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We investigate non-vanishing properties of L(f, s) on the real line, when f is a Hecke
eigenform of half-integral weight k + 1

2 on Γ0(4).

1. Introduction

If f is a cusp form of half-integral weight k + 1
2 on Γ0(4) with Fourier coefficients

a(n) (n ≥ 1), one can as usual attach to f the Hecke L-series

(1) L(f, s) =
∑
n≥1

a(n)n−s (σ := ℜ(s) ≫ 1).

It is known [9] that L(f, s) has holomorphic continuation to C and satisfies a functional
equation under s 7→ k + 1

2 − s, relating L(f, s) and L(f |W4, s) where W4 is the Fricke
involution.

We note that even if f is a Hecke eigenform, in general L(f, s) has no Euler product.
Though L(f, s) has turned out to be useful in the investigation of sign changes of the
coefficients ℜ(a(n)) resp. ℑ(a(n)) [6], in general otherwise its meaning remains a bit
mysterious.

In this paper we will investigate non-vanishing properties of L(f, s) on the real line,
when f is a Hecke eigenform (Thm., sect. 3). The proofs which will be given in sect. 4 use
the Mellin integral representation and rely on the existence of some special half-integral
weight cusp forms with non-vanishing properties on the positive imaginary axis.

As will be clear from the proof, similar (in fact, somewhat easier) arguments also work
in the case of cuspidal Hecke eigenforms of integral weight on Γ1 := SL2(Z). We leave it
to the reader to carry out the details and formulate the corresponding statements.

We would like to recall that in the case of Hecke eigenforms on Γ1 non-vanishing
results for their Hecke L-functions at an arbitrary point s0 in the critical strip (not on
the critical line) have been proved in [4] (cf. also [7]), using holomorphic kernel functions.
This method was carried over to the case of half-integral weight in [8], for arbitrary level.
However, in this approach for given s0 the weight in general has to be large depending on
s0.

We also would like to point out that in [10] L-functions associated to modular forms
of half-integral weight were studied. In particular, certain half-integral weight cusp forms
were investigated and the location of their zeros off the critical line were calculated.
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Finally, addressing the reader interested in Siegel modular forms, we would like to
mention the papers [3,5] where corresponding non-vanishing results for Koecher-Maass
series are given.

Notations. For z ∈ C∗ we let z
1
2 := e

1
2 log z, where log z is the principal branch of the

complex logarithm. For z in the complex upper half-plane H we put q = e2πiz.

We denote by Γ0(4) the subgroup of Γ1 consisting of matrices

(
a b
c d

)
with 4|c.

The letter k always denotes an integer. We write Mk(4) for the space of modular
forms of weight k for Γ0(4), with trivial character if k is even and non-trivial character
(−4

. ) if k is odd. We let Mk+ 1
2
(4) be the space of modular forms of weight k+ 1

2 for Γ0(4)

and write Sk+ 1
2
(4) for the subspace of cusp forms.

2. Basic facts on modular forms of half-integral weight of level 4

For basic facts on modular forms of half-integral weight we refer to [9] and in the
special case of level 4 also to [1,2].

The group Γ0(4) has three cusps, represented by 0, 1
2 and i∞. The cusp 1

2 is (k+ 1
2 )-

irregular, so a modular form of weight k + 1
2 on Γ0(4) automatically vanishes at 1

2 .

As is well-known, one has

(2) dimSk+ 1
2
(4) = sup {0, [k

2
]− 1}.

Recall that on Mk+ 1
2
(4) (resp. Sk+ 1

2
(4)) the Fricke involution W4 acts by

f(z) 7→ (f |W4)(z) := (−2iz)−k−1/2f(− 1

4z
) (z ∈ H).

The Hecke operators T (p2) (p > 2 prime) commute with W4, hence the spaces

S
(±)

k+ 1
2

(4) := {f ∈ Sk+ 1
2
(4) | f |W4 = (±)f}

have a basis of Hecke eigenforms of all the T (p2).

For f ∈ Sk+ 1
2
(4) we put

L∗(f, s) := (2π)−s · 2s · Γ(s) · L(f, s) (σ ≫ 1)
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where L(f, s) is the L-series defined by (1). Then L∗(f, s) has holomorphic continuation
to C and satisfies the functional equation

(3) L∗(f, k +
1

2
− s) = L∗(f |W4, s).

