEX beam line (Table II), and examine the
quality of both the final longitudinal bunch shape and the
transformer ratio. For the transformer ratio, R0, a single
mode wakefield with the wavelength satisfying N ¼ 3
for the ideal bunch length was used again. In case of the
ideal triangle of length ¼ 3λ, R0 ¼ 9.4. According to
Eqs. (30)–(32) and using the parameters listed in
Table II, we obtain the minimizing slopes to be
Sx0 ¼ −0.27 m−1, Sz0 ¼ −1.05 m−1, and Sy0 ¼ 0.13 m−1.
The benchmarking results are shown in Fig. 9. The plots

were made by scanning one slope fSx0 ; Sy0 ; Sz0g at a time,
while the other two slopes were held constant at their
minimizing values so that the results were focused on one
parameter at a time. For similar reasons, the SC and CSR
routineswere turnedoff during theseGPT simulations to keep
the results focused on the suppression of second-order effects.
The horizontal slope.—During the GPT scan of Sx0 , the

bunch length (lb) changes and three different patterns
appeared on the longitudinal bunch shape [Fig. 9(a)]:
(ramp) the ramp becomes slightly convex; (head) particles
accumulate near the head to generate a bump; (tail) the tail
preserves a sharp edge. This overall tendency is in good
agreement with the analytic treatment given in Sec. IV as
can be seen by inspection of Fig. 7(a).
Corresponding to the perturbations of the longitudinal

bunch shape shown in Fig. 9(a), the transformer ratio also
changes as shown in Fig. 9(b). The transformer ratio is close
to its ideal valuewhen the horizontal slope is near−0.3 m−1,
which is close to the predicted value (Sx0 ¼ −0.27 m−1).
Note that both lower and higher values of Sx0 cause the

transformer ratio to drop. For instance, if Sx0 > 0.5 then the
transformer ratio drop exceeds 50% of its ideal value.
Overall, the plots in both Figs. 9(a) and 9(b) show that
the slope suppresses the perturbationvery effectivelywhen it
is near the optimal value Sx0 ¼ −0.27 m−1.
One down side to minimizing the x20-series perturbation

using only the horizontal slope is that the bunch length after
the EEX beam line also depends on the initial horizontal
slope [note the dependence of zf on the angle, x0, in Eq. (7)]
which is why the final bunch length, lb, varies from 2 to
5 mm in Fig. 9(a). However, if the sextupole method [15] is
used in conjunction with our slope-control method then the
x20-series perturbation can be minimized while simultane-
ously controlling the bunch length. Note that for bunch
train generation, the horizontal slope ðSx0Þ changes both the
overall length of the train and the microbunch separation.
The longitudinal slope (i.e. chirp).—The perturbation

pattern imposed onto the ideal longitudinal bunch
shape,n0ðzÞ, during the scan of the longitudinal slope
ðSz0Þ is relatively complicated since the longitudinal slope
effects the size of the perturbation terms in both the z20-
series and x0z0-series. Therefore, the patterns produced
during the scan of Sz0 are due to a combination of two
perturbation patterns shown in Fig. 7(c): due to the z20-series
with C4 < 0 since the overall coefficient of z20-series is
negative for the beam line parameters in Table II; and
Fig. 7(d): due to the x0z0-series.
During the GPT scan of Sz0 , four different patterns

appeared on the longitudinal bunch shape, nðzÞ: (head) a
concave head; (peak) a rounded peak; (ramp) a slightly
altered ramp angle; (tail) a concave tail. These patterns
were compared with analytic predictions shown in
Figs. 7(c) and 7(d) as discussed above. According to the
analytic approach, the patterns (head) and (tail) are caused by
both series. For pattern (ramp), the z20-series does not change
the ramp, while the x0z0-series generates a slight change on
the ramp angle. For pattern (peak), the peak is rounded by
x0z0-series, but its position moves closer to the tail side than
Fig. 7(d) because the z20-series preserves the position of the
peak. Finally, GPT simulation results confirmed that this
combined perturbation is minimized when the longitudinal
slope is near −1.0 m−1, which is close to the expected
optimal slope of Sz0δ0 ¼ −1.05 m−1 [see Fig. 9(d)].
Similar to the case of the horizontal slope, the transformer

ratio drops as the longitudinal slope (i.e. chirp) moves away
from the optimal value (Sz0δ0 ¼ −1.05 m−1). For instance,
when Sz0 > 6, then the transformer ratio drops by 50%. We
note that during high-charge operation of a typical photo-
injector, the bunch can exit the linac (i.e. enter the EEXbeam
line) with a high longitudinal slope (Sz0 ≈ 6) due to strong
space-charge forces in the gun and linac. In this high-charge
case, off-crest operation of the linac can help to suppress the
transformer ratio drop by reducing the longitudinal chirp at
the entrance to the EEX beam line.

