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ABSTRACT This paper investigates the efficiency of Gini’s mean difference (GMD) as a measure of
variability in two commonly used process capability indices (PCIs), i.e., Cp and Cpk. A comparison has
been carried out to evaluate the performance of GMD-based PCIs and Pearn and Chen quantile-based PCIs
under low, moderate, and high asymmetry using Weibull distribution. The simulation results, under low
and moderate asymmetric condition, indicate that GMD-based PCIs are more close to target values than
quantile approach. Beside point estimation, nonparametric bootstrap confidence intervals, such as standard,
percentile, and bias corrected percentile with their coverage probabilities also have been calculated. Using
quantile approach, bias corrected percentile (BCPB) method is more effective for both Cp and Cpk, where as
in case of GMD, both BCPB and percentile bootstrap method can be used to estimate the confidence interval
of Cp and Cpk, respectively.

INDEX TERMS Gini’s mean difference, process capability indices, non-normal, Weibull distribution.

I. INTRODUCTION
Process capability index is a major tool to evaluate the man-
ufacturing progress of any process. The traditional PCIs such
as, Cp ,Cpk, Cpm and Cpmk performed well when process
follows the normal behavior [1], [2]. In addition, non-normal
distribution process is also being practiced in an industrial
environment. Therefore, both normal and non-normal pro-
cesses capability indices are frequently used to monitor the
process performance.

A. NORMAL PROCESS CAPABILITY INDEX
The most commonly used PCIs are the Cp given by Juran [3]
and the Cpk, given by Kane [4]. The index Cp, which
is related to the upper and lower specification limits, is
defined as

Cp =
USL − LSL

6σ
(1)

On the other hand, the index Cpk, which is more sensitive to
departures from normality than Cp, for normal behavior is

given by

Cpk = min
(
USL − µ

3σ
,
µ− LSL

3σ

)
(2)

In (2), µ is the population mean and σ is the population
standard deviation, which is estimated by the sample standard
deviation when it is unknown. The standard deviation basi-
cally represents the process variability which may be short
term or long term. The commonly used PCIs are based on
both short term and long term variability. The indices Cp and
Cpk are referred as short term PCIs, whereas the indices Pp
and Ppk are considered as long term PPIs [5].

The PCIs used in industry provide a single numerical
measure which indicates the process performance. If the
resulting value of PCI (either Cp or Cpk) is < 1.00, the
process is called inadequate. The process is called capable
if 1.00 ≤ PCI ≤ 1.33. For satisfactory it should be 1.33 ≤
PCI ≤ 1.50, and considered super if PCI ≥ 2 [6].
In application point of view, different experts recom-

mended different values for existing and new processes.
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In general, Cp value equal to 1.33 is recommended for exist-
ing processes and Cp value 1.67 or higher for new processes.
Some authors, considered, Cp = 1.33 for existing processes,
Cp = 1.50 for new processes and Cp = 1.67 for safety,
critical parameters and new processes for two-sided specifi-
cations [7]. In present study, the range of PCI is considered
1.67 or higher.

B. NON NORMAL PROCESS CAPABILITY INDEX
However, due to different noisy, complex and multifunctional
behavior of any factor, many processes in practice are non-
normal [2]. The non-normality effects the efficiency of both
sample mean and standard deviation and they are not con-
sidered as meaningful estimators to deal with such situation.
Therefore, the PCIs defined in eq.1 and eq.2 would not
be reliable and may give erroneous and misleading results.
Thereby, it is necessary to take into account the non-normality
to prevent the loss of resources, money and time, hence
practitioners made an accurate result [8].

To deal with non-normal processes, many researchers
focused on different methodologies [7]. The reliable esti-
mators of non-normal PCIs are obtained by using two
approaches. The first one is to transform the non-normal data
into normal for the use of normal based PCIs. The second
approach is to use PCIs defined for non-normal data [6].

In transformation methods, Box-Cox power transforma-
tion, Johnson transformation system and Clements methods
using pearson curves are used. On the other hand, empirical
distribution method, modification of existing PCIs and alter-
native measures of variability are commonly used methods
for second approach [6], [7]. There are many studies in which
researchers have made comparisons with in each approach
or compared both approaches at a time for dealing with non-
normal PCIs [2], [5], [6], [8], [9]. All thesemethods have been
criticized by the researchers because of their variable perfor-
mance under different situations. So, no single method has
been recommended that works accurately in all situations [2].

