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CONTINUOUS HAMILTONIAN DYNAMICS AND
AREA-PRESERVING HOMEOMORPHISM GROUP OF D?

YONG-GEUN OH

ABSTRACT. The main purpose of this paper is to propose a scheme of a
proof of the nonsimpleness of the group HomeoQ(D2,8D2) of area pre-
serving homeomorphisms of the 2-disc D?. We first establish the exis-
tence of Alexander isotopy in the category of Hamiltonian homeomor-
phisms. This reduces the question of extendability of the well-known
Calabi homomorphism Cal : Diff*? (D',0D?) — R to a homomorphism
Cal : Hameo(D?,8D?) — R to that of the vanishing of the basic phase
function fg, a Floer theoretic graph selector constructed in [9], that is
associated to the graph of the topological Hamiltonian loop and its nor-
malized Hamiltonian F on S? that is obtained via the natural embedding
D? — S$2. Here Hameo(D?,8D?) is the group of Hamiltonian homeo-
morphisms introduced by Miiller and the author [18]. We then provide
an evidence of this vanishing conjecture by proving the conjecture for the
special class of weakly graphical topological Hamiltonian loops on D? via
a study of the associated Hamiton-Jacobi equation.

1. Introduction and statements of main results
1.1. Calabi homomorphism on D?

Denote by Difo(DQ,aDQ) the group of area-preserving diffeomorphisms
supported in the interior of D? with respect to the standard area form =
dg Adp on D? C R2. For any ¢ € Diff(D2,0D?)

P =0Q

by definition. Write 2 = da for some choice of a. Then this equation leads to
the statement that ¢*a — « is closed. Furthermore since ¢ is supported in the
interior, the one-form

ofa— «
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vanishes near 9D? and so defines a de Rham cohomology class in H'(D?, dD?).
Since the latter group is trivial, we can find a function hy o supported in the
interior such that

(1.1) dhg o =@ a—a.
Then the following is the well-known definition of Calabi invariant [3].

Definition 1.1 (Calabi invariant). We define

1
cmwziéﬂw.

One can show that this value does not depend on the choice of the one-form
« but depends only on the diffeomorphism. We will fix one such form « and
so suppress the dependence « from our notation, and just denote hy = hg .

Another equivalent definition does not involve the choice of one-form « but
uses the ‘past history’ of the diffeomorphism in the setting of Hamiltonian
dynamics [1]. More precisely, this definition implicitly relies on the following
three facts:

(1) © on two dimensional surface is a symplectic form and hence
Diff*(D?,8D?%) = Symp,,(D?,0D?),

where w = Q.

(2) D? is simply connected, which in turn implies that any symplectic
isotopy is a Hamiltonian isotopy.

(3) The group Diff*(D? dD?) is contractible. (For this matter, finiteness
of 1 (Diff*(D? dD?), id) = {0} is enough.)

It is well-known (see [8], [14] for example) and easy to construct a sequence
¢; € Diff*(D2,8D?) such that ¢; — id in C° topology but

Cal(¢;) = 1

for all ¢’s. This implies that Cal cannot be continuously extended to the full
group Homeo®* (D2, 9D?) of area-preserving homeomorphisms.

However here is the main conjecture of the paper concerning nonsimpleness
of the group Homeo(D?,dD?). The author learned from A. Fathi in our dis-
cussion on the group Hameo(D? dD?) [7] that the following will be important
in relation to the study of nonsimpleness conjecture. (We refer to [13] for the
argument needed to complete this nonsimpleness proof out of this conjecture.)

Conjecture 1.2. Let Hameo(D?,dD?) C Homeo(D?,0D?) be the subgroup
of Hamiltonian homeomorphisms on the two-disc. Then the Calabi homomor-
phism Cal : Diff}(D2?,dD?) — R extends continuously to Hameo(D?,dD?) in
Hamiltonian topology in the sense of [18].

For the study towards this conjecture, as we did in [13], we first define a
homomorphism on the path spaces

CalP* ™™ (\) : Pram(Symp(D?, dD?),id) — R
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by
1
(1.2) CalP™™()\) = / H(t,x)Qdt.
0 D2

We will also denote this average by Cal(H) depending on the circumstances.
Based on these facts (1) and (2), we can represent ¢ = ¢}, for the time-one map
¢}, of a time-dependent Hamiltonian H = H(t, ) supported in the interior.
Then based on (3) and some standard calculations in Hamiltonian geometry
using the integration by parts, one proves that this integral does not depend on
the choice of Hamiltonian H ~ ¢. Therefore it descends to Ham(D? 0 D?) =
DiHQ(DQ, dD?). Then another application of Stokes’ formula, one can prove
that this latter definition indeed coincides with that of Definition 1.1. (See [1]
for its proof.)

It is via this second definition how the author attempts to extend the classical
Calabi homomorphism Cal : Ham(D? dD?) — R to its topological analog
Cal : Hameo(D?,0D?) — R. In [13], the definition (1.2) is extended to a
homomorphism

Cal™™" . Pham(Sympeo(D?,0D?),id) — R

on the set P (Sympeo(D?,dD?),id) of topological Hamiltonian paths. (See
Section 2 for the precise definition.) Here following the notation from [18],
we denote by Sympeo(D?,0D?) the C%-closure of Symp(D?,dD?). Gromov-
Eliashberg’s C” symplectic rigidity theorem [5] states

Dif f(D* 0D?) N Sympeo(D?,0D?) = Symp(D?,0D?).
In [13, 14], it is shown that a proof of descent of @path to the group
Hameo(D?, 0D?) := evy (P"*™(Sympeo(M, w), id))

of Hamiltonian homeomorphisms (or more succinctly hameomorphisms) is re-
duced to the following extension result of Calabi homomorphism.

One important ingredient in our scheme towards the proof of Conjecture
1.2, which itself has its own interest, is the existence of the Alexander isotopy
in the topological Hamiltonian category. Recall that the well-known Alexander
isotopy on the disc D? exists in the homeomorphism category but not in the
differentiable category. We will establish that such an Alexander isotopy defines
contractions of topological Hamiltonian loops to the identity constant loop in
the topological Hamiltonian category.

Theorem 1.3 (Alexander isotopy; Theorem 3.3). Any topological Hamilton-
ian loop in Hameo(D?,dD?) is contractible to the identity loop via topological
Hamiltonian homotopy of loops.
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1.2. Basic phase function and Calabi invariant

The scheme of the proof of Conjecture 1.2 we propose is based on the fol-
lowing conjectural result of the basic phase function introduced in [9]. This
conjecture is also a crucial ingredient needed in the proof of homotopy invari-
ance of the spectral invariance of topological Hamiltonian paths laid out in [15].
Explanation of this conjecture is now in order.

Recall the classical action functional on T*N for an arbitrary compact man-
ifold N is defined as

cl _ xpn !
A (y) = / 0 / H(tA(1)) dt

on the space P(T*N) of paths v : [0,1] — T*N, and its first variation formula
is given by
(1.3)

dAG (7)(€) :/0 w(¥ = Xu(t,~(1)),£(1)) dt — (0(~(0)),£(0)) + (0(~(1)),£(1))-

The basic phase function graph selector is canonical in that the assignment
H s fir; C>([0,1] x T*N;R) — C°(N)

varies continuously in (weak) Hamiltonian topology of C°°([0,1] x T*N;R)
[17, 18]. The construction fz in [9] is given by considering the Lagrangian pair

(ONvT;N)a qGN

and its associated Floer complex CF(H;on, TyN ) generated by the Hamilton-
ian trajectory z : [0, 1] — T*N satisfying

(1.4) 2= Xp(t,2(t), =2(0)€on,2(1)€T;N.

Denote by Chord(H;oN,T;N) the set of solutions of (1.4). The differential
Om,yy on CF(H;on, Ty N) is provided by the moduli space of solutions of the
perturbed Cauchy-Riemann equation

{2—¢+J<%—¢XH<u>>o

(1.5)
u(7,0) € on, u(r,1) € Ty N.

The resulting spectral invariant p!®9(H;[q]) is to be defined by the mini-max
value
p'*(H;[q)) = inf Ap(a),
a€lq]

where [g] is a generator of the homology group HF(oy,T,;N) = Z. The basic
phase function fg : N — R is then defined by fr(q) = p'*(H;|q]) first for
generic ¢ € N and then extending to the rest of M by continuity. (See [9] for
the detailed construction and Section 5 of the present paper for a summary.)
Next we relate the basic phase function to the Calabi invariant on the two-
disc as follows. Let F' be a topological Hamiltonian generating a topological
Hamiltonian path ¢z on the 2-disc D? with supp F C Int D?. We consider an
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approximating sequence F; with supp F; C Int D?. We embed D? into S? as
the upper hemisphere and then extend F; canonically to whole S? by zero.
We now specialize the above discussion on the basic phase function to the
cases of the Lagrangianization of symplectic diffeomorphisms, i.e., consider
their graphs
Graph ¢ = {(¢(z),x) | € S?} € 5% x S°.
Applying this to ¢f and noting supp ¢, C D3 x D7, we obtain

Graph ¢, ﬂ ADAp: UADi\Di(ka)

for some 6 > 0 for all ¢ € [0, 1], independently of sufficiently large ’s but
depending only on F. (See [18] or Definition 2.7 of the present paper for the
precise definition of approximating sequence on open manifolds.) Then we
consider the normalization F; of F; on 52 and define Hamiltonian

F;(t,x) := x(x) F;(t,z), x=(z,y)

on T*A with a slight abuse of notation for IF;, where y is a cut-off function
such that x = 1 on a neighborhood Va of A with

supp¢p C Va C Va C 8% x §%\ A.

Two kinds of the associated generating functions, denoted by 7L]F‘i and hp, re-
spectively, are given by

(1.6) he,(a) = A (22) . he (%) = Af (250)

where the Hamiltonian trajectories z]?i and 2L are defined by
7 (t) = ¢k, (a), 4 € oa,

“(t) = o, ((95,) 7' (%)), x € ¢, (0a).