TABLE II. Input beam parameters and beam line parameters.

Input beam parameter Value Unit

σx 5.0 mm
σy 5.0 mm
σz 1.5 mm
εn;x 10.0 mm-mrad
εn;y 10.0 mm-mrad
δ 0.1 %
E0 50.0 MeV

Beam line parameter Value Unit

α1;2 20.0 Degree
Lb 0.31 M
LD1;D2 2 M
LC 0.48 M
D1;2 0.5 M
Dgap 0.1 M
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The vertical slope.—The perturbation imposed on nðzÞ
during the scan of the vertical slope ðSy0Þ is due to y20-series
according to the analytic approachpresented inAppendixB 4.
Since the overall coefficient for the y20-series is negative
(C11 < 0) for theparameters given inTable II, the perturbation
patterns in this case will behave as in Fig. 7(f).
During the GPT scan, two different patterns appeared on

the ideal triangular profile: (peak) a convex shape near the
peak and (tail) a concave tail as can be seen in Fig. 9(e).
The patterns of the (head) and (ramp) were unchanged. The
overall shape from the GPT simulations [Fig. 9(e)] is in
good agreement with that predicted from the perturbation
analysis in Fig. 7(f).
The effect of the y20-series on transformer ratio is much

weaker than the other two cases with the parameters of
Table II. It follows the trend predicted by the perturbation
analysis with its minimizing value near the predicted value
Sy0 ¼ 0.13 m−1. The transformer ratio drop is negligible
for the range from −0.2 to 0.6 m−1 that includes the
expected minimizing slope 0.13 m−1.
In summary, GPT simulation results confirm that slope-

control method can effectively suppress second-order

effects in the EEX beam line. The slopes calculated with
Eqs. (30)–(32) accurately predict the values of the slope
that minimize the second-order perturbations according to
GPT simulations. The good agreement between Figs. 7
and 9 proves that the second-order terms in Table I account
for the perturbations. Most importantly, our results show
that the second-order perturbations are easily controlled
with the slope-control method that optimizes the initial
horizontal, vertical and longitudinal slopes. The longi-
tudinal slope can be adjusted by the linac phase while
the horizontal and the vertical slopes are controlled with the
four quadrupoles in front of the mask.

B. Control of the collective effects

The perturbations caused by CSR and SC have similar
forms [Eq. (21)] and both can be minimized by minimizing
ξ2 (R56 in DL2) since ξ2 is the coefficient of all collective-
effect terms in Eq. (21). We call this method of minimizing
the collective effects in the EEX beam line the asymmetric-
dogleg method since ξ1 and ξ2 are different. To verify the
effectiveness of using ξ2 to suppress the collective effects we
scanned ξ2 by scanning the bending angle and observed

FIG. 9. Suppression of second-order effects with the slope-control method. The final longitudinal bunch shape, nðzÞ, from GPT
simulation (left column) and corresponding normalized change in the transformer ratio, ΔR=R (right column). The top row shows the
effect of the horizontal slope, the middle row shows the effect of the longitudinal slope (i.e. chirp), the bottom row shows the effect of the
vertical slope on nðzÞ (left) and ΔR=R (right).
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its effect on the longitudinal bunch shape and the trans-
former ratio. In order to change the value of ξ2 while keeping
η2 constant (in order to maintain the exchange condition),
both the bending angle and the drift length of DL2 had
to be varied. This is possible since η2 is more sensitive
to the bending angle than ξ2 so we were able to keep η2
constant during the simulations by increasing the drift
length.
GPT simulations were separated into two cases, depend-

ing on the beam energies, in order to study the two regimes
of collective effects: CSR dominated (higher energy) and
SC dominated (lower energy). In the first case, a 50 MeV
beam was used to make CSR strong and SC weak while in
the second case, a 15 MeV beam was used to makes CSR
weak and SC strong. In the benchmarking simulations, the
CSR and SC effects were only calculated up to the entrance
of DL2 and turned off in DL2. In this way, we avoided
confusion from the reduced angle (weaker CSR) and
elongated drift (stronger SC) in order to verify that reducing
ξ2 helps to suppress the collective effects according to the
analytic results in Secs. III and IV. However, at the end of
this section, we verify the asymmetric-dogleg method in a
realistic case by running a GPT simulation of a 3.5 nC
bunch with all physics included in the beam line.
The EEX beam line parameters from Table II are used