Senvar and Kahraman [9] proposed the percentile based
basic PCIs for non-normal data and then developed fuzzy
formulation using Clements method. The performance of
proposed PCIs are compared usingWeibull distribution. Later
on in another study, Senvar and Kahraman [8] introduced
type-2 fuzzy percentile based PCIs for non-normal data
via Clements methods and then compared with their crisp
types. The comparison showed that proposed PCIs are more
informative, sensitive and flexible to evaluate the process
performance.

Sennaroglu and Senvar [6] presents a comparison of
Box-Cox transformation and weighted variance methods for
non-normal process capability index using Weibull distribu-
tion. Based on various summary statistics, they concluded
that Box-Cox transformation method produces better esti-
mates for process capability index than weighted variance
method.

Recently, Senvar and Sennaroglu [5] compared
Clements approach, Box-cox transformation and Johnson

transformation method for handling non-normal PCI when
data followWeibull distribution. TheWeibull distributed data
with different parameters are used to figure out the effect of
the tail behaviors on PCIs. Based on different measures like
box-plot, descriptive statistics, the root mean square deviation
and a radar chart, they concluded that Clements approach is
the best among three methods.

The transformation approach has ability to produce good
results as pointed out by [10] but it does not become very
popular among practitioners because of extensive computing
and translating the computed results with regards to the orig-
inal scales [5]. In this regard, Clements [11] introduced the
concept of quantile using person family of distribution for
estimating the standard PCIs. Due to simplicity in calculation
and application, this approach is one of the most popular one
for dealing with non-normality [8].

For non-normal distribution, the PCIs defined in (1) and (2)
should be modified [5]. A widely adopted procedure to con-
struct non-normal PCIs is to substitute 6σ in (1) by the range
R = U − L which covers 99.73% of the distribution of the
monitored process data, where U and L are the 0.135th and
99.865th quantiles of the corresponding non-normal distribu-
tion, respectively. This idea is introduced by Clements [11]
and further modified by Pearn and Chen [12], who replaced
3σ in (2) by [U − L/2]. Based on modified approach [12],
the index Cp and Cpk can be defined as

C∗Np =
USL − LSL

U− L
(3)

C∗Npk = 2 ∗ min
(
USL −M

U− L
,

M− LSL
U− L

)
(4)

where M is the 50.00th quantiles of the corresponding non-
normal distribution. In the modified Cp and Cpk defined in
(3) and (4), the center of the process is based on the median,
because median is a robust measure of the central tendency
than mean particularly for skewed distributions.

C. ROBUST MEASURES OF VARIABILITY
But it is well established that the use of these PCIs, for
heavily skewed distributions, did not provide accurate results
[13]–[15]. So in this case, several authors in literature, have
promoted the use of other robust measures of variability such
as median absolute deviation, interquartile range and Gini’s
mean difference [15], [16]. Among these robust measures,
GMD is considered as a universal estimator of standard devi-
ation due to its less sensitivity to outliers, but its extensive
application as a measure of variability has been rendered
because of few arising computing issues i.e. estimating the
variance of its estimator [16]–[18]. The GMD was developed
by Professor Carrodo Gini [19] for measuring variability of
the non-normal data. Later on, many authors [16], [20], [21]
showed that GMD was more informative and effective mea-
sure of variability than standard deviation for highly skewed
data. Therefore, the fundamental objectives of this study
are, (i) to use the Gini’s mean difference as a measure
of variability in two commonly used PCIs Cp and Cpk.
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(ii) to compare the performance of modified PCIs with exist-
ing quantile based PCIs, and (iii) to examine how asymmetric
levels of the distribution along with sample size affect the
accuracy of these PCIs.

D. PAPER ORGANIZATION
The rest of the study is organized as follows. Section 2 clearly
demonstrates the procedure of the GMD based process capa-
bility indices. Section 3 and 4 will employ the simulation
study and numerical example to demonstrate the effectiveness
of the proposed approach. Concluding remarks are finally
made in section 4.

E. ABBREVIATIONS AND ACRONYMS
GMD Gini’s Mean Difference
PCI Process Capabilities Indices
PC Pear and Chen Quantile Method
USL Upper Specification Limit
LSL Lower Specification Limit
σ Population Standard Deviation
µ Population Mean
M 50th Quantile of the Corresponding Distribution
L 0.00135th Quantile of the Corresponding

Distribution
U 0.99865th Quantile of the Corresponding

Distribution
CI Confidence Interval
SB Standard Bootstrap CI
PB Percentile Bootstrap CI
BCPB Bias Corrected Percentile Bootstrap CI
MSE Mean Square Error

FIGURE 1. Distribution plot of Weibull distribution using different shape
and scale parameters which defined low, moderate and high asymmetry.