We note that zg (0) = q and z*(1) = x. Later we will review the definition

from [9, 17] of the basic phase function fr, and the Lagrangian selector op,.
These maps have the properties that

(].7) fIFi = hIFi O OF;

and op, (q) = (q,dfr, (q)) € T*A whenever dfr, (q) exists. This ends the review
of construction of basic phase function.

The following theorem exhibits the relationship between the limit of Calabi
invariants and that of the basic phase function.

F
Zx

Theorem 1.4 (Theorem 6.1). Let (M,w) be an arbitrary closed symplectic
manifold. Let U = M \ B where B is a closed subset of nonempty interior. Let
A\ = ¢r be any engulfed topological Hamiltonian loop in PM™(Sympeoy (M,w),
id) with ¢%. =id on B. Then

(18) Jim fr (2) = 59
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uniformly over x € M, for any approximating sequence F; of F'. In particular,
the limit function fg defined by fp(x) := lim; . fr, () is constant.

It is crucial for the equality (1.8) to hold in the general case that we are
considering topological Hamiltonian loop, not just a path. (We refer readers to
the proof of Theorem 6.1 to see how the loop property is used therein. We also
refer to the proof of Lemma 7.5 [17] for a similar argument used for a similar
purpose.)

The following is the main conjecture to beat which was previously proposed
by the present author in [15].

Conjecture 1.5 (Main Conjecture). Let M = S? be the 2 sphere with standard

symplectic structure. Let A = {(bﬁq( } be a hameotopy contracting a
) J (s,t)el0,1]2

topological Hamiltonian loop ¢ with F = H(1) such that H(s) = id on D?
where D2 is the lower hemisphere of S*. Then fr = 0.

It turns out that this conjecture itself is strong enough to directly give rise to
a proof of Conjecture 1.2 in a rather straightforward manner with little usage
of Floer homology argument in its outset except a few functorial properties of
the basic phase function that are automatically carried by the Floer theoretic
construction given in [9].

We indicate validity of this conjecture by proving the conjecture for the
following special class consisting of weakly graphical topological Hamiltonian
loops.

1.3. Graphical Hamiltonian diffeomorphism on D? and its Calabi
invariant

We start with the following definition. We refer readers to Definition 4.2 for
the definition of engulfed diffeomorphisms.

Definition 1.6. Let ¥ : Un — V be a Darboux-Weinstein chart of the diagonal
A C M x M and denote mao = FZ : Ua — A to be the composition of ¥ followed
by the canonical projection T*A — A.

(1) We call an engulfed symplectic diffeomorphism ¢ : M — M U-graphical
if the projection ma|Graph¢ — A is one-to-one, and an engulfed sym-
plectic isotopy is {¢'} W-graphical if each element ¢! W-graphical. We
call a Hamiltonian F' = F(t,x) W-graphical if its associated Hamilton-
ian isotopy ¢4 is W-graphical.

(2) We call a topological Hamiltonian loop F' is strongly (resp. weakly)
W-graphical, if it admits an approximating sequence F; each element of
which is W-graphical (resp. whose time-one map qﬁ};i is W-graphical).

Denote by F the time-dependent Hamiltonian generating the path ¢ — ¢%f.
The statement (2) of this definition is equivalent to saying that each F* is W-
graphical for a € [0, 1].
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We remark that any symplectic diffeomorphisms sufficiently C'-close to
the identity is graphical, but not every C°-close one. We also remark that
TA|Graph ¢ 18 surjective and hence a diffeomorphism if ¢ is a ¥-graphical sym-
plectic diffeomorphism isotopic to the identity via a W-engulfed isotopy.

In 2 dimension, we prove the following interesting phenomenon. We doubt
that similar phenomenon occurs in high dimension. This theorem will not be
used in the proofs of main results of the present paper but has its own interest.

Theorem 1.7. Let M be a closed 2 dimensional surface. Suppose ¢ : M —
M is a V-graphical symplectic diffeomorphism isotopic to the identity via V-
graphical isotopy. and let Graph ¢ = Image oy for a closed one-form ag. Then
for any 0 < r <1, the projection wo : M X M — M restricts to a one-one map
to Imager agy C M x M. In particular

(1.9) Imager ay = Graph ¢,
for some symplectic diffeomorphism ¢, : M — M for each 0 < r < 1.

Finally we prove Conjecture 1.5 for the weakly graphical topological Hamil-
tonian loop on S? that arises as follows.

Theorem 1.8. Conjecture 1.5 holds for any weakly graphical topological Hamil-
tonian loop on S? arising from one on D? as in subsection 1.2.

The proof of this theorem strongly relies on Theorem 1.3.
An immediate corollary of Theorems 1.4 and 1.8 is the following vanishing
result of Calabi invariant.

Corollary 1.9. Suppose A = ¢p is a weakly graphical topological Hamiltonian
loop on D*. Then @path()\) =0.

Unraveling the definitions, this corollary establishes the main conjecture
with the additional graphicality hypothesis on ¢;.

Theorem 1.10. Consider a sequence ¢; € Ham(D?,0D?) that satisfies the
following conditions:

(1) Each ¢; is graphical, and ¢; — id in C°-topology,

(2) ¢ = ‘b}lql with convergent H; in L) -topology.
Then lim;_,~ Cal(¢;) = 0.

We hope to study elsewhere general engulfed topological Hamiltonian loop
dropping the graphicality condition.

Remark 1.11. Previously the author announced a ‘proof’ of the nonsimpleness
result in [14] modulo the proof of Conjecture 1.5 in which nonsimpleness is
derived out of the homotopy invariance of spectral invariants whose proof also
strongly relied on this vanishing result. Unlike the previously proposed scheme
of the proof, the current scheme does not rely on the homotopy invariance of
spectral invariants of topological Hamiltonian paths but more directly follows
from the above mentioned vanishing result.
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Part 1. Calabi invariant and basic phase function

2. Calabi homomorphism Cal”™" on the path space
2.1. Hamiltonian topology and Hamiltonian homotopy

In [18], Miiller and the author introduced the notion of Hamiltonian topology

on the space
Pham(Symp(M, w), id)

of Hamiltonian paths X : [0,1] — Symp(M,w) with A\(¢) = ¢%; for some time-
dependent Hamiltonian H. We would like to emphasize that we do not assume
that H is normalized unless otherwise said explicitly. This is because we need
to consider both compactly supported and mean-normalized Hamiltonians and
suitably transform one to the other in the course of the proof of the main
theorem of this paper.

We first recall the definition of this Hamiltonian topology.

We start with the case of closed (M,w). For a given continuous function
h: M — R, we denote

osc(h) = maxh — min h.
We define the C-distance d on Homeo(M) by the symmetrized C-distance
(¢, v) = max {dco(, ), deo (67,071}
and the C%-distance, again denoted by d, on
Pham(Symp(M, w),id) C P(Homeo(M),id)
by

d(\, p) = Dax d(A (), (1))

The Hofer length of Hamiltonian path A = ¢g is defined by

1
leng(\) = / osc(Hy)dt = || H||.
0
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Following the notations of [18], we denote by ¢5 the Hamiltonian path
bt — ¢hy; [0,1] — Ham(M, w)

and by Dev()) the associated normalized Hamiltonian

(2.1) Dev(A) :=H, \=ou,

where H is defined by

1
vol,, (M ) M

Definition 2.1. Let (M,w) be a closed symplectic manifold. Let A, u be
smooth Hamiltonian paths. The Hamiltonian topology is the metric topology
induced by the metric

(2.3) dham (N 1) == d(\, ) 4+ leng(A " ).

Now we recall the notion of topological Hamiltonian flows and Hamiltonian
homeomorphisms introduced in [18].

(2.2) H(t,x) = H(t,xz) — H(t,z)w™.

Definition 2.2 (L(1:*°) topological Hamiltonian flow). A continuous map \ :
R — Homeo(M) is called a topological Hamiltonian flow if there exists a
sequence of smooth Hamiltonians H; : R x M — R satisfying the following:

(1) ¢u, — X locally uniformly on R x M.
(2) the sequence H; is Cauchy in the L(1°)-topology locally in time and
so has a limit H, lying in L(">) on any compact interval [a, b].
We call any such ¢p, or H; an approximating sequence of \. We call a contin-
uous path A : [a,b] = Homeo(M) a topological Hamiltonian path if it satisfies
the same conditions with R replaced by [a,b], and the limit L(>)-function
H called a L% topological Hamiltonian or just a topological Hamiltonian.

Following the notations from [18], we denote by Sympeo(M,w) the closure of
Symp(M,w) in Homeo(M) with respect to the C%-metric d, and by H,, ([0, 1] x
M, R) the set of mean-normalized topological Hamiltonians, and by

(2.4) evy : P{Zf{?(Sympeo(M,w), id) — Sympeo(M,w),id)

the evaluation map defined by evi(A) = A(1). By the uniqueness theorem of
Buhovsky-Seyfaddini [2], we can extend the map Dev given in (2.1) to

Dev : P (Sympeo(M, w), id) — Hy ([0,1] x M, R)

in an obvious way. Following the notation of [13, 18], we denote the topological
Hamiltonian path A = ¢y when Dev()\) = H in this general context.

Definition 2.3 (Hamiltonian homeomorphism group). We define
Hameo(M,w) = ev; (P{é‘f{?(Sympeo(M,w), zd))

and call any element therein a Hamiltonian homeomorphism.
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The group property and its normality in Sympeo(M,w) are proved in [18].
Theorem 2.4 ([18]). Let (M,w) be a closed symplectic manifold. Then
Hameo(M, w)
is a normal subgroup of Sympeo(M,w).
Especially when dim ¥ = 2, we have a smoothing result
(2.5) Sympeo(%, w) = Homeo (%)

of area-preserving homeomorphisms by area-preserving diffeomorphisms (see
[11], [21] for a proof). Therefore combining this with the above theorem, we
obtain the following corollary, which is the starting point of our research to
apply continuous Hamiltonian dynamics to the study of the simpleness question
of the area-preserving homeomorphism group of D? (or S?).

Corollary 2.5. Let 3 be a compact surface with or without boundary and let
Q be an area form of 3, which we also regard as a symplectic form w = .
Then Hameo(M,w) is a normal subgroup of Homeo® ().

Both results have their counterparts even when OM # (). We refer to the
discussion below at the end of this subsection.

