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When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases
and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be
increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first
saturation, it is known that there is a so-called second saturationwhere the FEL power growth stops evenwith
a tapered undulator system. The sideband instability is one of the primary reasons leading to this second
saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can
mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional
numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron
bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different
gradients of undulator tapering are examined. It is found that a strong undulator tapering (∼10%) provides
effective suppression of the sideband instability in the postsaturation regime.
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I. INTRODUCTION

It is known that a free electron laser (FEL) is capable of
generating coherent high-power radiation over a broad
spectrum. Of particular interest is the atomic wavelength
regime, e.g., froma fraction of a nanometer down to tenths of
an angstrom, where the applications [1–3] typically require
the radiation power in the terawatt (TW) range.
In a high-gain FEL, the main signal, which originates

from the resonance condition, grows exponentially until
saturation occurs. For the case of a constant or untapered
undulator, the radiation power oscillates around an equilib-
rium in the saturation regime. In the x-ray FEL regime, the
power efficiency (defined as the ratio of the FEL radiation
power to the electron beam power) is about 10−3, indicating
that the output peak power can be ∼50 GW for an electron
beam with peak current ∼5 kA and energy ∼10 GeV
operating in the self-amplified spontaneous emission

(SASE) mode in a ∼100-m-long untapered undulator.
Though undulator tapering had been proposed since the
1980s, recently there has been a renewed interest in tapering
to achieve enhanced energy conversion efficiency, improved
spectral purity, or for polarization control (see, for example,
Refs. [4–9]). With undulator tapering, the efficiency can be
improved and the power can be further increased in the
postsaturation regime (however, at a lower rate compared
with the exponential growth in the linear regime) but
eventually will reach a so-called second saturation and
the radiation then approaches another equilibrium.
Although numerical simulations show that TW-level FEL
output power can be possible when undulator tapering is
optimized and the combined SASE and self-seeded scheme
is employed (see, for example, Ref. [6]), in the post-
saturation regime it is the sideband instability that still
limits the growth of the main signal [4,10–13]. Enhancing
the FEL peak power shall be envisioned once the sideband
instability can be effectively suppressed.
The sideband instability in an FEL is caused by the

interaction of the electromagnetic field with the electron
synchrotron motion in the ponderomotive potential
well. Such a potential well, formed by the undulator
magnetic field and the main signal, will trap electrons and
result in the oscillation with a synchrotron frequency
(and its multiples) away from the resonance frequency
(i.e., the frequency of the main signal). Once the inter-
action creates a positive feedback, the electron beam
energy will transfer and contribute to the electromagnetic
field with the synchrotron sideband frequency. The side-
band signal will continue to grow and usually cause
undesirable consequences. For example, it can degrade
the spectral purity and may limit the level of the saturation
power of FEL [6].
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The early study of FEL sideband instability can be
traced back to the 1980s [4,10]. The stability analyses are
usually treated by single-particle or kinetic methods. Both
approaches may assume small perturbations of electron
synchrotron motion and radiation fields from the equi-
libria. While they may provide practical use to quickly
estimate whether the sideband instability will be an issue,
most of the previous work assumes constant-parameter
undulators [4,10,11], focuses on longer wavelength
regime [12,14,15], or addresses oscillator configurations
[16,17]. Recently Lindberg [18] and Zhang et al. [19]
have theoretically investigated the FEL sideband insta-
bility induced by initial beam modulations, in which their
studies focus on a mechanism in the linear or exponential
regime with a constant undulator parameter. Thereafter
the beam-modulation induced sidebands have been inten-
sively studied with numerical [20,21] and experimental
[22] studies. We remind that their studies assume the
sideband signal lies within the typical FEL gain band-
width. Therefore both the main and sideband signals are
exponentially amplified in the linear regime.
In this paper our study will focus on the sideband

instability in a single-pass high-gain tapered FEL in the
post-saturation regime based on the single-particle descrip-
tion in a one-dimensional (1-D) model. The validity of 1-D
analysis assumes that the transverse size of the electron
beam is large compared to that of the radiation field,
thus ignoring the effects of diffraction and the gradient of
transverse electron beam density. The 1-D analysis captures
the essence of sideband effects and thus can provide a quick
estimate for sideband growth. Using the single-particle
approach, we can obtain the corresponding dispersion
equation, which accounts for sideband-related dynamical
quantities. Then we derive the analytical expressions for
two extreme cases: the gentle and strong undulator taper-
ing. By quantifying the so-called sideband field gain, we
find good agreement from theoretical predictions with
results from our 1-D FEL simulations.
In the remainder of the paper, we first briefly introduce

the 1-D FEL model in Sec. II A. In the derivation we follow
the notations of Bonifacio et al. [23] and Isermann and
Graham [24]. Our theoretical formulation begins at the first
or initial saturation, where the information of the electron
beam and radiation field shall be provided. The linear
stability analysis is studied in Sec. II B based on the single-
particle description, assuming that the electron beam is
deeply trapped in the FEL ponderomotive potential well.
The perturbations on the electron phase space dynamics
and field dynamics (amplitude and phase) are assumed
small and included only up to first order to the unperturbed
equilibria. The set of equations can then be formulated as
a linear system and the stability is determined by the
corresponding dispersion relation. In Sec. II C, we particu-
larly focus on the effect of undulator tapering on the
sideband growth and study both the gentle and strong

undulator tapering and compare with the untapered case.
Then in Sec. III we compare the semi-analytical calcu-
lations with full 1-D FEL numerical simulations based on
similar parameters to those of the Linac Coherent Light
Source (LCLS). The results confirm the effectiveness of
strong undulator tapering on sideband suppression. Finally
we summarize the results and discuss possible future work
in Sec. IV.