once again with the exception of α2 and LD2. The bending
angle, α2, is varied from 20 degrees to 12 degrees in
2 degree steps. For the bending angle of 20 degrees, the
drift length, LD2, was set to 2 m for the 50 MeV case and
0.85 m for the 15 MeV case. It was then increased as the
bending angle was decreased to keep η2 constant. For the
bending angle of 12 degrees, the drift length, LD2, was set
to 3.79 m for the 50 MeV case and 1.74 m for the 15 MeV
case. For each combination of α2 and LD2, five different
charge levels were applied. The lowest charge after the

mask is 1.1 nC, and the highest charge is 11 nC. For the
transformer ratio, a single mode wakefield with the wave-
length satisfying N ¼ 3 for the ideal bunch length is used
once again so that R0 ¼ 9.4.

1. CSR-dominated regime

During the GPT scan in the CSR-dominated regime
(50 MeV beam), three different patterns appeared on the
ideal triangular profile (see Fig. 10): (ramp) a concave ramp
shape, (tail) a convex tail shape, and (peak) a rounded
peak. This overall feature shows good agreements with
Fig. 7(h), which shows the predicted perturbation due to
CSR. Although both CSR and SC generate similar pertur-
bation patterns, the peak is rounded by CSR but flattened
by space charge. Based on this observation, the perturba-
tion in Fig. 10 is seen to be mostly caused by CSR, as
expected.
Figures 10(a)–10(e) show a clear relationship between

the CSR-perturbation strength, the charge, and ξ2. High
charge generates strong CSR, which in turn generates
strong perturbations. However, decreasing ξ2 helps to
weaken the CSR induced perturbations. For a given charge,
the perturbation is clearly suppressed at lower ξ2. At
12 degrees, there is only a small amount of change on
the tail side even for 11 nC. In terms of the transformer
ratio, the 20 degree case generates 70% drop of transformer
ratio at 5.5 nC or higher, but even 11 nC, the 12 degree case
only generates a 20% drop of transformer ratio.
Notice that the behavior of the transformer ratio, R, in the

CSR dominated regime does not follow a simple pattern.
This is because R depends on both the bunch length and the
shape. In the case of the ideal triangle, we have R0 ¼ πN
but the slightly concave shape on the head will generate a
higher transformer ratio [18]. Since CSR generates a

FIG. 10. The CSR effect. Longitudinal bunch shape at the end of EEX beam line with different charges after the mask (top), and
corresponding transformer ratio drop (bottom). As we move from left to right (a)–(e), α2 ¼ ð200; 180; 160; 140; 120Þ and
LD2 ¼ ð2.00 m; 2.31 m; 2.68 m; 3.16 m; 3.79 mÞ. Corresponding ξ2 for each case is (0.29 m, 0.27 m, 0.24 m, 0.21 m, 0.18 m).
Note that the beam energy is 50 MeV to generate strong CSR but weak SC.
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slightly longer bunch length (due to the elongated tail) as
well as a concave head shape, then the transformer ratio can
actually be higher than the ideal triangle profile.

2. Space-charge dominated regime

During the GPT scan of the space-charge (SC) domi-
nated regime (15 MeV beam), four different patterns
appeared on the ideal triangular profile (Fig. 11): (head)
a convex shaped head, (tail) a concave shape tail, (ramp) a
concave ramp and (peak) a flattened peak in comparison to
Fig. 10. The flattened peak is a distinguishing feature of the
SC dominated regime while the rounded peak is a dis-
tinguishing feature of the CSR dominated regime. These
overall patterns are similar to Fig. 7(g). Since the pertur-
bation from the SC with energy and charge is too strong,
even the 12 degree case still has a seriously perturbed
longitudinal bunch shape. However, it is clearly better than
the profiles in Fig. 11(a) which has an extremely elongated
bunch length from the SC effect.

The asymmetric dogleg method is not as effective at
suppressing the SC effects in this regime as it was for
the CSR effect. A charge of 1.1 nC provides a reasonably
high transformer ratio, and the 3.3 nC case shows clearly
improved results for decreased ξ2. However, because of the
severe space-charge perturbation, the transformer ratio
quickly drops with charge and then changes slowly (and
even oscillates) at higher charge.