II. METHODOLOGY
In this study, Weibull distribution with different shape and
scale parameters are considered to figure out the effects of
different tail behavior on PCI. The Weibull distribution with
shape and scale parameters of (2.8,3.50), (1.80,2.00) and
(1.00,1.30) is considered as presented in figure 1. These
shape and scale parameters combinations are categorized to

evaluate low, moderate and high asymmetric level of the
distribution. For simulation scenario, the data sets of size
n = 25,50,75 and 100 are generated using each asymmetric
level of Weibull distribution.

A. GINI’s MEAN DIFFERENCE
The Gini’s mean difference for a set of n ordered observa-
tions, {x1, x2, · · · ,xn}, of a random variable X is defined as

Gn =
2

n(n− 1)

n∑
j=1

n∑
i=1

|xi − xj|

Gn =
2

n(n− 1)

n∑
i=1

[(xi − x1)+ (xi−x2)+ · · · + (xi−xi−1)]

Gn =
2

n(n− 1)

n∑
i=1

(2i− n− 1)x(i) (5)

If the random variable X follows normal distribution with
mean µ and variance σ 2, then Downton, [22] suggests as a
possible unbiased estimator of standard deviation (σ ) is

σ ∗ = c
n∑
i=1

(2i− n− 1) x(i)/n (n− 1)

Where c =
√
π= 1.77245. Latter on, David, [23], proved

that

σ ∗ = 0.8862 ∗ Gn

is an unbiased measure of variability. GMD can be rewritten
as

Gn =
2

n (n− 1)

n∑
i=1

(2i− n− 1) x(i)

If we write this as

Gn =
2

n (n− 1)

n∑
i=1

((i− 1)− (n− i)) x(i)

Gn =
2

n (n− 1)

[
n∑
i=1

(i− 1) x(i) −
n∑
i=1

(n− i) x(i)

]

Gn =
2

n (n− 1)
[U − V ]

Where U =
∑n

i=1 (i− 1) x(i) and V =
∑n

i=1 (n− i) x(i).
Using this procedure as compared to Nair [24],
Lomnicki [25], the unbiased estimator of Gini’s mean dif-
ference for Weibull distribution is [26],

E (Gn) =
(
2− 21−

1
β

) 0 (1+ 1
β

)
λ

= σgw (6)

with p.d.f of Weibull distribution is

fx = λβ (λx)β−1 e−(λx)
β

(7)
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TABLE 1. The mean and standard deviations of the Cp and Cpk using different asymmetric levels with LSL=2.0 and USL=8.0.

B. PCIs BASED ON GMD
To compute Cp and Cpk using GMD as a measure of vari-
ability when data follow a Weibull distribution, we have
the following modification in the above non-nromal PCIS
formulas.

Cnpg =
USL − LSL
5.3172σgw

(8)

Cnpkg =
min(USL − m,m− LSL)

2.6586σgw
. (9)

C. BOOTSTRAP CONFIDENCE INTERVALS
Let x1, x2, x3, · · · xn be a random sample of size n drawn
from any distribution of interest say 2. i.e x1, x2, x3, · · ·
xn ∼ 2. Let θ̂ represents the estimator of PCI say Cp or Cpk .
Then following steps are involved to explain the bootstrap
procedure.

I. A bootstrap sample of size n (with replacement) is
obtained from original sample by putting 1/n as mass
at each point and is denoted by x∗1, x

∗

2, x
∗

3 · · · x
∗
n.

II. Let X∗m where 1 ≤ m ≤ n be the mth bootstrap
sample, then mth bootstrap estimator of θ is computed
as

θ̂∗ = θ̂ (x∗1, x
∗

2, x
∗

3 · · · x
∗
n) (10)

Where θ̂∗ is the mth estimator of parameter θ̂ .
III. Since there are total nn resamples. From these re-

samples we calculate nn values of θ̂∗. Each of
these would be estimate of θ̂ . The arrangement
of the entire collection from smallest to largest,
would constitute an empirical bootstrap distribution
of θ̂ .