II. THEORETICAL FORMULATION

The model we shall consider is based on the 1-D high-
gain FEL with a tapered planar undulator. Our primary
focus will be in the post-saturation regime. The main
signal, governed by the fundamental resonance condition,
Eq. (1) below, is amplified through the high-gain FEL
process, in which the electron beam energy will be trans-
ferred to the radiation field of the main signal along an
undulator. In this equation, λu is the undulator period, λR is
the radiation wavelength of the main signal, γRð0Þ is the
initial electron reference energy in units of its rest mass
energy, K0 is the (peak) untapered undulator parameter
with K0 ≈ 0.934B0½Tesla�λu½cm� with B0 being the peak
undulator magnetic field

λR ¼ λu
2γ2Rð0Þ

�
1þ K2

0

2

�
: ð1Þ

Equation (1) can be obtained through the following two
processes: the length contraction via Lorentz transforma-
tion of the undulator period from the laboratory frame to
the electron rest frame and the Doppler effect converting
the electron quiver motion in its rest frame back to the
laboratory frame. In the presence of undulator tapering,
the undulator parameter is in general a function of the
undulator axis z, i.e., K0 → KðzÞ. Here we only consider
the K-tapering and assume λu is constant. The maximized
energy extraction roughly corresponds to a quadratic taper
profile along the undulator axis, i.e., ΔK=K ∝ z2 [4,5,7].
In the beam rest frame, the near-resonant electrons are

trapped in the so-called ponderomotive potential well, in
which these electrons execute a synchrotron motion around
a synchronous particle. Such a ponderomotive potential
well is formed by the undulator magnetic field and the
radiation field. It is expected that the synchrotron motion
will become appreciable once the FEL radiation field is
saturated. The synchrotron motion in an FEL is similar to
that in a storage ring, where the potential well created by a
rf cavity causes the recirculating particles to execute a
longitudinally periodic oscillation. In an FEL the synchro-
tron oscillation frequency is, however, usually larger than
the transverse betatron oscillation, which results from the
alternating-gradient quadrupole focusing (or defocusing)
within undulator breaks. This is not the case in a storage
ring. In what follows we neglect the betatron motion and
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our sideband study starts at the FEL first saturation, i.e.,
following the FEL exponential growth.

A. Basic equations

In the following we consider a general tapering profile
of the undulator magnetic field,

BðzÞ ¼ B0fBðzÞ; ð2Þ

where fBðzÞ is the tapering profile of the undulator
magnetic field. Equation (2) is equivalent to KðzÞ ¼
K0fBðzÞ. Then the 1-D FEL process can be formulated
based on the following single-particle FEL Hamiltonian
function averaged over the undulator period [23],

Hðθ; η; ẑÞ ¼ ðη − ηRÞ2
2fR

− i
fB
fR

ðEeiθ − E�e−iθÞ; ð3Þ

where θ ¼ ðkR þ kuÞz − ωRt is the electron phase with
respect to the radiation, η≡ ½γ − γRð0Þ�=ργRð0Þ is the
normalized energy deviation with respect to the dimension-
less FEL or Pierce parameter:

ρ ¼ 1

γRð0Þ
�
ωpbK0=

ffiffiffi
2

p

4cku

�2=3

; ð4Þ

with ωpb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2n0=m0

p
, e the charge unit, n0 the volume

density of the electron beam, m0 is the electron rest mass.
ηR ¼ ½γR − γRð0Þ�=ργRð0Þ. In the case of undulator taper-
ing, the electron reference energy is modified accordingly
through the resonance condition [see Eq. (1)] γRðzÞ ¼
γRð0ÞfRðzÞ where fRðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þK2ðzÞ=2
1þK2

0
=2

r
. Here jEj ¼ jEj=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πn0ργRð0Þm0c2
p

is the normalized amplitude of the
electric field E. Other relevant quantities are normalized
as ẑ ¼ 2kuρz, ŝ ¼ 2kuρðz − β̄zctÞ with ku ¼ 2π=λu,
kR ¼ 2π=λR, ωR ¼ ckR, and β̄z ¼ v̄z=c. Moving to the
ponderomotive frame, we define û ¼ ŝ=ð1 − β̄zÞ. The bars
on βz and vz take the average over the electron’s longi-
tudinal figure-8 motion.
From Hamilton’s equations of motion, we have the

electron phase equation

dθ
dẑ

¼ ∂H
∂η ¼ η − ηR

fR
; ð5Þ

and the electron energy equation, relating the radiation
field to

dη
dẑ

¼ −
∂H
∂θ ¼ −

fB
fR

ðEeiθ þ E�e−iθÞ: ð6Þ

Assuming Θ ¼ θ þ ϕ, we have for the particle with
reference energy γRðẑÞ

dηR
dẑ

¼ −2
fB
fR

jE0j cosΘR; ð7Þ

where E0 ¼ jE0jeiϕ with ϕ the phase of the radiation
field and ΘR ¼ θR þ ϕ. In order for the electron to have
a decrease of energy at resonance, we require ΘR ∈
½−π=2; π=2�. For an untapered FEL, the reference phase
is assumed to be fixed at ΘR ¼ −π=2.
For particles near the resonant electron, i.e., θ ¼ θR þ δθ,

combining Eq. (5) with Eq. (6) we get

d2

dẑ2
δθ þΩ2

syn;0δθ ¼ 0; ð8Þ

where

Ω2
syn;0 ¼ −2

fB
f2R

jEj sinΘR: ð9Þ

From Eq. (9), it is clear that those near-resonant electrons
will execute an oscillation with the synchrotron frequency
Ωsyn;0.
The energy transfer also involves the radiation field.