Next we consider the notion of homotopy in this topological Hamiltonian
category. The following notion of Hamiltonian homotopy, which we abbreviate
as hameotopy, of topological Hamiltonian paths is introduced in [14, 16]. The
guiding principle for the choice of this as the definition of homotopy in this
topological Hamiltonian category is to include the Alexander isotopy we define
in Section 3 as a special case.

Definition 2.6 (Hameotopy). Let Ao, A1 € P (Sympeo(M,w),id). A ham-
eotopy A : [0, 1] — Sympeo(M,w) between \g and \; based at the identity is
a map such that

(26) A(Oa t) = /\O(t)v A(]-a t) = /\1 (t)v
and A(s,0) = id for all s € [0, 1], and which arises as follows: there is a sequence
of smooth maps A; : [0,1]> — Ham(M, w) that satisfy
(1) Aj(s,0) = id,
(2) A; — A in C%topology,
(3) Any s-section A, s : {s}x[0,1] — Ham(M,w) converges in Hamiltonian
topology in the following sense: If we write
Dev (AjysAj_’Ol) =: H;(s),
then H;(s) converges in Hamiltonian topology uniformly over s € [0, 1].
We call any such A; an approzimating sequence of A.

When A\o(1) = A (1) = 4, a hameotopy relative to the ends is one that
satisfies A(s,0) =1id, A(s,1) = for all s € [0,1] in addition.
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We say that \g, Ay € P (Sympeo(M,w),id) are hameotopic (resp. rela-
tive to the ends), if there exists a hameotopy (resp. a hameotopy relative to
the ends).

We emphasize that by the requirement (3),
(2.7) H;(0)=0

in this definition.

All the above definitions can be modified to handle the case of open mani-
folds, either noncompact or compact with boundary, by considering H’s com-
pactly supported in the interior as done in Section 6 [18]. We recall the def-
initions of topological Hamiltonian paths and Hamiltonian homeomorphisms
supported in an open subset U C M from [18].

We define P (Sympy (M, w),id) to be the set of smooth Hamiltonian
paths supported in U. The following definition is taken from Definition 6.2
[18] to which we refer readers for more detailed discussions. First for any open
subset V' C U with compact closure V C U, we can define a completion of
Pham(Sympy(M, w), id) using the same metric given above.

Definition 2.7. Let U C M be an open subset. Define P"*™(Sympeoy (M, w),
td) to be the union

Pham(Sympeoy (M, w), id) = U Pham(Sympeor (M, w), id)
KcCU
with the direct limit topology, where K C U is a compact subset. We define
Hameo.(U,w) to be the image
Hameo,(U,w) := evy (P"™(Sympeoy (M, w), id)).

We would like to emphasize that this set is not necessarily the same as
the set of A € P"™(Sympeo(M,w),id) with compact supp A C U. The same
definition can be applied to general open manifolds or manifolds with boundary.

2.2. Calabi invariants of topological Hamiltonian paths in D?

Denote by P"™(Symp(D?,0D?);id) the group of Hamiltonian paths sup-
ported in Int(D?), i.e.,

U supp H; C Int(D?).
te[0,1]

We denote by P (Sympeo(D?,0D?),id) the L(1:>°) Hamiltonian completion
of Pham(Symp(D?,0D?);id).

We recall the extended Calabi homomorphism defined in [13] whose well-
definedness follows from the uniqueness theorem from [2].

Definition 2.8. Let A € P"™(Sympeo(D? 0D?),id) and H be its Hamilton-
ian supported in Int D?. We define

——path

Cal’™ (\) = Calys" (\) := Cal(H),
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where we define Cal(H) = lim;_,, Cal(H;) for an (and so any) approximating
sequence H; of H.

It is immediate to check that this defines a homomorphism. The main
question to be answered is whether this homomorphism descends to the group
Hameo(D?, dD?). We recall that two crucial ingredients needed in the proof of
well-definedness of this form of the Calabi invariant defined on Diff’(D?, 9 D?)
of area-preserving diffeomorphisms is the fact that Diff*(D? dD?) = Ham(D?,
OD?) and that it is contractible. In this regard, we would like to prove the
following conjecture.

Conjecture 2.9. Let A be a contractible topological Hamiltonian loop based at

the identity. Then
——path

Cal”™"™" () = 0.

In the next section, we will establish the existence of Alexander isotopy in
the topological Hamiltonian category and prove that any topological Hamil-
tonian loop (based at the identity) on D? is indeed contractible and so the
contractibility hypothesis in this conjecture automatically holds.

By the homomorphism property of @”‘“h, an immediate corollary of this
conjecture would be the following: Suppose that Conjecture 2.9 holds. Let

——path

Cal . Pham(Sympeo(D?, 0D?), id) — R

be the above extension of the Calabi homomorphism Cal?®" such that Ao(1) =

A1(1). Then we have
—path( ——path

Cal )\0) = Cal ()\1)

In the next section, we will elaborate this point further.

3. Alexander isotopy of loops in P"*™(Sympeo(D?,0D?),id)

For the description of Alexander isotopy, we need to consider the conjugate
action of rescaling maps of D?
R, : D*(1) — D?*(a) C D*(1)

for 0 < a < 1 on Hameo(D?,dD?), where D?(a) is the disc of radius a with its
center at the origin. We note that R, is a conformally symplectic map and so
its conjugate action maps a symplectic map to a symplectic map whenever it
is defined.

Furthermore the right composition by R, defines a map

¢+ ¢o R, ; Hameo(D?(a),0D?*(a)) C Hameo(D?, dD?) — Homeo(D?,dD?)

and then the left composition by R, followed by extension to the identity on
D?\ D?(a) defines a map

Hameo(D?,9D?) — Hameo(D?, dD?).



AREA-PRESERVING HOMEOMOPHISM GROUP OF D? 807

We have the following important formula for the behavior of Calabi invariants
under the Alexander isotopy.

Lemma 3.1. Let A € Ph™(Sympeo(D? 0D?),id) be a given continuous
Hamiltonian path on D?. Suppose supp A C D?(1 —n) for a sufficiently small
n > 0. Consider the one-parameter family of maps A, defined by

Aaltyz) = {a)\(t, =) for |z| < a(1 —n)

T otherwise

for 0 < a < 1. Then )\, is also a topological Hamiltonian path on D? and
satisfies

(3.1) Cal™™ (Ao = a*Tal™™ (V).

Proof. A straightforward calculation proves that A, is generated by the (unique)
continuous Hamiltonian, which we denote by Dev(}\,) following the notation
of [18, 13], which is defined by

a?H (t,%) for |z| < a(1 —n)

0 otherwise,

(3.2) Dev(\,)(t,z) = {

where H = Dev(A) : Obviously the right hand side function is the Hamiltonian-
limit of Dev(\; ) for a sequence \; of smooth Hamiltonian approximation of
A where )\; , is defined by the same formula for A;.
From these, we derive the formula
——path

Cal”™™(\s) = lim Cal?*™ (), ,)

i—00
1
=a* lim / Hi(t,y)Q A dt
11— 00 0 D2
———path

= a* lim Cal?®™()\;) = a*Cal”" " ()).

71— 00

This proves (3.1). O

We would like to emphasize that the s-Hamiltonian Fa of A(s,t) = AL does
not converge in L(1:>)-topology and so we cannot define its Hamiltonian limit.
Explanation of this relationship is now in order in the following remark.

Remark 3.2. Let D?™ C R?™ be the unit ball. Consider a smooth Hamiltonian
H with supp ¢ C Int D?™ C R?" and its Alexander isotopy

A(Svt):(ﬁsqs :)\s(t)a >‘:¢H

Denote by Hy and K, the t-Hamiltonian and the s-Hamiltonian respectively.
Then we have Banyaga’s formula 22 = %—If — {H, K} which is equivalent to

ds
the formula

OK 0
(3.3) E:g(HO(bts)o( be)
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(See p. 78 [10] for its derivation, for example.) But we compute

H; o ¢y (x) = s*Hy <M> =s°H (t, @) .

S

Therefore we derive
(3.4)

K(s,t,x)

- QS/OtH(uf) du—i—s/ot<(dﬁ (uw)) ,(¢1,33)1(x)> du.

For the second summand, we use the identity H(t,z) = —H (t, % (z)). From
this expression, we note that K involves differentiating the Hamiltonian H and
hence goes out of the L(1>) Hamiltonian category.

Recall that the well-known Alexander isotopy on the disc D? exists in the
homeomorphism category but not in the differentiable category. We will estab-
lish that such an Alexander isotopy defines contractions of topological Hamil-
tonian loops to the identity constant loop in the topological Hamiltonian cat-

egory.

Theorem 3.3. Let \ be a loop in P (Sympeo(D?,0D?),id). Define A :
[0,1]2 — Sympeo(D?,0D?) by

A(s,t) = Xs(2).
Then A is a hameotopy between A\ and the constant path id.

Proof. We have A € Phe™(Sympeo(D?,0D?),id) with A(0) = A(1). Then A,
defines a loop contained in P"*™(Sympeo(D?, 0D?),id) for each 0 < s < 1.
Let H; be an approximating sequence of the topological Hamiltonian loop A.

We fix a sequence ¢; \, 0 and define a 2-parameter Hamiltonian family A; .,
defined by

(3.5) Nic,(5,) == Ni oy (&) 0 AL (2, ),

where x; : [0,1] = [e;, 1] is a monotonically increasing surjective function with
Xi(t) = e;near t = 0, x;(1) = 1 near t = 1, and x; — idjp 1] in the Hamiltonian
norm (see Definition 3.19 and Lemma 3.20 [18] for this fact). It follows that
the sequence A; ¢, is smooth and uniformly converges in Hamiltonian topology
as i — oo over s € [0,1] and Af_ (1) — A(t) since the Alexander isotopy
is smooth as long as s > 0 and by definition A;., involves the Alexander
isotopy for s > ¢; > 0. The convergence immediately follows from the explicit
expression of A\, in Lemma 3.1.
Finally we need to check

(3.6) | Dev(Aie,(s,-)) —Dev(Ajc,(s,-)]| =0
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uniformly over s € [0,1] as 4, j — co. For this, we apply the standard formula
of Dev for the composed flow,

Dev(Au™")(t, ) = Dev(A)(t, ) — Dev(p)(t, ju;  (x))

to A, 1= N yus(t,-) 0 )\;81 (t,-), which amounts to the more familiar formula
(H#G); = H; — Gy 0 ¢4, (¢l;) ! in the literature. Then we get

(3.7)

Dev(Aie,(s,))(t,x) = Dev(Ai y, (o) () = Dev(Xie, ) (6, X, 0 (Af )~ (2)),

X

where

Dev( Xy, () (t,x) = {Xi(S)QHi(t, o) for |zl < xi(s)(1 —n)

otherwise

and
2H(t, & f <ei(l—
Dev(y, e )(tx) = 4 0 T2 for ] = <t =)
’ 0 otherwise.