C. Benchmarking results with all physics included

In the GPT simulation of the previous two subsections,
we turned off the collective effects in DL2. This approxi-
mation allowed for easy comparison with the analytic
results of Sec. IV. In this subsection, we verify the
effectiveness of the asymmetric-dogleg method using a
realistic case by running aGPT simulation of a 3.5 nC bunch
with all physics included everywhere in the beam line.
Figure 12 shows the GPT simulation result with both

CSR (a) and SC (b) included along the entire beam line

FIG. 11. The space charge effect. Current profiles at the end of the EEX beam line with different charges after the mask (top), and
corresponding transformer ratio drop (bottom). As we move from left to right (a)–(e), α2 ¼ ð200; 180; 160; 140; 120Þ and
LD2 ¼ ð0.85 m; 1.00m; 1.19 m; 1.43m; 1.74mÞ). Corresponding ξ2 for each case is (0.14 m, 0.13 m, 0.11 m, 0.10 m, 0.09 m).
The beam energy is 15 MeV that generates a weak CSR effect but a strong space-charge effect.

FIG. 12. Final longitudinal bunch shape (blue) and corresponding wakefield (red) for the CSR dominant case (a) and the SC dominant
case (b). In both cases, we used a 12-degree bending angle with a charge after the mask of 3.5 nC.
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(including DL2). GPT simulations were done with a charge
of 3.5 nC after the mask and wakefield is calculated in the
same way. For N ¼ 3, transformer ratio for the CSR
dominated regime is 8.0 which means 15% drop from
the ideal value, and the SC dominated regime provides 6.0
which is 36% drop from the ideal value (9.4). These
simulations verify that the approximations used in this
section yield answers very close to the case when all
physics is included.

VI. CONCLUSION

We presented an analysis of perturbation sources and
their effect on the longitudinal bunch shape, the transformer
ratio and studied methods to suppress perturbations in the
maskþ emittance exchange beam line. The linear transfer
matrix formalism is a useful tool to understand the basic
beam dynamics in the EEX beam line, but it ignores other
significant factors like higher-order terms in the beam line
optics and collective effects. Our analysis extended the
matrix formalism to include these terms to study their effect
on the ideal longitudinal bunch shape and the transformer
ratio. Our analytic estimates showed good agreement with
particle tracking simulation using GPT that includes all
physics.
We introduced two methods for the suppression of

perturbations to the longitudinal bunch shape caused by
second-order and collective effects. The slope-control
method is used to minimize the perturbation from the
second-order terms by controlling the horizontal and
vertical slope of the bunch before the mask. The asym-
metric-dogleg method minimizes the perturbation from the
collective forces by reducing ξ2 (while keeping η2 con-
stant). GPT simulation results, with all physics included,
showed good agreement with the analytic predictions of
suppression.
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APPENDIX A: SECTIONS OF EEX BEAM LINE
WHERE MOMENTUM EXCHANGE AND
POSITION EXCHANGE TAKE PLACE

It is difficult to understand the emittance exchange
process due to the complex motion of the beam inside
the beam line. Therefore, in this section, we will develop an
intuitive understanding of the emittance exchange process
in the idealized case. Our explanation is intended to
supplement explanations given previously in the literature,
Refs. [1] and [2]. We now examine the beam at two
different sections inside the EEX beam line: after
DL1þ TDC and after TDCþ DL2.

1. The momentum exchange

We begin by examining the beam after it has passed
through the first section (DL1þ TDC) and show that this
is where the transverse and longitudinal momentum is
exchanged. Given the particle coordinates at the entrance
to EEX beam line are X0 ¼ ðx0; x00; z0; δ0ÞT , then after the
TDC we have

0
BBB@

x2
x02
z2
δ2

1
CCCA ¼

0
BBB@

1 L1 þ LD 0 η1

0 1þ κη1 κ κξ1

0 η1 1 ξ1

κ κðL1 þ LDÞ 0 1þ κη1

1
CCCA
0
BBB@

x0
x00
z0
δ0

1
CCCA:

ðA1Þ

Writing out the expressions for each momentum explic-
itly gives

�
x02 ¼ ð1þ κη1Þx00 þ κz0 þ κξ1δ0;