For a number of individual electrons which follow from
Eq. (3) and the Hamilton’s equation, we have

dE
dẑ

¼
� ∂
∂ẑþ

∂
∂û

�
E ¼ fB

fR
he−iθi; ð10Þ

where the bracket h…i≡ N−1PN
i¼1ð…Þ represents the

ensemble average over a slice, with N the number of
electrons in the slice.
Equation (10) can also be obtained by Maxwell’s

equations by taking the slowly varying envelope approxi-
mation or paraxial approximation [4]. Inserting E ¼ jE0jeiϕ
into Eq. (10) gives two separate equations for the amplitude
and phase of the radiation field. To the zeroth order we have

d
dẑ

jE0j ¼
� ∂
∂ẑþ

∂
∂û

�
jE0j ¼

fB
fR

hcosΘi; ð11Þ

and

jE0j
∂ϕ
∂ẑ ¼ −

fB
fR

hsinΘi: ð12Þ

In the case of untapered FEL, the field amplitude after
saturation is considered to be constant and the radiation
phase ϕ is linear in z. This observation is consistent with
that discussed in Ref. [25]. In what follows, the main signal
will be determined by the conservation of energy. From
Eqs. (7) and (11), we have djE0j=dẑ ≈ −1

2jE0j dηR=dẑ assum-
ing hcosΘi ≈ cosΘR. Then the field amplitude can be
expressed as

jE0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEð0Þ

0 j2 þ ð1 − fRðẑÞÞ
ρ

s
; ð13Þ
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where use of ηRðẑÞ ¼ ðfRðẑÞ − 1Þ=ρ has been made and

jEð0Þ
0 j is the normalized field amplitude at the starting

location of undulator tapering (denoting ẑ ¼ ẑb) and
considered as a given parameter.
Note that ΘR is not necessarily a constant over ẑ. In our

analysis a taper profile function fBðẑÞ is assumed to be
given. Then fRðẑÞ, f0RðẑÞ, and η0R ¼ f0R=ρ can be obtained.
From Eq. (7) ΘR is determined. For untapered case, ΘR is
a constant, −π=2.

B. Linear stability analysis

In the previous subsection we have obtained particle
equations [Eqs. (5) and (6)] and field equations [Eqs. (10)–
(12)]. Now we can study the stability of the 1-D FEL
system. Since we are interested in the sideband instability
after the first saturation, we will Taylor expand the
dynamical quantities around their saturation equilibria
and study how the perturbation is affected by the dynamical
system. Let us assume

E ¼ ðjE0j þ δE0 þ iδE00Þeiϕ
η ¼ ηR þ δη

θ ¼ θR þ δθ; ð14Þ

where θR ¼ ΘR − ϕ. The quantities denoted with δ are
considered to be small and sideband-related quantities.
Once these small perturbed quantities are comparable to
their unperturbed values, the linear or first-order analysis
no longer becomes valid and higher-order effects will come
into play. In this paper, however, we content ourselves with
the first order analysis because the sideband instability
growth at the onset is our primary interest.
Next, because we are linearizing the dynamical system,

we assume these perturbations do not interact with each
other and behave as ðδθ; δη; δE0; δE00Þ ∝ Reðeikẑ−iκûÞ, where
κ is assumed to be real and k can be in general complex.
The real part of k represents the propagation constant, while
the imaginary part indicates the growth (or damping) of the
associated quantities. Inserting Eq. (14) into Eqs. (5), (6)
and (10) and taking the ensemble average to first order
he−iδθi ¼ 1 − ihδθi will result in

d
dẑ

fhδθi − 1

fR
hδηi ¼ 0; ð15Þ

d
dẑ

hδηi − 2
fB
fR

½jE0j sinΘRhδθi − cosΘRðδE0Þ

þ sinΘRðδE00Þ� ¼ 0; ð16Þ
� ∂
∂ẑþ

∂
∂û

�
ðδE0Þ þ fB

fRjE0j
sinΘRðδE00Þ

þ fB
fR

sinΘRhδθi ¼ 0; ð17Þ

� ∂
∂ẑþ

∂
∂û

�
ðδE00Þ − fB

fRjE0j
sinΘRðδE0Þ

þ fB
fR

cosΘRhδθi ¼ 0: ð18Þ

In obtaining Eqs. (17) and (18) we have employed
Eqs. (11) and (12). The above four linearized equations
can be put in an algebraic form after decomposing into the
frequency domain

0
BBBBBB@

ik −f−1R 0 0

fRΩ2
syn;0 ik 2 fB

fR
cosΘR

fR
jE0jΩ

2
syn;0

− fR
2jE0jΩ

2
syn;0 0 iðk − κÞ − fR

2jE0j2 Ω
2
syn;0

fB
fR
cosΘR 0 fR

2jE0j2 Ω
2
syn;0 iðk − κÞ

1
CCCCCCA

×

2
6664
hδθi
hδηi
δE0

δE00

3
7775 ¼ 0: ð19Þ

Now the stability of such a linear system is determined
by the properties of the matrix. Existence of nontrivial
solutions require that the corresponding determinant of the
matrix vanishes. Then we have the following dispersion
relation