In this study, we assumed B = 1000 bootstrap resamples. The
construction of confidence intervals of the PCI θ̂ ε

(
Cp,Cpk

)
using bootstrap techniques are described as

1) STANDARD BOOTSTRAP (SB) CONFIDENCE INTERVAL
From B = 1000 bootstrap estimates of θ̂∗, calculate the
sample average and standard deviation as

θ̄∗ = (1000)−1
∑1000

i−1
θ̂∗(i) (11)

S∗
θ̂∗
=

√(
1

999

)∑1000

i=1
(θ̂∗(i)− θ̄∗)2 (12)

Thus the SB (1− α) 100% confidence interval is

CISB = θ̄∗ ± Z1− α2 S
∗

θ̂∗
(13)

Where Z1− α2 is obtained by using
(
1− α

2

)th quantiles of the
standard normal distribution.

2) PERCENTILE BOOTSTRAP (PB) CONFIDENCE INTERVAL
From the ordered collection of θ̂∗(i), choose 100

(
α
2

)
% and

the 100
(
1− α

2

)
% points as the end points of the confidence

interval to give

CIPB =
(
θ̂∗B( α2 )

, θ̂∗B(1− α2 )

)
(14)

as the (1− α) 100% confidence interval of θ̂ . For a 95%
confidence interval with B = 1000

this would be

CIPB =
(
θ̂∗(25), θ̂

∗

(975)

)
. (15)

3) BIAS-CORRECTED PERCENTILE BOOTSTRAP (BCPB)
CONFIDENCE INTERVAL
This method has been developed to correct the potential bias.
This bias is generated because the bootstrap distribution is
based on a sample from the complete bootstrap distribution
and may be shifted higher or lower than would be expected.
The calculation of thismethod is based on the following steps.
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i. Using the (ordered) distribution of θ̂∗(i), compute the
probability

p0 = pr
(
θ̂∗ ≤ θ̂

)
(16)

ii. Let ∅ and ∅−1 represents the cumulative and inverse
cumulative distribution functions of standard normal
variable z, then calculate

z0 = ∅−1(p0) (17)

iii. The percentiles of the ordered distribution of θ̂∗ is
obtained as

PL = ∅
(
2z0 + z α2

)
(18)

PU = ∅
(
2z0 + z1− α2

)
(19)

Finally, the BCPB confidence interval is given as

CIBCPB =
(
θ̂∗(PLB), θ̂

∗

(PUB)

)
. (20)

III. RESULTS AND DISCUSSIONS
Table 1 reports the average value of GMD and PC based
estimators of Cp and Cpk for different sample sizes under
low, moderate and high asymmetric levels. The values in
parenthesis are the standard deviations. Both estimators per-
formed differently under different tail behavior of theWeibull
distribution. In all asymmetric levels, GMD based estimators
of Cp perform better than its competitor. However, under low
and moderate asymmetry it is very close to target value and
produce lower bias andMean Square Error (MSE). Although,
PC based estimator of Cp is good up to some extent but not
recommended for new processes. However, it may produce
better results for existing processes where Cp=1.33 or higher.
In case of high asymmetry, however, the efficiency of both
estimators differ significantly. The quantile approach is not
good and exhibits lower values indicating that process does
not meet the specification limits.

The performance of GMD based estimator of Cp is more
robust and gives higher values under high asymmetry. It has
shown lower bias and MSE when Cp values equal to 2.00
or higher. In case of Cpk index, the performance of both
estimators was quite different, however both underestimate
the true Cpk under moderate and high asymmetry, although
the performance of GMD is clearly better than PC. Under low
asymmetry GMD based estimator has given reliable results.

The MSE under low, moderate and high asymmetry using
different sample sizes and standard values of Cp and Cpk
are presented in figure 2 - 7 respectively using radar chart.
From these charts, it is concluded that MSE in case of the
GMD based estimator is less than PC based estimator under
all asymmetric levels.

Under the same simulation setup for point estimation,
the confidence interval and their coverage probabilities for
both estimators are listed in table 2–5. From these tables,
it is concluded that coverage probabilities are increas-
ing and average widths are decreasing when the sam-
ple size increasing. Moreover, it is concluded that BCPB

FIGURE 2. MSE under low asymmetry for Cnpg index.

FIGURE 3. MSE under moderate asymmetry for Cnpg index.

method has the highest coverage probabilities under all
asymmetric levels using GMD method. On the other hand,
SB method performed batter using quantile approach for
both indices. The coverage probabilities in both cases reaches
the nominal confidence coefficient 0.95 using large sample
sizes.

The results show that, under all asymmetric level, with
n ≥ 50 all three bootstrap methods provides enough
coverage proportions and reaches the nominal confidence
coefficient 0.95. In case of GMD based estimator, SB and
PB have lower coverage proportions while in case of quan-
tiles PB and BCBP provides poor coverage proportions.
The performance of three bootstrap confidence intervals
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FIGURE 4. MSE under high asymmetry for Cnpg index.