δ2 ¼ κx0 þ κðL1 þ LDÞx00 þ ð1þ κη1Þz0:
ðA2Þ

Let us consider the first line of Eq. (A2), which has four
terms. The first term ðx00Þ is simply the initial transverse
momentum while the second term ðκη1x00Þ arises in two
steps. In the first step, Eq. (1) shows that an x0 − z
correlation is acquired at the end of the dogleg due to
the longer path length taken by particles with nonzero x0 in
a region of dispersion ðη1Þ so that z1 acquires an η1x00 term.
In other words, particles with a positive/negative initial
divergence ðx00Þ arrive at the end of DL1 late/early, by the
extra amount Δz1 ¼ η1x00. In the second step, the TDC
imparts a z-dependent transverse kick [Eq. (2)] so that x02
acquires the κz1 term, (z1 ¼ κη1x00). The divergence after
the TDC now depends on the initial divergence ðx00Þ and
the acquired divergence ðκηx00Þ as x02 ¼ x00 þ κηx00 ¼
ð1þ κηÞx00. At this point, if the beam line is tuned so that
the exact EEX condition applies, by appropriate choice of
the dogleg dispersion and TDC kick strength (1þ κη1 ¼ 0
[2]), then Eq. (A2) becomes

�
x02 ¼ κz0 þ κξ1δ0;

δ2 ¼ κx0 þ κðL1 þ LDÞx00:
ðA3Þ

Thus, the momenta have been exchanged: x0 ⇌ δ. In
other words, the transverse momentum after the TDC ðx02Þ
depends only on the initial longitudinal coordinates ðz0; δ0Þ
and the longitudinal momentum after the TDC ðδ2Þ
depends only on the initial transverse coordinates
ðx0; x00Þ. Note also that while DL2 [Eq. (1)] completes
the beam line, it does not change the momenta x0 and δ.
Thus, we see that the first section of the beam line
(DL1þ TDC) is the place where the momenta are
exchanged.
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2. The position exchange

We next examine the beam after it has passed through the
second section of the beam line (TDCþ DL2) and show
that this is where the transverse and longitudinal positions
have been exchanged. Given the particle coordinates at the
entrance to the TDC are X1 ¼ ðx1; x01; z1; δ1ÞT , then after
DL2 we have the expression

0
BBB@
xf
x0f
zf
δf

1
CCCA¼

0
BBB@
1þ κη2 L2 þLD κðL2þLDÞ η2

0 1 κ 0

κξ2 η2 1þ κη2 ξ2

κ 0 0 1

1
CCCA
0
BBB@
x1
x01
z1
δ1

1
CCCA:

ðA4Þ

In the same way, the EEX condition (1þ κη2 ¼ 0)
simplifies this relation and the final positions can be
explicitly expressed as

xf ¼ κðL2 þ LDÞz1 þ η2δ1 þ ðL2 þ LDÞx01;
zf ¼ κξ2x1 þ η2x01 þ ξ2δ1: ðA5Þ

Before applying the EEX condition, we had a term
xf ¼ x1 þ κη2x1. The first term is simply the initial trans-
verse position ðx1Þ and the second term ðκη2x1Þ arises in
two steps. In the first step, the TDC applies an x-dependent
longitudinal kick as shown in Eq. (2) so that δ2 acquires a
κx1 term (i.e., δ2 ¼ δ1 þ κx1) so the beam has an x − δ
correlation. In the second step, the transverse dispersion of
DL2 also creates an x − δ correlation [Eq. (1)]
xf ¼ η2δ2 ¼ κη2x1. Once again, if the correlation caused
by the TDC is made to cancel the correlation from DL2, by
tuning κ and η2, then the two terms can cancel out and the
position exchange is complete.
Note that while the coordinate exchange is not complete

due to the presence of momentum terms (ðL2 þ LDÞx01 and
ξ2δ1), Eq. (A5) still has the property that the final x-position
is independent of the initial z-position and the final
x-position is independent of the initial z-position.
Inspection of Eq. (1) shows that this property is preserved
if the matrix occurring in Eq. (A5) is multiplied by
the matrix in Eq. (1) to the right. Therefore, we can say
that the position exchange occurs in the second section
(TDCþ DL2).