ðk2 −Ω2
syn;0Þ

�
ðk − κÞ2 − f2R

4jE0j4
Ω4

syn;0

�

−
f2B

f2RjE0j2
Ω2

syn;0 ¼ 0: ð20Þ

This dispersion relation has been derived in the existing
literature, e.g., Ref. [10–12,24]. In this equation we will
solve for k provided κ is given. From Eq. (20) it is obvious
that kð−κÞ ¼ −kðκÞ. It is worth pointing out that in our
analysis the spectrum of kðκÞ is symmetric in κ, which
means that the growth rates of both lower and upper
sidebands are equal. However in the numerical FEL
simulations the output radiation spectrum after saturation
usually consists of more lower sidebands than upper
sidebands because the electron beam is slightly detuned
and the favored electron beam is usually above resonance
(see, for example, Ref. [26] for further discussion). More
specifically, whether the lower or upper sideband domi-
nates (or both) depends on the detailed electron phase space
distribution in action space [26]. In the following we restrict
ourselves to the discussion of the dominant sideband,
which is usually, but not necessarily, the lower one. As
a matter of fact, in our studies we find that the predicted
results from Eq. (20) correspond well to the dominant
sideband. Note that in Eq. (20) the relevant quantities are
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basically z-dependent in the presence of undulator tapering.
Note also that in our theory the dynamical equations [i.e.
Eqs. (15)–(18)] are linearized, which means that in our
discussion the sideband growth will only behave exponen-
tially and no longer saturate. The linear or exponential
growth of the sideband signal(s) is of our primary concern
and the study of the sideband saturation is beyond the scope
of the analysis.
While there exist some approximate analytical solutions

[10,24], in the most general case the dispersion equation
needs to be solved numerically. We will have a brief
discussion in the next subsection on the approximate
analytical solutions and in Sec. III compare the semi-
analytical and numerical calculations of the dispersion
relation with the full 1-D FEL numerical simulation.

C. Semianalytical results

For Eq. (20), the behavior of the imaginary part of k,
Imk < 0, features the growth of the sideband signal,
where the maximum growth rate occurs at κ ≈Ωsyn;0ðẑÞ.
The general characteristics of the dispersion curve is shown
in Fig. 1. There exists a cutoff threshold for κ, above which
the oscillating electron beam will not interact with the
corresponding spectral components and the corresponding
signals do not exist.
Now let us try to find an analytical expression for the

maximum growth rate, i.e. we will look for k ¼
Ωsyn;0 þ δk, where δk is in general a complex quantity.
Inserting it into Eq. (20) and letting d2δk=dκ2 ¼ 0, we can
obtain an approximate expression for the instantaneous
maximum growth rate [10,24]

max jImkj ≈
ffiffiffi
3

p

2

�
f2BðẑÞΩsyn;0ðẑÞ
2f2RðẑÞjE0ðẑÞj2

�
1=3

: ð21Þ

Here the ẑ-dependence is explicitly attached for clarity.
This expression may still be less practical because, to
evaluate Eq. (21), many pieces of ẑ-dependent information

should be given in advance. Let us further simplify Eq. (21)
and express the maximum sideband growth rate in terms
of quantities at ẑ ¼ ẑb, where ẑb is the starting location of
the undulator tapering. We will separate the following
discussion into two cases: the gentle and strong undulator
tapering. Let us define the taper ratio Δ such that

fBðẑÞ ¼ 1 − ΔðẑÞ. For gentle tapering the taper ratio Δ ≪
ρjEð0Þ

0 j2 < 1 is assumed. The existing LCLS undulator
tapering with Δ ¼ 0.8% is an example of this case (where

ρ ≈ 1.57 × 10−3 and jEð0Þ
0 j ≈ 2.52). For Δ ≪ 1, we have

f2B ≈ 1–2Δ, fB=fR∼1−Δ,Ωsyn;0≈Ωð0Þ
syn;0ð1þΔ=4ρjEð0Þ

0 j2Þ
with Ωð0Þ

syn;0 the synchrotron frequency at ẑ ¼ ẑb for the

untapered case, and jE0j ≈ jEð0Þ
0 jð1þ Δ=2ρjEð0Þ

0 j2Þ. Then
Eq. (21) can be further simplified to be

max jImkjgentle taper ≈max jImkjun-tapered
×

�
1 −

1

2
ξþ 5

8
ξ2 −

15

16
ξ3 þ � � �

�
; ð22Þ

where ξ ¼ r½K2
0=ð4þ 2K2

0Þ�, r ¼ Δ=ρjEð0Þ
0 j2, and the

instantaneous sideband growth rate for the untapered case

is max jImkjun-tapered ≈
ffiffi
3

p
2
ðΩð0Þ

syn;0=2jEð0Þ
0 j2Þ1=3.