In particular, if f |W4 = −f , then L∗(f, k
2 + 1

4 ) = 0.

In the rest of this section, we are concerned with certain special modular forms of
level 4 which will play a role in sect. 4.

We let
θ(z) =

∑
n∈Z

qn
2

(z ∈ H)

be the basic theta function which is in M 1
2
(4). One has

(4) θ|W4 = θ.

Let
P (z) = 1− 24

∑
n≥1

σ1(n)q
n (z ∈ H)

be the quasi-Eisenstein series of weight 2 on Γ1 (where σ1(n) =
∑

d|n d) and put

F2(z) :=
1

24

(
−P (z) + 3P (2z)− 2P (4z)

)
.

Then
F2(z) =

∑
n≥1,n≡1 (mod 2)

σ1(n)q
n

and F2 ∈ M2(4). The transformation formula

(5) (2z)−2F2(−
1

4z
) = F2(z)−

1

16
θ4(z)

holds.

Further, put
∆4(z) := F2(z)

(
θ4(z)− 16F2(z)

)
(z ∈ H).

Then ∆4 ∈ M4(4) and one has

(6) (2z)−4∆4(−
1

4z
) = ∆4(z)

as follows form (4) and (5).
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We also note that ∆4 vanishes at the cusps 0 and i∞, hence it follows that θ∆4 is a
cusp form of weight 9

2 on Γ0(4). Using (2) we find that the map

f 7→ f · θ∆4

gives an isomorphism of Mk(4) onto Sk+ 9
2
(4).

Finally, we define

D2(z) := θ4(z)− 32F2(z) (z ∈ H).

Then D2 is in M2(4) and using (4) and (5) one checks that

(7) (2z)−2D2(−
1

4z
) = D2(z).

3. Statement of results

It easily follows from the discussions in sect. 2 that S
(+)

k+ 1
2

(4) = {0} for k < 4 (in fact,

Sk+ 1
2
(4) = {0} in this case) and S

(−)

k+ 1
2

(4) = {0} for k < 6. We shall prove

Theorem. Let σ ∈ R be fixed. Then the following assertions hold:

i) If k ≥ 4, then there is a Hecke eigenform f ∈ S
(+)

k+ 1
2

(4) with L∗(f, σ) ̸= 0.

ii) If k ≥ 6 and σ ̸= k
2 + 1

4 , then there is a Hecke eigenform f ∈ S
(−)

k+ 1
2

(4) with

L∗(f, σ) ̸= 0.

Remarks. i) In the proof of the theorem we explicitly construct a cusp form f in the space

S
(+)

k+ 1
2

(4) (resp. in the space S
(−)

k+ 1
2

(4)) such that L∗(f, σ) ̸= 0, for any real σ.

ii) Let k = 4. It follows from sect. 2 that S
(+)
9/2 (4) = Cθ∆4, hence f1 := θ∆4 is a Hecke

eigenform and L∗(f1, σ) ̸= 0 for all σ ∈ R. It will in fact follow from the proof given in
the next sect. that L∗(f1, σ) > 0 for all σ ∈ R. Similarly, in the case k = 6 one checks

that S
(−)
13/2(4) = CθD2∆4, so f2 := θD2∆4 is a Hecke eigenform and L∗(f2, σ) ̸= 0 for all

σ ∈ R, σ ̸= 13
4 . It will follow from our proof that L∗(f2, σ) is positive for σ > 13

4 and
negative for σ < 13

4 .

4. Proofs

We start with the proof of i) whose first part is standard. If f ∈ Sk+ 1
2
(4), then in the

usual way by Mellin transform one has

L∗(f, s) =

∫ ∞

0

f(it)(2t)s
dt

t
(σ ≫ 1).
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Splitting up the integral into the sum of the integral from 0 to 1
2 and the integral from 1

2
to ∞, and substituting t 7→ 1

4t in the former one, we obtain

L∗(f, s) =

∫ ∞

1
2

f(
i

4t
)(

1

2t
)s
dt

t
+

∫ ∞

1
2

f(it)(2t)s
dt

t
.

If f |W4 = f , then f( i
4t ) = (2t)k+1/2f(it), hence we get the identity

(8) L∗(f, s) =

∫ ∞

1
2

f(it)
(
(2t)s + (2t)k+1/2−s

)dt
t

which is valid for all s ∈ C, since f is a cusp form.