From these expressions, (3.6) immediately follows. This finishes the proof. [

Corollary 3.4. If Ao, A1 € P"@™(Sympeo(D?,0D?),id) and \o(1) = A1 (1),

then they are hameotopic relative to the end.

Proof. Theorem 3.3 implies that the standard Alexander isotopy given in
Lemma 3.1 is a hameotopy contracting any topological Hamiltonian loop to the
identity in P"™(Sympeo(D?,0D?),id) with ends points fixed. This proves
that the product loop /\0/\fl, which is based at the identity, is contractible
via a hameotopy relative to the ends. Then this implies that Ay and \; are
hameotopic to each other relative to the ends. (I

An immediate consequence of Corollary 3.4 is the following.
Proposition 3.5. Suppose Conjecture 2.9 holds. Then we have
mpath()\o) _ mpath()\l)
if Mo, A1 € PR (Sympeo(D?,0D?),id) and \o(1) = A1 (1).

——path
This theorem implies that Cal’™"" restricted to Phem (Sympeo(D?,0D?), id)
depends only on the final point and so gives rise to the following main theorem
on the extension of Calabi homomorphism.

Theorem 3.6. Suppose Conjecture 2.9 holds. Define a map
Cal : Hameo(D?, 0D?) — R

by
Cal(g) := Cal™" ()



810 YONG-GEUN OH

for a (and so any) A € Pha™(Sympeo(D?,D?),id) with g = \(1). Then this is
well-defined and extends the Calabi homomorphism Cal : DiHQ(DQ, oD?) - R
to

Cal : Hameo(D?,0D?) — R.

Once this theorem is established, nonsimpleness of Hameo(D?, dD?) imme-
diately follows from Conjecture 2.9. (See [13] for the needed argument.)

4. Reduction to the engulfed case and its Lagrangianization

In this section, we reduce the proof of Conjecture 2.9 to the engulfed topo-
logical Hamiltonian loops on S2. Using the given identification of D? as the
upper hemi-sphere denoted by Di, we can embed

T PP (Symp(D?, 0D?); id) — P (Symp(S?);id)

by extending any element ¢g € P"*™(Symp(D?,dD?);id) to the one that is
identity on the lower hemisphere D? by setting H = 0 thereon.
We first recall the definition of engulfed Hamiltonians from [16].

Definition 4.1. Let (M, w) be a symplectic manifold. Let a Darboux-Weinstein
chart

O VCT'A—-UaC(MxMwd-—w)

be given. We call U a Darboux-Weinstein neighborhood of the diagonal with
respect to ®. In general we call a neighborhood Ua of the diagonal a Darbouz-
Weinstein neighborhood if it is the image of a Darboux-Weinstein chart.

With this preparation, we are ready to recall the following definition from
[16].

Definition 4.2. (1) An isotopy of Lagrangian submanifold {L;}o<s<1 of
L is called V-engulfed if there exists a Darboux neighborhood V of L
such that Ly C V for all s. When we do not specify V', we just call the
isotopy engulfed.

(2) We call a (topological) Hamiltonian path ¢z U-engulfed if its graph
Graph ¢!, is engulfed in a Darboux-Weinstein neighborhood U of the
diagonal A of (M x M,w & —w).

Now let A\ = ¢ be a contractible topological Hamiltonian loop contained
in Phem(Sympeo(D?,0D?),id) and A = {A(s)}sep0,1] @ given hameotopy con-
tracting the loop.

Let A € PM™(Sympeo(D?,0D?),id) and consider its extension t*()\) as an
element in P"*™(Sympeop+ (S?),id) obtained via the embedding :*. Denote
by D'(T*S?) the unit cotangent bundle and by A the anti-diagonal

A ={(z,7) € §? x §? | v € S?}.
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Then it is well-known that the geodesic flow of the standard metric on S?
induces a symplectic diffeomorphism

(4.1) ®: DHT*S?) — S? x S*\ A,
where T is the involution along a (fixed) equator. We regard the image U =

2 x 2\ A as a Darboux-Weinstein neighborhood of the diagonal A € S? x S2.
It is then easy to see the following:

Lemma 4.3. Let A\ € P"*™(Sympeo(D?,0D?),id) and denote by \* = 1T(\)
€ Pham(Sympeop+ (S?),id) constructed as above. Then

(A xid)(A)NA = 0.
In particular, the path A% is U-engulfed.

Motivated by the above discussion, we will always consider only the engulfed
case in the rest of the paper, unless otherwise said.

Now let F' : [0,1] x M — R be a mean normalized engulfed Hamiltonian
on a closed symplectic manifold (M,w). The manifold M carries a natural
Liouville measure induced by w™. Consider the diagonal Lagrangian A C
(M x M,w @& —w) identified with the zero section oo C T*A in a Darboux
chart (Va,—d®©) of A in M x M. Put a density pa on A C M x M induced

by w™ by the diffeomorphism of the second projection 75 : A — M.
We fix Darboux neighborhoods

VACVACUA

and let w @ —w = —dO on Ua regarded as a neighborhood of the zero section
of T*A once and for all. Then

Graph ¢t C Va for all t € [0, 1].
Here we define

Graph ¢ := {(¢p(y).y) | y € M}.
We consider the Hamiltonian 77 F, i.e., the one defined by

T‘-TF(t’ (‘Tay)) = F(tax)

on T*A. This itself is not supported in Ua but we can multiply a cut-off
function x of Ua so that

x=1 on VA, suppyxy C Ua
and consider the function F defined by
F(t, (z,y)) = x(z,y)m F(t, (z,y)) = x(2,y)F(t, 2)
so that the associated Hamiltonian deformations of *(oy) are unchanged.

We note that F is compactly supported in T*A and automatically satisfies the
normalization condition

(4.2) /A F(t, ¢ (q)) pa = 0
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for all ¢ € [0, 1] where pa is the measure on A induced by the Liouville measure
on M under the projection mo : A C M x M — M.

Now we denote by fr the basic phase function of Graph ¢k = ¢i(oa). In
the next section, we will examine the relationship between this function and
the Calabi invariant of F'.

5. Basic phase function fy and its axioms

In this section, we first recall the definition of basic phase function con-
structed in [9] and summarize its axiomatic properties. Following the termi-
nology of [19], we first introduce the following definition.

Definition 5.1. Let L € T*N be a Hamiltonian deformation of the zero
section on. We call any continuous function f : N — R a graph selector such
that

(9 df(a)) € L,
where df (¢) exists.

Existence of such a single-valued continuous function was proved by Sikorav,
Chaperon [4] by the generating function method and by the author [9] using the
Lagrangian Floer theory. Lipschitz continuity of this particular graph selector
follows from the continuity result established in Section 6 [9] specialized to the
submanifold S to be a point. The detail of another proof of this Lipschitz
continuity is also given in [19] using the generating function techniques.

We denote by Sing f the set of non-differentiable points of f. Then by
definition

No =Reg f := N\ Sing f
is a subset of full measure and f is differentiable thereon. In fact, for a generic
choice of L = ¢}, (on), No is open and dense and Sing f is a stratified subman-
ifold of N of codimension at lease 1. (See [17] for its proof.)

By definition,

(5.1) ldf (q)| < max Ip(z)]

for any ¢ € Ny, where 2 = (¢(x), p(z)) and the norm |p(z)| is measured by any
given Riemannian metric on N.

The following is an immediate corollary of the definition. We denote by dg
the Hausdorff distance.

Corollary 5.2. As du(¢k(on),on) — 0, |df(q)] — 0 uniformly over q € No.

However this result itself does not tell us much about the convergence of
the values of the function f itself because a priori the value of f might not be
bounded for a sequence H; such that dy (¢}, (on),on) — 0.

In [9], a canonical choice of f is constructed via the chain level Floer theory,
provided the generating Hamiltonian H of L = ¢} (on) is given. The author
called the corresponding graph selector f the basic phase function of L =



AREA-PRESERVING HOMEOMOPHISM GROUP OF D? 813

¢}, (on) and denoted it by fm. We give a quick outline of the construction
referring the readers to [9] for the full details of the construction.
Consider the Lagrangian pair

(on,TyN), qe&N
and its associated Floer complex CF(H;on, TyN ) generated by the Hamilton-
ian trajectory z : [0,1] = T*N satisfying
(5.2) 2= Xpu(t 2(t), =2(0)€on,2(1)€T,N.
Denote by Chord(H; on, Ty N) the set of solutions. The differential 0z, ;) on

CF(H;on, TyN ) is provided by the moduli space of solutions of the perturbed
Cauchy-Riemann equation

69 o + 9 (51 = X)) =0
u(7,0) € on, u(r,1) € Ty N.

An element a € CF(H;on, T,y N) is expressed as a finite sum
a= Z a.lz], a,€Z.
z€Chord(H;on, T} N)
We denote the level of the chain « by
Ag(a) = max {A%(2)}.

zESsupp «

The resulting invariant p'®9(H;[q]) is to be defined by the mini-max value
pl*(H;g)) = inf Ag(a),
a€ld]

where [g] is a generator of the homology group H F'(on, Ty N) = Z.

A priori, p'9(H;[q]) is defined when ¢}, (oy) intersects T;"N transversely
but can be extended to non-transversal ¢’s by continuity. By varying ¢ € NV,
this defines a function fy : N — R which is precisely the one called the basic
phase function in [9].