From Eq. (22) it is interesting to see that the undulator
tapering to some extent can reduce the sideband growth.
Note that Eq. (22) is only valid for small ratios of undulator
tapering (or r ≪ 1). For strong undulator tapering the taper

ratio is assumed to be ρjEð0Þ
0 j2 ≪ Δ < 1. For example,

Δ ¼ 15% with the aforementioned ρ and jEð0Þ
0 j. From

Eq. (13) the main signal can now be approximated to be

jE0j ≈
ffiffiffiffiffiffiffiffiffi
Δ=ρ

p ð1þ ρjEð0Þ
0 j2=2ΔÞ, and the synchrotron fre-

quency now becomes approximately Ωsyn;0 ≈ Ξð1 − Δ=2Þ
where Ξ2 ¼ −2

ffiffiffiffiffiffiffiffiffi
Δ=ρ

p
sinΘR. Inserting into Eq. (21)

results in

max jImkjstrong taper ≈
ffiffiffi
3

p

2

�
1

2
Ξ
ρ

Δ

�1
3

�
1 −

5

6
ðΔ − ρjEð0Þ

0 j2Þ
�
:

ð23Þ

From Eq. (23) one can see that, while stronger undulator
tapering can help reduce the sideband growth, it also effects
the accompanying (growing) main signal and will make
the reduction become ineffective. Figure 2 shows the
z-dependence of the maximum sideband growth rate for
two different taper ratios (or saturation main signals): 0.1%
undulator tapering (Δ ¼ 0.001 or r ¼ 0.1) and 20% undu-
lator tapering (Δ ¼ 0.2 or r ¼ 20). One can see that the
larger the ratio of undulator tapering (or the stronger the
main signal), the more reduced the instantaneous sideband
growth rate will be. The growth rate for strong undulator

0 1 2 3 4 5 6
0

0.1

0.2

0.3

κ

|Im
k|

FIG. 1. The growth rate jImkj as a function of κ. The dispersion
curve is obtained by solving Eq. (20) with Ωsyn;0 ≈ 4.4, jE0j ≈ 10,
and fB ¼ fR ¼ 1. The green dashed lines indicate the analytical
approximate solutions of the maximum growth rate max jImkj
[Eq. (21)] at κ ≈ Ωsyn;0.
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tapering will however gradually approach that predicted
by Eq. (23).
Before ending this section we note that the theoretical

analysis is based on the single-particle description [10,24],
i.e. the electrons executing synchrotron oscillations are
assumed deeply trapped around the bottom of the potential
well. Such a treatment has excluded possible asymmetric
sidebands from the radiation spectrum. It turns out that the
theoretical prediction in fact corresponds to the dominant
sideband in the next section. We also comment that
although the further simplified expressions, Eqs. (22)
and (23) [compared with Eq. (21)], may restrict the range
of validity, they should lead to clearer, approximate pre-
dictions and better insight into the FEL sideband growth.

III. COMPARISON WITH 1-D FEL NUMERICAL
SIMULATIONS

In Sec. II we have derived the dispersion relation for the
FEL sideband instability growth. Now we will compare the
semianalytical and numerical solutions of Eq. (20) with
the full 1-D FEL simulation results. The 1-D FEL simu-
lation numerically solves Eqs. (5), (6), and (10) in a self-
consistent manner. In this code the shot noise is generated
based on Penman-McNeil algorithm [27] and Fawley
beamlet scheme [28] and span to 2π for initial particle
phases of a beamlet. Each beamlet consists of 4 macro-
particles. Within a beamlet the particle energies are the
same. Among beamlets (which form a bunch slice), the
particle energies are sampled based on Gaussian distributed
pseudo-random number. The simulation evolves each
bunch slice (from tail to head) through the undulator
sections. Numerical implementation of the radiation advec-
tion between electron beam slices is made by applying the
appropriate discrete slippage. The interested reader is
referred to Ref. [29] for introduction of the numerical

algorithms. Table I summarizes the relevant beam, undu-
lator, and FEL parameters for a hard x-ray seeded FEL
configuration. The physical parameters are taken from an
LCLS-like electron bunch and undulator system. The key
numerical parameters include the mesh numbers for undu-
lator z-axis and bunch internal s-axis. The grid size along z,
Δz, is chosen that it should be smaller than the 1-D FEL
gain length L1D

g ≈ λu=4πρ and must be larger than the
undulator period λu (usually a multiple of λu ’s). The grid
size along s-axis, Δs, is chosen so that it should both
resolve at least one electron bunch slice in an integration
step Δz and satisfy the fundamental resonance condition.
In our 1-D FEL simulation we choose Δz ≈ 0.15 m, for the
≈50 m long undulator, Δs ≈ 10λu with the whole bunch
duration 7.2 μm, and 1024 macroparticles for each bunch
slice.
To compare the theoretical prediction presented in Sec. II

with the 1-D FEL simulation, we first need to analyze the
FEL output spectra. In FEL simulations, the representative
macroparticles of the electron beam will rotate in the
longitudinal phase space ðθ; ηÞ [see also Eqs. (5) and
(6)]. Such a rotation, i.e., synchrotron motion, will feature
a finite energy spread, which will result in spread of the
sideband spectrum [13]. For this we take the following
steps to more reasonably account for the spectral width due
to finite energy spread. First we define the trapping
parameter as

λ≡ 1

2

�
1 −

fRH
2fBjEj

�
; ð24Þ

where H is introduced in Eq. (3).
From Eq. (3) it can be found that the trapping parameter

λ varies from 0 to 1, corresponding to the electron located in
the very bottom or at the stable boundary (i.e., separatrix) of
the ponderomotive potential well, respectively. For sim-
plicity, we assume the electrons in the beam are uniformly
distributed in the longitudinal phase space bucket.
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FIG. 2. Sideband growth rate as a function of z for two cases:
the gentle and strong undulator tapering. The red solid line refers
to the gentle tapering and is obtained by numerically solving
Eq. (20) and taking the maximum value from the dispersion curve
at each z location; the red dotted line is calculated from Eq. (22)
for Δ ¼ 0.1%. The blue solid and black dotted lines refer to the
strong tapering, in which the former is obtained from Eq. (20) and
the latter from Eq. (23). In the black dotted line, Ξ ≈ 4.7 at

z ≈ 50 m. Here ρ ≈ 1.57 × 10−3 and jEð0Þ
0 j ≈ 2.52.