APPENDIX B PERTURBATION FUNCTIONS
AND THEIR CHARACTERISTICS

1. x20-series perturbation: z
i
f -dependent, shift, no spread

The first set of perturbation terms we consider is the x20-
series on the first line of Eq. (23) (i.e., C1x20 þ C2x0x00þ
C3x020 ). Since all three terms are proportional to x20, due to

the slope relationship given in Sec. III, we only need
consider the first term of the perturbation, ζ ¼ C1x20.
This perturbation ðζÞ varies with the position ðzifÞ of the

bunch since zif ¼ C0x0. This means there is a correlation
between ζ and zif which is the same as saying “the
perturbation is zif-dependent.” The magnitude of the
perturbation is ζ ¼ C1x20, and therefore, the shift ðζÞ is
small near the origin (zif ¼ 0) and large near the head and
tail (Fig. 13, middle row). Further, all particles that start at a
slice shift by the same amount (i.e. no spread) so the x20-
term perturbation function can we written as

PðζÞ ¼ δðζ − C1x20Þ: ðB1Þ

To understand the total perturbed longitudinal bunch
shape, we need to sum the shifts from the individual slices.
The direction of the shift, ζ, is always towards the back of
the bunch (Fig. 13, middle row) since the term C1x20 is
always negative in our case. This is because the coefficients
(C1, C2, C3) are always negative (these coefficient calcu-
lations are not included in the paper). If this perturbation is
strong (C1x20 is large) then a slice that starts near the head
can shift beyond a particle that started close to the center
causing a large peak to form near z ∼ 1 mm [Fig. 7(a)].
Summing all of the slice perturbations (Fig. 13, top row)
together gives the characteristic shape of the perturbed
longitudinal bunch shape due to the x20-series. The follow-
ing effects on the shape can be seen in Fig. 7(a): (tail)

FIG. 13. The x20-series perturbation. Bottom: The ideal n0ðzifÞ
profile. Middle: The perturbation functionPðζÞ at various positions
along the bunch.Top: Slices of the ideal profilen0ðzifÞ (blue) and the
perturbed profile n0ðzifÞ (red). The shift, ζ depends on zif. Particles
move to the back of the bunch and its distance is proportional to the
square of the distance from the center of the bunch.

PERTURBATION-MINIMIZED TRIANGULAR … PHYS. REV. ACCEL. BEAMS 19, 121301 (2016)

121301-17



elongated tail with hard edge which only occurs in this
perturbation as no other perturbations generate a hard edge;
(peak) unchanged; (ramp) convex; (head) convex or spike-
like head.

2. The z20-series perturbation: z
i
f -independent,

no shift, spread

The second set of perturbation terms we consider are the
z20-terms on the second line of Eq. (23) (C4z20 þ C5z0δ0þ
C6δ

2
0). Since all three terms are proportional to z20, due to

the slope relationship given in Sec. III, we only need to
consider the first term of the perturbation, ζ ¼ C4z20.
Since the z0 distribution has a spread (the bunch has a

Gaussian longitudinal distribution at the entrance to EEX),
this perturbation (ζ ¼ C4z20) will result in a spread (Fig. 14,
middle and top rows) around the ideal position zif but
without a shift. Further, since z0 is not correlated with zif,
then this perturbation is not correlated with zif (i.e. the
perturbation is zif-independent) and the magnitude of this
perturbation is constant along the bunch position (Fig. 14,
middle and top). This perturbation function will redistribute
particles according to

PðζÞ ¼ 2n=
ffiffiffiffiffiffi
2π

p
σz0 exp

	
− 1

2σ2z0
ζ=C4



ζ ∈ ½0; ζmax�; ðB2Þ

where n is the normalization factor for
R ζmax
0 PðζÞdζ ¼ 1.

The direction of the perturbation can be either forwards or

backwards depending on the sign of the coefficient, C4.
When C4 > 0, the particles spread forwards, and the
characteristic shape of the perturbed longitudinal bunch
shape, nðzÞ, is: (tail) a convex shaped tail; (peak) a rounded
peak; (ramp) unchanged; (head) a concave shaped and
elongated head. When C4 < 0, (Fig. 14, middle) the
particles spread backwards and the characteristic shapes
are: (tail) a concave shape tail; (peak) unchanged; (ramp)
unchanged; (head) a concave shape head. The total per-
turbed longitudinal bunch shape for the forward (C4 > 0)
and backward (C4 < 0) case is shown in Figs. 7(b) and
7(c), respectively.