Proposition 5.3 (Section 7 [9]). There exists a solution z : [0,1] — T*N of
2= X(t,2) such that 2(0) = q, 2(1) € oy and A% (z) = p'*9(H;{q}) whether
or not ¢ (on) intersects TN transversely.

We summarize the main properties of fg established in [9].

Proposition 5.4 (Theorem 9.1 [9]). When the Hamiltonian H = H(t,x) such
that L = ¢k (on) is given, there is a canonical lift fy defined by fu(q) :=
p'%9(H; {pt}) that satisfies

(5.4) fuom(z) = hu(x) = Af ()

for some Hamiltonian chord zH ending at x € TyN. This fu satisfies the
following property in addition

(5.5) | frr = frrlloo < [|H — H'|.
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An immediate corollary of this proposition is the following proved in [9, 15].
Corollary 5.5. If H; converges in L) then fu, converges uniformly.

Remark 5.6. We would like to emphasize that there is no such C°-control of
the basic generating function Ay even when H — 0 in Hamiltonian topology.

Based on the above proposition, we define:

Definition 5.7. Denote by H* the Hamiltonian generating the rescaled isotopy
t — @9 for a > 0. For any given topological Hamiltonian H = H(t,x), we
define its timewise basic phase function by

(5.6) £ (t,2) = lim iz (@)
for any approximation sequence H; of H.

We will always denote a parametric version in bold-faced letters.

We note that the basic generating function hp, could behave wildly as a
whole. But Proposition 5.4 shows that hp, restricted to the basic Lagrangian
selector converges nicely. Note that 7y = 7., : Ly = ¢4 (on) — N is
surjective for all H and so 7r;11 (¢9) C on is a non-empty compact subset of
oy = N. Therefore we can regard the ‘inverse’ 7r;11 :N — Ly C T*N as an
everywhere defined multivalued section of 7 : T*N — N.

We introduce the following general definition.

Definition 5.8. Let L € T*N be a Lagrangian submanifold projecting sur-
jectively to N. We call a single-valued section o of T* N with values lying in L
a Lagrangian selector of L.

Once the graph selector fy of Ly is picked out, it provides a natural La-
grangian selector defined by

on(q) := Choice{z € Ly | 7(x) = q, A7 (22') = fu(q)}
via the axiom of choice where Choice is a choice function. It satisfies

(5.7) on(q) = dfu(q)

whenever dfr(q) is defined. We call this particular Lagrangian selector of Ly
the basic Lagrangian selector. The general structure theorem of the wave front
(see [5], [19] for example) proves that the section oy is a differentiable map on
a set of full measure for a generic choice of H which is, however, not necessarily
continuous: This is because as long as ¢ € N \ Sing fy, we can choose a small
open neighborhood of U C N \ Sing fy of g and V C Ly = ¢4 (on) of z € V
with 7(z) = ¢ so that the projection 7|y : V — U is a diffeomorphism.
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6. Calabi homomorphism and basic phase function

Suppose F' is a topological Hamiltonian and F; its approximating sequence
and define F; and [F as in Section 4.

We first prove the following general theorem in arbitrary dimension. We
recall that fr, converges to fr uniformly.

Theorem 6.1. Let A = ¢ be any contractible topological Hamiltonian loop in
Pham(Sympeoy (M,w),id) and with U = M \ B where B is a closed subset of
nonempty interior. Choose an approximating sequence F;. Denote by

1
Gmm:/ /FWﬁ
0 M

for the Liouwville measure associated to w. Then

Cal(F)

6.1 = —

(61) fola) = S

forallx e M.

Proof. Let F; = Dev(¢p,) which is given by
Fi(t,x) = Fi(t, x) — ci(t),

where

1
i(t) = ——F—= Fi(t, w-
ci(t) Volw(M)/M (t,)
Then we have

(6.2) Fi(t,z) = —ci(t)

and so . .
CalU (E)
Fi(t,z)dt = — () dt = ——— Y
| By == [Cawa - -SR00
for all x € B.

Since F; is an approximating sequence of topological Hamiltonian F', it fol-
lows F; — F in L) _topology. Therefore applying (5.5) to H = F; and
H’' = 0 and using the convergence ||F' — F;|| — 0 as ¢ — oo, we obtain the
inequality

1
fel P+ 5

for all sufficiently large i’s.

Here now enters in a crucial way the fact that ¢ generates a topological
Hamiltonian loop, not just a path. Together with the Lipschitz property of fr,
and the inequality (see (5.1))

|dfe,| < d(p,, id) =0,
it immediately follows from the co-area formula (see Theorem 1 of Section 3.4.2

[6], for example) that we can choose a subsequence, again denoted by Fj, so
that fr, — ¢ uniformly for some constant c.
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Cal(F)
vol, (M)~
Denote K = supp F' which is a compact subset of U = M \ B. We now recall
the definition of Hamiltonian topology on noncompact manifolds, Definition
2.7. By definition, there exists 6 > 0 such that
supp F; CInt K(1+6/2) C K(1+9) C U,

where K (1+0) is the (closed) é-neighborhood of K for all sufficiently large i’s.
In particular,
(6.3) B(1+46/2)c M\ K(1+44/2).

For any such i’s, we also have

F;, =0, %izid

Therefore it remains to show that this constant is indeed the value

on B(1+ %). In particular,
Graph F; NA D Ap(yys).

Therefore the same properties stated above as for F; still hold for F; except
the values thereof on B are changed to —c;(t).

Let q € Ap be any point in its interior. By the spectrality of the values
of fr,(q) (Theorem 5.3 [17]), there is a point x € T43A N Graph ¢y, such that
(¢,) ' (x) € 0a and

c F;
fri(a) = A% ().
We denote (8},) (%) = (¢',¢).
Because of this, qﬁ};i — id as i — oo by definition of the approximating
sequence F; of F. Combining this with q = (¢,¢) € Int Ap, 7a(x) = q, we

derive
d((¢%,) " (%), %), d(x,7a (%)) <

for all sufficiently large i’s. Then d((¢},)~'(x), (¢,q)) < §. Since F;(t,x) =
Fi(t,x) for x = (x,y), the associated Hamiltonian trajectory 2= has the form
(¢, (¢). ') where (¢3,)7"(x) = (¢',¢'). But d(¢,¢') < § and hence ¢ €
M\ B(1+6) C K(14%). (We refer to the proof of Lemma 7.5 [17] for a similar
argument used for a similar purpose.)

Therefore ¢% (¢') = ¢ for all ¢ € [0,1]. This proves that 2X must be the
constant trajectory 2% (t) = q. Then we compute its action value

fru(a) = A% (zx)
e [ G
= /O Fi(t,q) dt = /0 Ei(t.q)dt /0 it dt =200

Since F; — F in L(:*)-topology and supp ¢F,, supp ¢r C U, it also follows

Caly (F;) — Caly(F') as i — oco. This proves indeed fr, = ?:((A};g O

= >
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An examination of the argument at the end of the proof leading to the
Caly (F)
voly, (M)

convergence gb};i — id enters is because we need for the projection 7a (x) to
lie outside supp F; to get the required identification. This needed property
automatically holds for the projection Un — A with B = D? of the canon-
ical Darboux-Weinstein neighborhood obtained through the embedding (4.1)
in Section 4. This is because under this embedding the projection mwa (x,y) is
nothing but the mid-point projection of (x, y) along the geodesic connecting the
points z, y € S2. Since the upper hemisphere Di C S? is geodesically convex,
wa(z,y) is always contained in Int Di whenever z, y € Int Di. In particular
7a(95,(¢),¢) € Int Apz forall t € [0,1] if ¢ € Int D% and hence the point
7a(x) = 7a (¢, (¢'), ¢') cannot be projected to a point (¢, q) with ¢ € B = D?
irrespective of the convergence qﬁ};i — 1d. This eliminates the above somewhat
subtle argument for the case of our main interest. An implication of this con-
sideration leads to the following stronger result for this case in that it applies
to an arbitrary path not just to loops.

identification of the constant with the shows that the reason why the

Theorem 6.2. Let A = ¢p be any topological Hamiltonian path supported in
Int D%. Denote by F the associated Hamiltonian on D*(T*Ag2) = S? x S?\ Ag2
constructed as before (via the embedding (4.1)). Then

_ Cal(F)

fE(q) - VOl(SQ)

for allq € Ap2 .

Of course, in this case, fg will not be constant on A p? in general.

7. Extension of Calabi homomorphism

We recall from the definition of P"*™(Sympy (M, w),id) with U = M \ B
that if ¢ € Ph™(Sympy (M, w),id), then there exists a 2-parameter Hamil-
tonian H = H(s,t,x) such that qﬁ’}{(S) =idand H=0on B= M\U for a
nonempty open subset of M. In particular, we have H(s) = ¢(s) on B with

(5) = —
o voly, (M) Jus
Engulfedness of H enables us to do computations on a Darboux-Weinstein
neighborhood VA of the diagonal A C M x M, which we regard either as a
subset of M x M or that of T*A depending on the given circumstances. At
the end, we will apply the computations to the given approximating sequence
of hameotopy of contractible topological Hamiltonian loop.
Now we further specialize to the case of our main interest D?. We embed D?
into S? as the upper hemisphere Di and denote B = D? , the lower hemisphere.
The following is the main conjecture to beat which was originally proposed
in [15]. This is the only place where the restriction to the two-disc D? is needed,

H(s)w.
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but we expect the same vanishing result hold for higher dimensional disc D?"
or even for general pair (M, B), which is a subject of future study.

Conjecture 7.1. Assume M = S? and B = D? be the lower hemisphere as

above. Let A = {(bﬁq( } be a hameotopy contracting a topological
) J (s,t)el0,1]2

Hamiltonian loop ¢p with F = H(1) such that qﬁllq(s) = qﬁfq(o) = id for all
t, s €[0,1].
Let fg be the limit basic phase function defined by fr = lim; o0 fr,. Then
fr=0.
Combining Theorem 6.1 and Conjecture 7.1, we now prove the following.

Theorem 7.2. Suppose Conjecture 7.1 holds. Then the homomorphism

Cal™™" . Pham(Sympeo(D?,0D?),id) — R

descends to a homomorphism
Cal : Hameo(D?,0D?) — R
which restricts to Cal : Ham(D? 0D?) — R.