FIGURE 5. MSE under low asymmetry for Cnpkg index.

based on lower average widths using GMD are ranked as
SB > BCPB > PB. While in case of PC, it has following
rank SB > PB > BCPB for index Cp. On the other hand, in
case of index, Cpk , we observed the following order BCPB >
SB > PB and SB > PB > BCBP using GMD and quantile
estimators respectively. Therefore, based on better coverage
probabilities and lower average widths, BCBP confidence
limits are reliable for index Cp using both approaches and
for Cpk using quantile approach only. The PB method pro-
vides lower confidence limits using GMD based estimator
of Cpk .

FIGURE 6. MSE under moderate asymmetry for Cnpkg index.

FIGURE 7. MSE under high asymmetry for Cnpkg index.

A. EXAMPLE
The manufacturing data of floor tiles is taken from [27]. The
company is concerned about the flexibility of the tiles, and the
data set contains data collected on 10 tiles produced on each
of 10 consecutive working days. Suppose that a tile manu-
facturer needs to keep the degree of warping in a ceramic
bath tile between 2 and 8 millimeters. The basic normality
test confirms that normal distribution does not model the data
well. So we cannot trust on the results of standard PCIs. The
goodness of fit test indicate that Weibull distribution is a
good for this data. So we performed a non-normal process
capability analysis. The shape and scale parameters for this
data are 1.69368 and 3.27812 respectively. The low value of
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TABLE 2. Three Bootstrap CIs in parentheses and their coverage
probabilities for index Cnpg using GMD method.

TABLE 3. Three Bootstrap CIs in parentheses and their coverage
probabilities for index Cnpg using PC method.

the shape parameter indicates that the data is right skewed.
The summary statistics of the data and calculated values of
both indices Cnpg and Cnpkg were presented in Table 6.
The process capability analysis of the data indi-

cate that process is not being capable when standard
deviation and quantile approach is used as a measure
of variability. However, when GMD is used the pro-
cess is being capable (Cp > 1.33). Usually all com-
panies consider Cp instead of Cpk for evaluating their
manufacturing processes. Table 6 indicates that the
production process is not centered in relation to the spec-
ification limits because median is less than average of

TABLE 4. Three Bootstrap CIs in parentheses and their coverage
probabilities for index Cnpkg using GMD method.

TABLE 5. Three Bootstrap CIs in parentheses and their coverage
probabilities for index Cnpkg using PC method.

upper and lower specification limits. For this reason, we
must consider Cpk along with Cp. Using Cpk, the situation
is somewhat different to that observed in using Cp. The
results indicate that for positively skewed data, all meth-
ods underestimate the actual process yield. However, using
GMD one would be able to reduce the nonconforming parts
because the value of modified Cpk is much greater than the
qantile based Cpk. Three bootstrap confidence intervals of
the both PCs and their coverage probabilities are reported
in table (7). The true values of both indices lie in the bootstrap
confidence intervals. Additionally, the results are similar to
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TABLE 6. Summary statistics of the data.

TABLE 7. Bootstrap CIs with their coverage probabilities using both
methods for Cp and Cpk.

the simulation results.

IV. CONCLUSION AND RECOMMENDATIONS
Considering different skewed Weibull processes, this study
proposes GMD based process capability indices. The GMD
is used to measure the process variability as compared to
standard deviation to evaluate the performance ofCp andCpk .
For point estimation, GMDbased PCIs, has lowerMSE under
all asymmetric levels as compared to PC based PCIs. The
GMD based PCIs recommend for new processes where the
target value is not less than 1.67. On the other hand, The
PC- based PCIs performed well under low asymmetry for just
capable processes. It is also observed that at high asymmetry,
GMD based PCIs are more efficient than PC based PCIs.
Even under low and moderate asymmetry, GMD is clearly
non-inferior to its competitor.

The major advantage of applying GMD philosophy is that
it helpful for the reduction of process variability under high
asymmetry and process can meet the customer’s requirement.
Further, we focused attention on deriving non-parameters
confidence intervals for both GMD and PC based PCIs under

low, moderate and high asymmetry. In case of Cp, the BCBP
methods provide reliable confidence limits and better cover-
age probability using GMD and quantile methods for under-
lying asymmetric levels whatever the sample size. The PB
method provides higher coverage probability with smaller
confidence interval width in case of Cpk using Ginni’s mean
difference method.
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