TABLE I. Numerical parameters for the beam, undulator and
radiation fields for the hard x-ray FELs.

Name Value Unit

Electron beam energy 10.064 GeV
RMS relative energy spread 10−4

Peak current 4 kA
Normalized emittances (x, y) 0.3,0.3 μm-rad
Average beta function (x, y) 5,5 m

Undulator parameter K0 (peak) 3.5
Undulator period 3 cm

Input seed power 1 MW
Resonance wavelength 2.755=4.5 Å=keV
First saturation power ∼80 GW
First saturation length ∼13 m
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The effective energy spread can be estimated to be H� ¼
ðση − ηRÞ2=2fB, where ση is the relative energy spread
normalized to ρ. This H� corresponds to an effective
trapping parameter λ� by Eq. (24). Then the synchrotron
frequency corresponding to H� will be [13]

ΩsynðẑÞ ¼
πΩsyn;0ðẑÞ
2E1ðλ�Þ

; ð25Þ

where Ωsyn;0ðẑÞ is the synchrotron frequency obtained in
Eq. (9), and E1 is the complete elliptic integral of the first
kind, defined as E1ðλÞ ¼

R π=2
0 dϑ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λsin2ϑ

p
. At the

bottom of the well, where λ ¼ 0 and E1ð0Þ ¼ π=2, we
have ΩsynðẑÞ ¼ Ωsyn;0ðẑÞ. The synchrotron frequency gets
smaller when a particle deviates farther from the synchro-
nous one.
To quantify the sideband signal or sideband field around

the sideband frequency, we evaluate

E�
s ðẑÞ ≈

1

cδΩ

Z
ω�
s ∓cδΩ

ω�
s

j ~EðωÞjdω; ð26Þ

where the upper and lower signs correspond to the upper
and lower sideband signal, respectively. δΩ ¼ Ωsyn;0ðẑÞ −
ΩsynðẑÞ is the sideband width, ω�

s ¼ ω0 � ωs, and ωs ≈
2γ2RðẑÞcΩsyn;0ðẑÞ is the shift of the central sideband
frequency from the main signal ω0.
Then we define the sideband field gain as

GðẑÞ≡
���� EsðẑÞ
EsðẑbÞ

���� ¼ eΛðẑÞ; ð27Þ

where

ΛðẑÞ ¼
Z

ẑ

ẑb

max jImkðζÞjdζ ð28Þ

is the sideband field growth. For simplicity, the superscript
� is neglected here. Equations (27) and (28) will be applied
to both lower and upper sidebands.
In the remaining part of this section we will demonstrate

an example based on LCLS-like parameters (see Table I)
and investigate the impact of different levels of undulator
tapering on the sideband instability. Then we will compare
the theoretical predictions based on the dispersion equation,
Eq. (20), with the results from 1-D FEL numerical
simulations. Figure 3 shows the evolution of the FEL peak
power as a function of z. In this work, we are mostly
interested in the third (last) section of LCLS undulator
system, which consists of 16 undulator segments (the 17th
to 32nd undulators) with the total length about 52 m. Each
undulator section consists of 110 undulator periods with
λu ¼ 3 cm. Within consecutive undulator sections the
undulator breaks are not accounted for in our simulation.

A step-wise undulator tapering with pure quadratic profile
is assumed and begins at z ≈ 10 m, i.e., from 20th
undulator. Shown in Fig. 3 the initial saturation occurs
at z ≈ 13 m for all three different cases: no taper (Δ ¼ 0),
gentle taper (Δ ¼ 0.8%), and strong taper (Δ ¼ 10%).
In the same figure we see that for 0.8% undulator tapering
the final power increases about 40% compared to the
untapered case. For an assumed 10% undulator tapering
(although LCLS does not have this option), the final power
grows about seven times that of the untapered case. Here
we do not intend to optimize the output power; therefore the
starting location of the undulator tapering and the taper
coefficients (with linear, quadratic or even with fractional
order) are not optimized. Instead, we put the emphasis on
sideband dynamics, particularly the spectral evolution in
our analysis and in the subsequent simulations. The dip
structure shown in Fig. 3 can be partially attributed by the
unoptimized taper, i.e. the power saturates around 13 m but
still oscillates until about 30 m and then starts to increase.
This would suggest that the taper starting location is still a
bit late, and it would be beneficial to begin the tapering
even earlier to obtain higher peak power. Another reason
for such a dip structure is that we use the ideal electron
beam. Each slice of the beam will respond in a relatively
coherent way, compared with the real beam, and will
therefore evolve with more evident synchrotron motions in
the longitudinal phase space. Such a synchrotron motion
will lead to energy transfer between the radiation and the
electron beam. These two reasons will lead to different
outcomes that are usually reported in the literature (see, for
example, Ref. [30]). Our theoretical analysis assumes the
beginning of undulator tapering at z ≈ 10 m. Note that the
theory does not distinguish the beginning of undulator
tapering from the saturation point. The 1-D gain length is
about 1.52 m in the present example. While there is not a
clear identification of saturation point, it is empirically
suggested that the undulator tapering can begin at about
two FEL gain lengths prior to the saturation [31].
Now let us look at the effect of different undulator

taperings on the sideband instability gain. Figure 4(a–c)
corresponds to three different situations with no taper,
0.8%, and 10% undulator tapering, respectively. From the