Proof. Let ¢ € Hameo(D?,dD?). We will show that for any topological Hamil-
tonian paths A, N with A(1) = V(1) = ¢, Cal'"""(\) = Cal’"™(\). By the
homomorphism property, it is enough to prove @path()\_l)\’ ) = 0. But we
have A71(0)N'(0) = A~Y(1)N (1)) = id, i.e., the path A=)\ defines a topo-
logical Hamiltonian loop based at the identity. Therefore Conjecture 7.1 and
Theorem 6.2 imply Cal™™" (A7) =0.

Then the theorem follows by defining Cal : Hameo(D?,9D?) — R to be

Cal(g) = Cal™™" (\)
for a (and so any) topological Hamiltonian path A with A(1) = ¢. O

Therefore we have proved:

So the main remaining task is to prove Conjecture 7.1 which will prove all
the conjectures stated in the present paper. In the next section, we will prove
the conjecture for the weakly graphical topological Hamiltonian loop on the
disc.

Part 2. Weakly graphical topological Hamiltonian loops on D?

8. Geometry of graphical symplectic diffeomorphisms in
2-dimension

We start with the following definition in general dimension.

Definition 8.1. Let ¥ : Un — V be a Darboux-Weinstein chart of the diagonal
A CMx M and wa : Un — A the associated projection.
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(1) We call an engulfed symplectic diffeomorphism ¢ : M — M U-graphical
if the projection ma is one-one, and an engulfed symplectic isotopy {¢*}
W-graphical if each element ¢' W-graphical. We call a Hamiltonian
F = F(t,z) V-graphical if its associated Hamiltonian isotopy ¢ W-
graphical.

(2) We call a topological Hamiltonian loop F' is strongly (resp. weakly)
W-graphical, if it allows an approximating sequence F; each element of
which is W-graphical (resp. whose time-one map qﬁ};i is W-graphical).

Denote by F the time-dependent Hamiltonian generating the path ¢ — ¢%.
The statement (2) of this definition is equivalent to saying that each F is
W-graphical for a € [0,1]. We remark that any symplectic diffeomorphisms
sufficiently C'-close to the identity is graphical, but not every C%-close one.

In the rest of this section, we restrict ourselves to the two dimensional case.

We identify U, x U, — T*A by the explicit linear coordinate changes

_q+Q _p+P

(81) a1 9 q2 Tv b2 :qua b1 :Pipv

where (Q, P) = (Q, P) om; and (¢,p) = (Q, P) o 7o in this Darboux-Weinstein
chart. (We note that this chart can be chosen globally on D?2.) Then we have

P2 P2
Q=a1— 7, ¢=a+ -

(82) 1321 131
PZQzﬂL?, P=a—
In short, we write
1. 1.
v=(QP)=a+gjp, y=(ep)=a-5jp,

where j : R2 x R2 is the linear map given by j(p1,p2) = (—p2, P1)-

In dimension 2, we prove the following interesting phenomenon. Although
we have not checked it, it is unlikely that similar phenomenon occurs in higher
dimensions. This theorem has its own interest. The theorem itself will not be
used in the proofs of main results of the present paper except that the same
kind of the proof will be used later in the proof of Proposition 9.1.

Theorem 8.2. Suppose ¢ : M — M 1is a V-graphical symplectic diffeomor-
phism and let Graph ¢ = Image v, for a closed one-form ag on A. Then for
any 0 < r <1, the projection o : M x M — M restricts to a one-one map to
Imageray C M x M. In particular

(8.3) Imager ay = Graph ¢,
for some symplectic diffeomorphism ¢ : M — M for each 0 < r < 1.

Proof. We have only to prove the map

(8.4) qu—gﬂ%M)
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is one-one. This is because it is the composition of the maps
A — Imageay; q+— (q,7as(q))

and the projection 7 : Imager ay — M where the first map is a bijective map.
Denote this map by ¥,..

Since the map 1, has degree 1, it will be enough to prove that it is an im-
mersion since the latter will imply that the map must be a covering projection.
Therefore we need to prove that the derivative

dib(q) = I - 5j Vay(a)

is invertible for all g and 0 < r < 1. Here Vo, is the covariant derivative of
the one-form ay with respect to the flat affine connection V. We regard it as
a section of Hom(T'A,T*A), i.e., a bundle map

Vag: TA = T*A.
Lemma 8.3. At each point q € A, the linear map
V:ive= Vyas
is a symmetric operator, i.e., it satisfies
(8.5) (Vyag, w) = (Vyag,v)
for all v, w € TqA at any q € A.

Proof. This immediately follows from the fact that any closed one-form can be
locally written as a = df for some function on A. Then Vo, = D? fs which
is the Hessian of the function f, which is obviously symmetric. O

We first prove the following general result on the set of 2 x 2 symmetric
matrices.

Lemma 8.4. Let A be a 2 x 2 symmetric matriz. Then
(8.6) det(I —rjA) >0
for all r € [0,1], provided it holds at r = 1, i.e., provided

det(I —j5A) > 0.
The same holds for the opposite inequality.
Proof. Denote A = (2). Then straightforward computation shows

ia=(0 )@= )
In particular tr(j A) = 0 and hence
det(I —jA) =1+det(j A) =1+ (ab—c?).

Therefore det(I — j A) > 0 is equivalent to

1+ (ab—c?) > 0.



AREA-PRESERVING HOMEOMOPHISM GROUP OF D2 821
For r =0, I —rj A =1 and so the inequality obviously holds. On the other
hand, if r € (0,1}, we derive
L+7%(ab—c*) >r?(1 4 (ab—c*)) >0
which finishes the proof. O

Remark 8.5. Note that if A is symmetric, then jA € sp(2) the Lie algebra of
the symplectic group Sp(2). Then the set {B € sp(2) | det(I — B) = 0} is given

by the equation
1+ (ab—c*) =0; B(c b)

—a —c
which defines a hypersurface in sp(2). If we denote
sp+(2) ={B € sp(2) | £det(I — B) > 0}

what this lemma shows that each component thereof is star-shaped centered
at I.

By the hypothesis, it follows that ¢ = ¢; is an orientation preserving dif-
feomorphism and so det di)(q) > 0. We now compute

det dyp(q) = det (I — %v%(q))

and
dr(@) = I = 5Vay(q).

By Lemma 8.4, we derive di,.(q) > 0 and so 1, is immersed for all r. This
finishes the proof of Theorem 8.2. (|

Remark 8.6. A similar proof also gives rise to the following theorem with v and
r replaced, whose proof will be omitted since it will not be used in the present
paper: Suppose ¢ : M — M is a W-graphical symplectic diffeomorphism.
Consider the family of maps ¢, : M — M defined by ¢,(y) =y + v(é(y) — y)
for v € [0,1]. Then ¢, is also U-graphical for all v, i.e., we can express

Graph ¢, = Image

for some one-form «, on A for all v.

9. Weakly graphical Hamiltonian diffeomorphism and
Alexander isotopy

The following proposition reflects some special characteristic of Alexander
isotopy relative to the general hameotopy.

Proposition 9.1. Suppose that qﬁ};i 1s W-graphical. Then ¢}~_‘¢,a defined as in
Lemma 3.1 is also V-graphical for all0 < a <1.
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Proof. The proof of this proposition is similar to that of Theorem 8.2 in its spirit
but is much simpler than it. It is enough to prove the map x, = 7a o (75*) ! :
82 — 52 is one-one since the map (75)~! : §2 — Graph th_ya is bijective. But
the map k, is given by
1
Ka(y) = 50 + OF,a(v)
in the affine chart. A straightforward computation shows

1 1 (y 3 _
dria (y) = 5(Id+dop, (%)) for y with |y| < a(1—n)
1d otherwise.

Since s is an orientation-preserving diffeomorphism and S? is compact, there
exists > 0 such that

det(dr1(y)) > >0
for all y € S?. From the expression of dr,(y), it follows dkq(y) = dr1(%) and
hence

(9.1) det(dra(y)) = det (dm(%)) >6>0

for all a € [0,1] and y € S?. This implies k, : S? — S? is an immersion and so
a covering map of degree 1. Therefore it must be a one-one map. (|

We now consider 3-chain =; parameterized by the map
Zi:[0,1]x M = T"A
defined by

9.2) =(a.0) = { (¢i(z),z) ze€D

(z,7) z e S*\ DL

We note that this chain defines the same chain as the trace Trg(¢;) of the
Alexander isotopy of the 2-disc extended to S? by the identity: it is by definition
parameterized by

Trg (¢i)(aa y) = {

(agi(¥),y)  lyl<a<1
(¥, 9) y € S?\ D% (a).

Remark 9.2. The way (9.2) of parameterizing the trace of the Alexander isotopy
as a Lagrangian chain associated, which is smooth everywhere including a = 0,
is crucial for us to establish the C%-convergence property of a-Hamiltonian of
the Alexander isotopy in the context of graphical case. See Corollary 10.4 later
in the next section. This aspect of Alexander isotopy seems to be something
new which, as far as we know, has not been utilized in the literature before.

We will fix ¢ and just write ¢ = ¢; until we need to vary i. Using the
coordinate change (8.1), we have the equalities
o)+,

(9.3) q" =a——5—,p" = —aj(é(x) - )
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on D3 which extend to the S? \ D3 by the identity map. If we parameterize
Graph ¢ by q(1,2) = ‘b(m—gﬂ and p(1,2) = —j(¢(x) — x) (using the canonical
identification of S? = Ag:), then for each given 0 < a < 1, we may use
Proposition 9.1 to parameterize the chain Z(a, -)

p(a,z) = dqg(a,q(a, 7)), q(a, z) = aq(1,z)

for (a,z) € [0,1] x S? for some continuous function g = g(a, q) which is smooth
on (0,1] x S2. More precisely, if we denote g,(q) = g(a,q), the first equation
becomes

Pi(a ) = 92 (a(a,0)). pala ) = 2 (aa,)

on D?%. Substituting g(a,z) = aq(1,z) thereinto, we obtain
99a

pi(a) = 5% (aq(1,2), pa(a2) = 52 (aa(L,2))

Substituting the last three relations into the second equation of (9.3), we obtain

aga agl
9.4 aq(l,z)) = a=——(q(l,2)), =1,2
(9.4) 8qj( q(l,z)) 7q, (a(l,z)), j
If we define a function g, by g.(q) = ga(aq), then g1 = g1 and
aga aga .
9.5 =a aq), =1, 2.
(95) @) = agit aa).