3. The x0z0-series perturbation: zif -dependent,
without shift, with spread

The third set of perturbation terms we consider is the
x0z0-series on the third line of Eq. (23) (C7x0z0þ
C8x00z0 þ C9x0δ0 þ C10x00δ0). Since all four terms are
proportional to x0z0 due to the slope relationship given
in Sec. III, we only need to consider ζ ¼ C7x0z0.
Since x0 and x00 are correlated with zif but z0 and δ0 are

not, then the x0z0-series includes both correlated and
uncorrelated terms. The uncorrelated term, due to the
Gaussian distribution of z0, causes a spread (as described
in the z20-series above). The correlated term, due to x0,
causes the width of the spread to depend on zif (i.e. zif-
dependent) regardless of the sign of coefficients (C7). For
this perturbation, ζ ¼ C7x0z0, the perturbation function is
shown in Fig. 15 (middle and top) and is given by

FIG. 14. The z20-series perturbation for the case of C4 < 0.
Bottom: The ideal n0ðzifÞ profile. Middle: The perturbation
function PðζÞ. Top: Slices of the ideal profile n0ðzifÞ (blue)
and the perturbed profile nðzpf Þ (red). The shift is a skewed
Gaussian towards the back of the bunch.

FIG. 15. The x0z0-series perturbation. Bottom: The ideal n0ðzifÞ
profile. Middle: The perturbation function PðζÞ. Top: Slices of
the ideal profile n0ðzifÞ (blue) and the perturbed profile nðzpf Þ
(red). The Gaussian spread of the slices gets stronger the farther
out from the center.
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PðζÞ ¼ n=
ffiffiffiffiffiffi
2π

p
σz0 exp

	
− 1

2σ2z0

�
1

C7

ζ=jx0j
�

2


; ðB3Þ

where ζðx0Þ ∈ ½−ζmaxðx0Þ; ζmaxðx0Þ�. The magnitude of the
spread drops to zero at zif ¼ 0. It increases the farther
the particle is from zif ¼ 0 (Fig. 15, middle and top). The
characteristic shapes caused by this perturbation to the
perturbed longitudinal bunch shape, nðzpf Þ, are shown in
Fig. 7(d): (tail) a concave tail; (peak) rounded peak; (ramp)
a changed ramp; (head) a concave shape head.

4. The y20-series perturbation: z
i
f -dependent,

without shift, with spread

The fourth set of perturbation terms we consider are the
y20-terms on the fourth line of Eq. (23) (C11y20 þ C12y0y00þ
C13y020 ). Since all three terms are proportional to y20, due to
the slope relationship given in Sec. III, we only need to
consider the first term of the perturbation, ζ ¼ C11y20.
This perturbation, ζ ¼ C11y20, causes a spread of the

ideal slice (Fig. 16, middle and top) due to the Gaussian
distribution of y0. In the absence of a mask, the perturbation
due to the y20-series is not correlated with zif since y0 is not
correlated with x0. However, the perturbation acquires a
correlation with x0 (and with zif) due to the shape of the
mask thus this perturbation becomes zif-dependent (Fig. 16,
middle and top). Explicitly, the correlation between ζ and

zif is due to the mask used to generate the triangular
longitudinal bunch shape (Fig. 4, cyan-dashed curve) since
it limits the vertical beam size along x0 which is correlated
with zif. Since the initial transverse distribution of the bunch
is Gaussian, then we can generate an arbitrary projected
horizontal bunch shape, nðx0Þ, the mask, if we use a
transverse mask with a shape y ¼ Mðx0Þ which is

Mðx0Þ ¼
ffiffiffiffiffiffi
2π

p
σyinverff

ffiffiffiffiffiffi
2π

p
σxnðx0Þ=Ntot exp½x20=2σ2x�g:

ðB4Þ

If nðxÞ is the triangle horizontal profile, then the
perturbation function can be expressed as

PðζÞ ¼ 2n=
ffiffiffiffiffiffi
2π

p
σz0 exp

	
− 1

2σ2z0
ðζ=C11Þ



ζ ∈ ½0; ζðx0Þ�;

ðB5Þ

where ζ ¼ ζðx0Þ ¼ C11yðx0Þ2. For this perturbation, the
magnitude of the spread of the particles near the tail is
larger than the spread of the particles near the head because
the shape of the mask is taller in the y-dimension near the
tail than the head (Fig. 4, cyan dashed). For C11 > 0, the
characteristic shape is shown in Fig. 7(e): (tail) a convex
tail; (peak) a sharp peak; (ramp) unchanged; (head)
unchanged. For C11 < 0, the characteristic shape is shown
in Fig. 7(f): (tail) a concave tail; (peak) unchanged peak;
(ramp) convex ramp; (head) unchanged head. Note that the
reason that most of the ramp is unchanged is that the middle
of the mask shape is quite flat for the Gaussian beam
distribution (Fig. 4, cyan dashed).