0 10 20 30 40 50
0

2

4

6

8

10
x 10

11

z (m)

po
w

er
 (

W
)

no taper
0.8% taper
10% taper

FIG. 3. FEL peak power as a function of z for untapered (red),
0.8%-tapered (green), and 10%-tapered (blue) cases.
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figure we see that both the theoretical predictions and
the 1-D FEL simulation results match reasonably well.
In particular, we find that as the taper ratio increases, the
sideband field gains become reduced, reflected in both
reduction of the slopes of the black solid and dotted lines
(theory) and those of red and blue curves (numerical
simulations). Comparing simulation results in Fig. 4(a)
and Fig. 4(b) with Fig. 4(c), we have an interesting
observation that the lower sideband dominates in the
untapered and gentle-tapered case while the lower and
upper sideband fields become comparable in the strong
undulator tapering. As mentioned in the previous section,
the single-particle treatment, which assumes the electrons
are deeply trapped around the bottom of the FEL ponder-
omotive potential well, will only give the symmetric
spectrum for sideband growth. Thus the theoretical

prediction can not distinguish whether the lower or upper
sideband will dominate. The otherwise dominant sideband
has always smaller sideband field growth and will be of less
concern. Such an asymmetric sideband spectrum, either
lower or upper sideband will dominate, can indeed depend
on the detailed electron distribution in the phase space [13].
Furthermore, in a short-wavelength FEL an electron beam,
composed of different longitudinal slices, may execute
slightly different synchrotron motions, and will then
respond to different portions of the sideband spectrum.
More specifically, it can be possible that only partial, not
the entire range, of the upper or lower sideband spectrum
will dominate against the other. The present theoretical
analysis simply assumes that electrons of all slices respond
identically. This is one reason that the theoretical prediction
overestimates the numerical simulation results. While our
focus is the impact of undulator taper gradient on the
sideband growth, we refer the interested reader to
Refs. [19,26] for the particular issue of asymmetric side-
band growth. Another observation is the sideband satu-
ration, where the sideband growth slows down or even
ceases. For example, in the untapered case, as z increases
from 10 m, the main-signal power in fact slightly decreases
(because of degradation of electron bunching) while the
sideband power increases. As z > 30 m, the sideband
power has become comparable to the main-signal power
and more sideband spectral contents begin to emerge. It is
expected that the linear theory is no longer valid. For the
case of 10% undulator tapering, the saturation may be a bit
delayed because the main signal can still grow, thanks to
strong undulator tapering.
Having compared the sideband field gains, let us

examine the evolution of FEL output spectra for the three
different undulator taperings. From Fig. 5(a) and (b), both
the main-signal power and sideband power with 0.8% taper
ratio are comparable to those of the untapered case.
Although being accompanied with increasing sideband
power, the main-signal power with 10% taper ratio rises
up to six times that of the untapered case. The increase of
the main signal due to undulator tapering also results in the
increase of synchrotron sideband frequency [Ωsyn ∝

ffiffiffiffiffiffiffiffijE0j
p

,
see Eq. (9)]. Thus the sampling synchrotron sideband
frequencies (marked as thin red or blue lines for lower
or upper sidebands, respectively) over the tapered FEL
output spectrum are pushed outward compared with the
untapered case. It can be even wider for larger taper ratio, as
evidenced in Fig. 5(b) and (c), for both lower and upper
sidebands. The thick red and blue lines in the subfigures are
used to indicate the final synchrotron sideband frequency at
the undulator exit. For the untapered case, the sampling
synchrotron sideband frequency does in fact move back
and forth within a certain sideband spectral range because
of the periodic oscillation of the saturation power about an
equilibrium (see also Fig. 3). The back-and-forth sampling
will result in accumulation of sideband field gain. When

FIG. 4. Sideband field gain lnGðzÞ as a function of z for
(a) untapered, (b) 0.8%-tapered, and (c) 10%-tapered cases. The
numerical simulations are averaged results from 50 independent
runs. The solid lines are obtained from solving Eq. (20) and the
dashed lines are evaluated by Eqs. (22) and (28). The shaded error
bars, denoted as statistical fluctuations (�1σ) from each inde-
pendent 1-D FEL numerical simulations, are marked with red and
blue and correspond to the lower and upper sideband signals,
respectively.
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increasing the ratio of undulator tapering, the sideband
spectrum will broaden and the corresponding sideband
field gain will be reduced. This numerical observation is
consistent with the analysis in Ref. [13].
It has been known that due to hardware limitations, the

amount of the taper ratio in LCLS undulator system can
only be up to 0.8%.We mentioned that the sideband growth
can be reduced by increasing the taper ratio [Eq. (22)]
(while the reduction will become ineffective as the taper
ratio continues to increase). Using numerical simulations it
can be found that 10% [as shown in Fig. 4(c) and Fig. 5(c)]
appears to be plausible for both maximizing the main signal
and reducing the sideband signal powers.
Note that the present analysis of quantifying sideband

field growth may have a limitation because the sampling
synchrotron sideband frequencies are drifting, associated
with varying or oscillating main-signal power. Besides, as
previously mentioned, an electron beam consisting of
different longitudinal slices will execute different phase

space motions and thus respond to different portions of the
sideband spectrum. An alternative way to quantify the
contributions of sideband and main-signal spectral contents
is to define the ratio R as the spectral power outside the FEL
gain bandwidth 2ρ (of the main signal) to that within 2ρ.
In general the larger this ratio is, the more contribution the
sideband signal makes. Figure 6 shows the dependence of
the main-signal power and the ratio R as a function of the
undulator tapering. Not shown here but a similar conclu-
sion is also drawn when we use a three-dimensional
numerical simulation [32].
As a side note, we have also applied the developed 1-D