By the graphicality of ¢, it follows that the map

¢(x) +z ¢(x) + w)
2 ’ 2

x—q(l,z) = (

is a bijective map. Therefore by setting q = q(1,z) and varying z, we derive,
from (9.4) and (9.5),

99a

2
8qj

?

g .
(@) =a*50 (@), j=1
J

for all q € D3. This, combined with vanishing of g, and g1 outside D7, implies
Jo = a’q1, ie., gala’) =a’g.

Proposition 9.3. Let g, : Ag2 — R be the function such that g, = 0 outside

AP and Image dg, represents the 2-chain Z(a,-). Denote g(a,q) = ga(q)-
Then
g q 1
9.6 %8 (4,q) =2 (—)——da :
(9.6) 50 (@ q) =2a91 () — ~dga(q) - q

for allq € Ag2 and for 0 < a < 1.
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Proof. We rewrite the identity g,(aq) = a?g1(q) on Apz as g(a,aq) = a®g1(q)
on D2. By differentiating the latter identity with respect to a, we obtain

Jg
3, (@:aq) +dga(aq) - q = 2ag1(q)-
By setting q = aq for q € AD«ZN we can rewrite the equation as

og, . 1. _ q

== —dg.(q)-q=2 =].

0, + 0@ =200 (2)

By rewriting the variable q by q, this proves the equality (9.6) on A pz- It
also obviously holds on Ag: \ A D2 since both sides vanish. This finishes the

proof. O

The upshot of this proposition is that the right hand side of (9.6) changes
continuously with respect to the C°-topology for the set of graphical ¢’s. This
will play a fundamental role in the proof of Theorem 1.8 later in the next
section.

Remark 9.4. Strictly speaking, we should use the modified Alexander isotopy
as given in the proof of Theorem 3.3. We fix a sequence of weakly W-graphical
approximating sequence F; and its Alexander isotopy A; = A; ., defined as in
(3.5). We also denote by K; = K;(a,t,z) the unique associated a-Hamiltonian
supported in Int D? chosen as in Lemma A.1, and denote G;(a, x) = K;(a, 1, z).
Then we obtain Cal(G¢) = (yi(a)* — &}) Cal(G;) from Lemma 3.1. As i — oo,
the right hand side converges to a*Cal(F) with F = lim,_,, F} since Cal(G;) =
Cal(F;) from Lemma 3.1.

Having said this remark, we will just use the standard Alexander isotopy
given in Lemma 3.1 ignoring the fact that it is not smooth at a = 0. All of
our arguments can be justified using the above modified Alexander isotopy and
taking the limit.

10. Vanishing of basic phase function for the graphical case on D?

Now we restrict to the context of Theorem 1.8. Let F be a topological
Hamiltonian generating a topological Hamiltonian loop ¢ on the 2-disc D?
with supp F' C Int D?. We consider an approximating sequence H; and F; =
H;(1) with supp F; C Int D2. We embed D? into S? as the upper hemisphere
and then extend F; canonically to whole S? by zero, and consider the graphs
Graph ¢}, in 52 x 52, Note supp ¢r, C D x D3 and hence

Graph ¢, ﬂ ADAp: UADi\Di(kzs)

for some § > 0 for all ¢ € [0,1] independent of sufficiently large i’s depending
only on F, provided d(¢k,id) < %. We fix the given topological Hamiltonian
loop ¢ and fix such § > 0.
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Then we consider the normalization F; of F; on S 2 and define Hamiltonian
Fi(t, x) == x(x) Fi(t,z), x=(z,y)
on T*A with a slight abuse of notation for F;.

Theorem 10.1. Conjecture 1.5 holds for any weakly graphical topological
Hamiltonian loop on S? arising as above.

An immediate corollary of Theorems 6.1 and 10.1 is the following vanishing
result of Calabi invariant.

Corollary 10.2. Suppose A = ¢ be an engulfed topological Hamiltonian loop
as in Theorem 6.1. Assume \ is weakly graphical. Then m”‘”h(,\) =0.

The remaining section will be occupied by the proof of Theorem 10.1. Let
F be a graphical topological Hamiltonian loop and F; be an approximating
sequence that is W-graphical for a Darboux-Weinstein chart .

Proof of Theorem 10.1. Let F be the Hamiltonian associated to the topologi-
cal Hamiltonian loop on S? arising from the compactly supported Hamiltonian
F on D? that is weakly W-graphical. We fix a sequence of weakly W-graphical
approximating sequence F; and its Alexander isotopy A; = A; ., defined as in
(3.5). (As we mentioned at the end of the last section, we will just use the
standard Alexander isotopy given in Lemma 3.1 below for the simplicity of ex-
position.) We also denote K; = K;(a,t,x) the unique associated a-Hamiltonian
supported in Int D? chosen as in Lemma A.1, and denote G;(a,r) = K;(a, 1, ).
In particular, G;(0,-) = 0. Recall A;(0,¢) = id for all ¢ € [0,1].

We denote H;(a) the t-Hamiltonian defined by H;(a)(t,x) = H;(a,t,x). By
the weak W-graphicality of H;(a) from Proposition 9.1 for a € [0,1], G¢ is U-
graphical where G¢ = G¢(s,2) = aG;(as,z). We recall from Proposition A.3
P, (a) = $&, and

JH:(a) = foo.
By the W-graphicality of G, the basic phase function fge is defined everywhere
on A as a smooth (single-valued) function.

Then the function fg, : [0,1] x A — R defined by fg, (a,q) = fse (q) satisfies
the Hamilton-Jacobi equation o

ofc,

(10.1) - (a,q) + G (a,dqf&(a,q)) ~0.

We postpone the derivation of this equation till Appendix. We note dqfg, (a, q)
= dfga(q) by definition of fga. o

Now we consider the mean-normalized Hamiltonian G¢ and its associated
Hamiltonian G¢ on T*A. o

Lemma 10.3. Let g; be the function associated to ¢ = qﬁ};i as defined in
Proposition 9.3. Consider the a-Hamiltonian K; associated to the Alexander
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isotopy. Then

(10.2) fs,(a,q) = gi(a,q) +a* S;l((gg-

Proof. We first recall Cal(F;) = Cal(G;) (Lemma A.2).

Since fee and g; (:= gi(a,-)) satisfy Imagedfge = Imagedg; . with fg. =
Gia =00n Agz\ AD«QH Jee = gi,a everywhere on Agz. Then applying Theorem
6.2, we have finished the proof. O

Corollary 10.4. We have
| _ ay, ! o — 42 S
(10.3) Gy (a,dqf@(a,q)) = —2af, (a) + ade"'(a)(q) q—4a vol(5)"

In particular, the function (a,q) = Gi(a, dqfg, (a,q)) uniformly converges to a
continuous function
a 5 Cal(F)
~2afe () -4 .
afr a “ vol(S52)

Proof. By differentiating (10.2), and comparing (10.1) and (9.6), we immedi-
ately obtain the first statement.
For the second, we rewrite

1
adei(a)(Q) q

q q
= |dfis, (o (@) - 2| < ldfi (@l | 2]

a a
Then we recall supp fuay C D3 (a) (see (3.2)) from which we derive

q
dfsso) (@) | 2] < max]dfis, o) (@)] = 0

as ¢ — oco. Once this is established, we derive the second statement by taking
the limit of (10.3). O

The explicit expression of the right hand side of (10.3) will not play any role
later in the present paper but only the conclusion that the function (a,q) —
G;(a, dqfc, (a,q)) uniformly converges to a continuous function will do later.

We also derive from this corollary that there exists some constant C' > 0
independent of i’s such that

(10.4) G: (0, dafc, (0. ))| < €
for all a, q and for all sufficiently large i’s. (In fact, we have
Cal(F;)| | Cal(F)|
) _ < _ 3|7 3127 1
G (@ dafe (@ @)) | < 20l loo + i oo +40° st = 4a* 2y

as i — 00.)
We now consider the integrals

I, (a) ::/ fee myw.
A
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Then I¢,(0) = 0 and

ofg, .
It (a) = A 5y T2Y = —/A@(a,dfg_?(q)) Tow

/ / adf@,a )) miwda.

6% (0a) = Graph ¢, = Image dfis
and the bijectivity of the projection,

and so

By the identity

To qﬁ&i(oA) — 52

we can write 71 (dfge (q)) = ( (q)) for the unique y(q) satisfying
ma(dfce (q)) = y(q)
¢G (oa);A . .
for each given q. We denote by m; : ¢¢,(oa) — A the projection of

¢¢,(oa) to A along mi-direction.
" Consider the sequence of maps tpz A — A defined by

Pca(a);a

tog, (@) =m—  oogy,
TN N L . .
where ;= is the projection of ¢¢ (A) onto A along the mi-direction.
Then we obtain the following from the graphicality of O, -

Lemma 10.5. Fach element of the sequence is a diffeomorphism and that the
sequence Lga uniformly converges to the identity map ida over a € [0,1] as
1 — 00. o

Now we recall the following well-known fact whose proof follows from a

straightforward 3 e argument and the weak continuity of the pushforward op-
eration of measures under the Co—topology of continuous maps.

Lemma 10.6. Let X be a compact topological space. Denote by p a finite mea-
sure on X, by f a continuous real-valued function. Consider a sequence f; of
continuous function uniformly converging to f and v; a sequence of continuous
maps uniformly converging to the identity map. Then

Hm fzu—llggo (fiolfi)ﬂ(:/xf,u)-

Therefore applying this lemma to the current context of

X:A,u:uw,L:(bqsg) Li=G (adf@,a())
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and combining Corollary 10.4, Lemma 10.5 and (10.4), we derive

i [ Gtandiey @) = i [ G (s (3 (@)

i—00 i—o0 A

But for q = (y,y), recalling G; = 7 G; on Graph qﬁ(‘[’;i = Image dfG?, we derive
@ (aa dfGi((L¢&_l)71(q)) = @ (a, T (df@i((%%_l)ilq))

62, (0a)iA _
=G (a,ﬂlf o O'@a((Ld)Ei) 1q)>

=Gi(a,q) = 11 Gi(a, q) = Gi(a,y)-
For the second equality above, we also use the obvious identity
o, (0a) A 95, (0a)A
T =arom

Here for any given subset L C S%xS?, we denote by 7 : I — S? the restriction
of m : 582 x 8% = 52 to L.