We now put f := ∆4θ
2k−7. By (4) and (6) we see that f ∈ S

(+)

k+ 1
2

(4).

Recall that the valence formula asserts that the sum of the orders (counted with
multiplicities) of a non-zero modular form g of weight ℓ on Γ0(4) on the compact modular
curve X0(4) of level 4 is equal to ℓ

12 [Γ1 : Γ0(4)]. We note that [Γ1 : Γ0(4)] = 6 and apply
the valence formula with g = ∆4 ∈ M4(4). Since ∆4 vanishes at the cusps 0 and i∞, it
follows that ∆4 has no zeros on H, in particular ∆4(it) ̸= 0 for all t > 0. Since by definition
∆4(it) is real for t > 0, by continuity we must have ∆4(it) > 0 for all t or ∆4(it) < 0 for
all t. We claim that the first alternative holds. Indeed, evaluating (5) at z = i

2 we find
that

θ4(
i

2
) = 32F2(

i

2
),

hence

∆4(
i

2
) = F2(

i

2
)
(
θ4(

i

2
)− 16F2(

i

2
)
)
> 0.

(Alternatively, we could also have used the convergent q-product expansion

∆4(z) = q
∏

n≥1,n≡0,±1 (mod 4)

(1− qn)8,

cf. [2, p. 25].)
By definition, θ(z) is real and positive on the positive imaginary axis. Thus f(it) > 0

for t > 0 and so in particular the integrand in (8) is positive for all t ≥ 1
2 if s = σ is real,

hence L∗(f, σ) is positive and so non-zero for all σ. Writing f in terms of a Hecke basis of

S
(+)

k+ 1
2

(4) we deduce the assertion of i).

We now prove ii). If f |W4 = −f , then similarly as in i) we find that

L∗(f, s) =

∫ ∞

1
2

f(it)
(
(2t)s − (2t)k+1/2−s

)dt
t
.

We let f := ∆4D2θ
2k−11. By (4), (6) and (7) then f ∈ S

(−)

k+ 1
2

(4).
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We want to show that L∗(f, σ) ̸= 0 for σ real, σ ̸= k
2 + 1

4 . By the functional equation

(3) we may assume that σ > k
2 + 1

4 . In this range clearly

(2t)σ − (2t)k+1/2−σ ≥ 0

whenever t ≥ 1
2 , and the inequality is strict for t > 1

2 .

As mentioned above, θ(it) > 0 and we proved that ∆4(it) > 0, for t > 0. Thus to
prove our claim, it will suffice to show that D2(it) > 0 for t > 1

2 .

We apply the valence formula with g = D2 ∈ M2(4). Observe that D2(z) by (7)
vanishes at z = i

2 . We conclude that any zero of D2 in H must be equivalent under Γ0(4)

to i
2 . Thus to see that D2(it) ̸= 0 for t > 1

2 we have to show that for t > 1
2 the point it

cannot be equivalent to i
2 under Γ0(4).

Assume on the contrary that there exists M ∈ Γ0(4) with M ◦ i
2 = it and t > 1

2 .
Let F be the standard fundamental domain for Γ1 consisting of z ∈ H with |z| ≥ 1 and

|x| ≤ 1
2 . Let S =

(
0 −1
1 0

)
. Then S2 = −E. Suppose first that t ≤ 1. Then S ◦ it ∈ F .

Also S ◦ i
2 = 2i ∈ intF and SMS ◦ 2i = S ◦ it. It follows that SMS = ±E and so 2i = i

t ,
i.e. t = 1

2 , a contradiction.

Now suppose that t > 1. Then M ◦ i
2 ∈ F . Since M ◦ i

2 = MS ◦ (S ◦ i
2 ) = MS ◦ 2i

and 2i ∈ intF , it follows that MS = ±E, i.e. M = ±S, a contradiction since S is not in
Γ0(4).

SinceD2 has the value 1 at infinity, by continuity we finally find that indeedD2(it) > 0
for all t > 1

2 .

It follows that L∗(f, σ) ̸= 0 as claimed. Writing f in terms of a Hecke basis as before,
we derive the assertion of ii).

Acknowledgements. The first author was partially supported by NRF 2017R1A2B2001807.

References

[1] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic
characters, Math. Ann. 217 (1975), no. 3, 271-285
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