FEL sideband theory and simulations to the soft x-ray
regime, in particular for the soft x-ray self-seeding
(SXRSS) case based on LCLS-like parameters. Assume
a reference beam energy of 4.0 GeV, relative rms energy
spread 1 × 10−4, normalized transverse beam emittance
0.5 μm, peak current 1 kA, and other beam and undulator
parameters the same as those listed in Table I. The FEL
parameters are: the input seed power is assumed 20 kWand
the resonant wavelength is 1.7422 nm. The self-seeding
chicane is located between the eighth and tenth undulator
sections, i.e., the exit of the first undulator section (among a
total of three big undulator sections). Let z ¼ 0 be at the
entrance of tenth undulator section. The initial saturation
occurs at z ≈ 15 m. Assume still 0.8% undulator tapering
and the same starting location of the previous hard x-ray
undulator configuration, which corresponds to z ≈ 36 m in
the present coordinate setup. Our numerical simulation
indicates that the sideband field gain reaches saturation
GðzÞ ≈ e6 ≈ 400 at z ≈ 45 m, which roughly corresponds
to the twenty-fourth undulator segment. This numerical
observation is consistent with what has been investigated in
the experiment (see, for example, Ref. [33]).

IV. SUMMARY AND DISCUSSION

In this paper we followed Refs. [23,24] to study the FEL
sideband effects based on similar parameters to those of the
operating LCLS X-ray FEL and have investigated the

FIG. 5. FEL output spectra for (a) untapered, (b) 0.8%-tapered,
and (c) 10%-tapered cases. Each of the spectra are overlapped at
several equal-distance z locations. The thin red and blue lines
denote the lower and upper sampling synchrotron sideband
frequencies, respectively. The thick red and blue lines indicate
the final synchrotron sideband frequency sampled at the undu-
lator exit.
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dependence of the sideband instability growth rate on the
undulator tapering. We derived the sideband dispersion
equation based on 1-D high-gain tapered FEL model in the
post-saturation regime, and further examined the approxi-
mate expressions for the maximum sideband growth rate.
With emphasis on the gentle and strong tapering, we
obtained Eqs. (22) and (23), respectively. In Eq. (22) we
find that the undulator tapering can have a mitigating effect
on sideband growth, through the direct taper ratio Δ, while
the increase of the main signal due to the undulator tapering
will make the reduction become ineffective [Eq. (23) or
Fig. 6]. Then we apply the theoretical predictions, includ-
ing the semianalytical and numerical calculations, and
compare with the full 1-D numerical FEL simulations
based on the LCLS-like beam and undulator parameters.
The sideband field is extracted from the FEL output
radiation spectrum by accounting for the finite energy
spread of the electron beam in the longitudinal phase space.
Both the theoretical prediction and the 1-D numerical
simulation show reasonably good agreement. The theory
predicts that the sideband growth rate (measured at
z ≈ 30 m about to sideband saturation) without undulator
tapering and with 0.8% tapering will be comparable and
about 3.8. The full 1-D numerical simulations indicate that
both corresponding growth rates are about 4, which is close
to the theoretical predictions. For 10% undulator tapering,
the theoretical prediction of the sideband growth rate
matches well at the onset of sideband instability until
z ≈ 15 m, and gradually overestimates the result from
numerical simulations at z ≈ 30 m, as explained before.
We have also provided an alternative quantification of
sideband to main signal ratio by defining the spectral
contents outside and inside the FEL gain bandwidth 2ρ.
The dependence of this ratio R on the undulator taper ratio
Δ also indicates the relative reduction of sideband power
due to strong undulator tapering.
The instantaneous growth rate obtained from Eq. (20)

[or Eqs. (21)–(23)] can serve as a quick estimate for the
FEL sideband effect. We have mentioned in Sec. I that the
analysis begins at the first saturation where the information
of the electron beam and radiation field should be provided.
In case when a machine and the undulator system are in
design status or the information at saturation is not yet
available, to estimate the beam parameters and FEL
performance at saturation we can apply the Ming-Xie
fitting formula [34] for SASE mode or the simplified
1-D FEL amplifier theory (see, for example, Ref. [35])
for seeded FEL mode.
As an FEL sideband instability study in this paper, we

note that the analysis is based upon single-particle descrip-
tion. That is to say, for a more general and realistic beam
phase space distribution with finite energy spread, the
approach adopted in this paper will be no longer valid and
the theoretical prediction can become inaccurate. In that
case we need to apply the Vlasov equation to properly treat

the phase space dynamics. Furthermore the model we
formulated is one-dimensional, which means that we have
neglected the effect from the transverse dimension on the
development of both the main signal and sideband fields.
To be specific, we have assumed the electron beam size be
much larger than the transverse extension of the radiation
field in the 1-D theory. The diffraction effect and the lack
of gain guiding [36] are not yet included in our analysis.
In reality after the saturation the gain guiding becomes
weaker and weaker, so that the confinement of the radiation
field due to electron transverse density profile should be
taken into account. Extending the present one-dimensional
analysis to the two-dimensional case by solving the radial
wave equation is planned.
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