Combining these, we evaluate the integral and derive

lim | G; (a, dfge (q)) mow = lim / Gi(a,q) m5w = lim Gi(a,y)w=0

i—00 JA T — 1—00 AT 71— 00 2
where the last vanishing occurs by the mean-normalization condition of Gj.
This proves lim; o I, (1) = 0 in particular.

But we have fg, = fu,(1)(= fr,) by Proposition A.3 and in particular

fe, = fr. = fr

uniformly. Combining the above discussion, we have proved

/ frmiw = lim / fr, Tow = lim / fe, mow = 0.
A 1—=00 JA T 1—=00 JA T
This finishes the proof. O

Remark 10.7. We would like to point out that while the average of G; vanishes
and ¢, — id uniformly over s € [0,1], unlike the t-Hamiltonian F; which
converges in Hamiltonian topology, there is no a priori control of the CY be-
havior of the s-Hamiltonian G; itself in general according to the definition of
approximation sequence H; of the hameotopy in Definition 2.6. (See (3.4) for
the explicit form of G;(s,-) = K;(s,1,) in the case of Alexander isotopy, which
evidently involves taking the derivative the ¢-Hamiltonian.)

In this regard, the above proof strongly relies on the graphicality of the
topological Hamiltonian, or more precisely on the graphicality of its approxi-
mation sequence. Without this graphicality, one has to deal with emergence
of the caustics of the projection ma : Graph ¢, — A or equivalently the non-
differentiability locus of the basic phase function fr,. Here seems to enter the
piecewise smooth Hamiltonian geometry of Lagrangian chains. We will elabo-
rate this aspect elsewhere.
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Appendix A. Homotopy invariance of basic phase function

In this section, we prove some homotopy invariance property of the basic
phase function.

Let A = {gbfq(s)} be a smooth two-parameter family satisfying H = 0 on a
neighborhood of B by definition of P"™(Sympy (M,w),id) with U = M \ B.
We denote by K = K(s,t,z) a s-Hamiltonian of the 2-parameter family A =

{qﬁ’}{(s)} with K(s,0,-) = 0: The latter choice is possible since we have the

s-Hamiltonian flow s qb?q(s) = id and so we can set K(s,0,:) = 0. Recall
that K is determined uniquely modulo the addition of constants depending on
s, t.

We first prove a few lemmata.

Lemma A.1. Let H and K be as above. Suppose B is connected and has
nonempty interior. Then we can choose the s-Hamiltonian K so that K(s,t,-)
= 0 on a neighborhood of B C M for all s, t € [0,1].

Proof. Let H be as above and consider its associated s-Hamiltonian vector field

Y, ie., .

by
_ (s) t -1
Y=—" o (Pr(s)) -

By definition, we have Y |w is an exact one form that vanishes on B. Consid-
ering the exact sequence

— H°(B) — H'(M,B) — H*(M) —
and noting HY(B) = 0, the map H'(M, B) — H'(M) has zero kernel. This

implies that Y |w = dK,, for some K : M — R with supp K C M \ B. This
finishes the proof. O

This in particular implies ¢g1 € Ph™(Sympy (M, w),id). Next we have
the following coincidence of the Calabi invariant.

Lemma A.2. Assume H(0) =0 and let K be chosen as in Lemma A.1. Then
Caly (K') = Caly (H(1)).
Proof. First note ¢}, = ‘75}1(1)- Denote by A(s,t) = ’}{(5) the two-parameter
family associated to H. Then
A(0,t) = id = A(s,0)
by the requirement H(0,¢,2) = 0. Therefore the Hamiltonian path ¢
qb‘}i(l) := A(1,1) is smoothly homotopic to the path s — ¢, := A(s, 1) relative
to the ends and hence we have the lemma by the smooth homotopy invariance

of Caly: In fact, an explicit homotopy T : [0,1]? — Sympy(M,w) between
them is given by the formula

A1+ 2s(t 1)) for 0
Tls,t) = {A (2(s—1/2) + 2(1—s),t)  for 1
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The map T satisfies
T(0,t) = A(t,1) = )}(1’ T(1,t) = ;1(1)7
and hence is the required homotopy relative to the ends. O
Now we prove homotopy invariance of the basic generating function and the
basic phase functions.
Proposition A.3. EKI = iNLH(l) and fxr = fu)-

Proof. We apply the first variation formula (1.3) to zg, (s) and zﬂ?ﬂ(l)(t) respec-
tively, and obtain

dhicr (v) = (0(dk: (), Tph (v)),
dhg (v) = (0($iy1) (@), Ty (v)

for any given v € TyA. Since ¢z, = (;5]%]1(1), we have proved dhy: = leLH(l). On
the other hand, for any point q € A, H= 0 =K' on a neighborhood of q in
T*A and so both zg, and z]%(l) are constant. Therefore the values of both EKI
and TLH(U are zero at such a point q € Ap. This finishes the proof of the first
equality.

For the proof of le = fH(l), the first equality in particular implies that the
sets of critical values of the action functionals

Ay, Ay Qon, TyM) - R

coincide. Then standard homotopy argument used in the homotopy invariance
of (in fact any type of) the spectral invariant applies to prove p'*9(H, {q}) =
fr(q) for each g € N for general H. This finishes the proof.

Then combining Lemma A.2 and Proposition A.3, we also derive

B Caly (K1) Caly(H(1))
(A1) fgl = fxr + W W = fH(l)‘

With this preparation, in the proof of Theorem 10.1 later, we used K! instead
of H(1) in our proof. This is because we exploited the fact that ¢3;, is C°-small.

= fuq) +

Appendix B. Timewise basic phase function as a solution to
Hamilton-Jacobi equation

In this section, we show that the space-time basic phase function fy; defined
by
fu(t,q) = fu(q)
satisfies the Hamilton-Jacobi equation. More precise description of this state-
ment is now in order.
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Let N be an arbitrary compact manifold without boundary and let H =
H(t, x) be a time-dependent Hamiltonian defined on the cotangent bundle T*N
and L = ¢k (on) be the associated Hamiltonian deformation of o. In this case,
there is a canonical generating function of L associated to the Hamiltonian H
given as follows.

We first start with the discussion on the basic generating function. (We
refer the readers to [17] for more detailed exposition on this.) For any given
time-dependent Hamiltonian H = H(¢,x), the classical action functional on
the space

P(T*N) :=C*>([0,1],T*N)
is defined by

(B.1) aio) = [vo- [ Heaw)a

We denote Ly = qb}i(oN) and by iy : Ly — T*N the inclusion map. For
given x € Ly, we define the Hamiltonian trajectory

2 (t) = o5 ((61) ™ (2)
which is one satisfying

70) eon, 2H(1) =ua.

The function hy : Ly — R, called the basic generating function in [17], is
defined by

zZ

hi(2) = An(2,).
It satisfies i}3;0 = dhy on Ly, i.e., hy is a canonical generating function of L
in that it satisfies
i70 = dhp.
Then we consider the parametric version of basic generating function (1.6)
which is defined by

(B.2) hy(t,z) == hy:(x)
on Try,, (on) := Uyepo,y{t} x @Y (on). A straightforward calculation leads to:

Proposition B.1. Consider the map

Vg :[0,1] x N = T*[0,1] x T*N = T*([0,1] x N)
defined by the formula
(B.3) Vu(t,q) = (t, —H(t, 051 (0q)), ¥ (04)) ,

where oq € on associated to the point ¢ € N. Then Wy is an evact Lagrangian
embedding of [0,1] x N. Denote the associated exact Lagrangian submanifold
by

L:= Image ¥
and by iz : L — T*([0,1] x N) the inclusion map. We also denote by p :
L = [0,1]XT*N the restriction to L of the natural projection T*([0,1] x N) —
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[0,1]xT*N. Let (t,a) be the canonical coordinate of T*[0,1]. Then the timewise
basic generating functions hy, hy satisfy
dhy = Wi (0 + adt),

(B.4) . .
p*dhy =i%(0 + adt),

on [0,1]x N and on L respectively. In particular, hop is a generating function
of the exact Lagrangian submanifold L C T*([0,1] x N).

As a function on the zero section oy = N, not on Ly, the basic generating
function hy is a multi-valued function. But the basic phase function fz, as a
timewise graph selector, satisfies the identity

(B.5) hy(t,z) = fy(t, m(x)).

In particular, substituting = = dyfx (t, ¢) into (B.5) and noting w(d.fx (¢,q)) =
q, we obtain

fH (ta q) = hH (ta dsz (ta Q))
=hpyoop(tq).
Here oy is the map defined by o5 (t, q) = df g+ (q), which is the timewise version

of the definition (5.7) whose image is contained in L.
Therefore

dfy =d(hyoop)
= o5 (dhy)
=opiz(0 +adt)
= (izoon)" (0 +adt)
on the smooth locus of f in [0,1] x N. But

iz oon(t,q) = (t,—H(t,on(t,q)),ou(t, q)).
Therefore
(i oom) (0 +adt)= o0 — H(t,ou(t,q))dt
and hence
dfyr = o360 — H(t,ou(t,q)) dt.

We also have dﬂ'dO‘H(%) = 0 since oy (t,q) = q for all t. This implies

. g 0 9
0l 3p) = onltsa) (drdom(5) ) =0
In particular, we have derived

ofy

G = —H(t.ou(t,q)
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(on the smooth locus N\ Sing(dfr)). This is equivalent to the Hamilton-Jacobi
equation

of
- (1.0) + H(t dfy (1.9)) = 0.

By repeating the above discussion for the time s instead of ¢ in our present

context of N = A we have derived the Hamilton-Jacobi equation (10.1).
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