5. The CSR and SC perturbation: zif -independent,
without shift, with spread

The fifth, and final, set of perturbation terms we consider
are the terms due to the collective forces on the fifth line of
Eq. (23): ξ2ðΔδCSR þ ΔδSCÞ. Since the momentum kick
from SC and CSR depends on the longitudinal bunch shape
in the same way [see Eq. (21)], we only need to consider
one of the terms in Eq. (21) to explore the characteristic of
this perturbation, ζ ¼ ξ2Δδ, where ξ2 is the momentum
compaction in DL2 and Δδ ¼ Δδðz2Þ the integrated
momentum kick at the entrance to DL2. This perturbation,
due to CSR and SC, arises from the propagation of the
integrated momentum kick at the entrance to DL2, Δδ
[Eq. (21)] through the (first-order) dogleg, DL2. Note that
unlike the previous four perturbation sources we only
include first-order optics in the beam line since it is
dominant.
Recall that the integrated momentum kick, Δδ, arises

from a collective force [either the longitudinal SC force or
the longitudinal (1D) CSR force] which varies along the
length of the bunch. Further, since the beam has an initial

FIG. 16. The y20-series perturbation for the case of C11 < 0.
Bottom: The ideal n0ðzifÞ profile. Middle: The perturbation
function, PðζÞ, for the y20-series with C11 < 0. Top: Slices of
the ideal profile n0ðzifÞ (blue) and the perturbed profile nðzpf Þ
(red). The skewed Gaussian spread of the slices gets stronger the
farther away from the head.
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spread in z0, at the mask, then the collective forces acting
along the bunch will generate a momentum kick at its
arrival to the entrance of DL2, Δδ, with spread. This, in
turn, causes the perturbation, ζ, to have a spread at the end
of the LBS beam line after propagating through DL2. This
perturbation does not cause a shift since it does not depend
on x0.
Next, we want to show that this perturbation is zif-

independent, i.e. that ζ and zif are not correlated. To do this,
we make a simplifying assumption that will be verified in
Sec. V by numerical simulation. We assume that the initial
horizontal angle is zero (x00 ¼ 0) which eliminates the
correlation between z2 and δ2. This can be seen by using
Eq. (A3), where the former now only depends on the initial
longitudinal coordinates (z2 ¼ z0 þ ξ1δ0) and the later
now only depends on the initial transverse coordinates
(δ2 ¼ κx0). Further, using Eq. (8) and the assumption
x00 ¼ 0 gives zif ¼ κξ2x0. Therefore, since (i) δ2 and zif
are correlated (since both are ∝x0); and (ii) δ2 and z2 are not
correlated, then, are z2 and zif not correlated. Finally, since
the integrated momentum kick,Δδ, is correlated with the
bunch length, z2, then Δδð∝z2Þ and zifð∝x0Þ are not
correlated. Therefore, this means that ζð¼ξ2ΔδÞ and zif
are not correlated.
This integrated momentum kick, Δδ, for a Gaussian

bunch, was scaled from Eq. (54) of Ref. [22] for the SC
effect and Eq. (18) of Ref. [23] for the CSR effect. Thus, the
perturbation function is

PðζÞ ¼ n=
ffiffiffiffiffiffi
2π

p
σz2 exp

h
− 1

2σ2z2
fΔδ−1ðζ=ξÞg2

i
; ðB6Þ

where its domain is ζ ∈ ½minðξ2ΔδÞ;maxðξ2ΔδÞ� and Δδ−1
is the inverse of the integrated momentum kick, Δδ. Both
the SC perturbation pattern (Fig. 17) and CSR perturbation
pattern (Fig. 18) are equal in strength along the bunch (i.e.
zif-independent). For a bunch with a longitudinal Gaussian
distribution, the SC field is symmetric and the CSR is an
asymmetric wakefield. Therefore,PðζÞ is symmetric for SC
and asymmetric for CSR. This means the particles move
equally forward and backward for SC, but particles mostly
move backwards for CSR. The center of PðζÞ is similar to
the Gaussian cases above, but the ends of PðζÞ have spikes
which influences the head and tail of the bunch. The
characteristic shape of the total perturbation [see Figs. 7(g)
and 7(h)] is: (tail) the spike at the tail generates a convex
shaped tail; (peak) CSR has a rounded peak and SC has a
slightly spiked peak; (ramp) unchanged. This is because the
Gaussian-like spread [near the center of PðζÞ] preserves the
ramp; (head) the spike at the head generates a concave
shaped head.
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