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Discriminative and Distinct 
Phenotyping by Constrained Tensor 
Factorization
Yejin Kim1, Robert El-Kareh2, Jimeng Sun3, Hwanjo Yu4 & Xiaoqian Jiang2

Adoption of Electronic Health Record (EHR) systems has led to collection of massive healthcare data, 
which creates oppor- tunities and challenges to study them. Computational phenotyping offers a 
promising way to convert the sparse and complex data into meaningful concepts that are interpretable 
to healthcare givers to make use of them. We propose a novel su- pervised nonnegative tensor 
factorization methodology that derives discriminative and distinct phenotypes. We represented co-
occurrence of diagnoses and prescriptions in EHRs as a third-order tensor, and decomposed it using the 
CP algorithm. We evaluated discriminative power of our models with an Intensive Care Unit database 
(MIMIC-III) and demonstrated superior performance than state-of-the-art ICU mortality calculators 
(e.g., APACHE II, SAPS II). Example of the resulted phenotypes are sepsis with acute kidney injury, 
cardiac surgery, anemia, respiratory failure, heart failure, cardiac arrest, metastatic cancer (requiring 
ICU), end-stage dementia (requiring ICU and transitioned to comfort-care), intraabdominal conditions, 
and alcohol abuse/withdrawal.

A phenotype is an outward physical manifestation of a genotype. Investigating the association between pheno-
types and genotypes has been a principal genetic research goal1. Electronic health records (EHRs) are increasingly 
used to identify phenotypes because EHRs encompass several aspects of patient information such as diagno-
ses, medication, laboratory results, and narrative reports. Given the importance of these efforts, collaborative 
groups have been created to develop and share phenotypes obtained from EHRs, such as the Electronic Medical 
Records and Genomics (eMERGE) Network2 and the Observational Medical Outcomes Partnership3. Two of 
the main obstacles to generate phenotypes are the needs for substantial time and domain expert knowledge4, 5. 
Furthermore, phenotypes created using clinical judgement6, 7 or healthcare guidelines5, 8 in one institution often 
cannot be easily ported to the other institutions, reducing generalizability and leading to unstandardized pheno-
type definitions9.

Consequently, phenotyping based on machine learning has been proposed to facilitate extraction of mean-
ingful phenotypes automatically from EHRs without human supervision through a process called computational 
phenotyping. The most widely used approach is unsupervised feature extraction that derives meaningful and 
interpretable characteristics without supervision on data label. Frequent pattern mining defines phenotypes as 
a pattern that is frequently observed set of ordered items from sequential numerical data such as laboratory10, 11.  
A natural language processing technique extracts frequent terms from clinical narrative notes and defines phe-
notypes as a set of relevant and frequent terms12–14. These frequent set mining methods are useful but unable to 
learn underlying latent characteristics. Deep learning methods such as autoencoders or skip-grams represent 
patient as a vector15–17, but it is hard to derive understandable latent concepts due to the nonlinear combinations 
of multiple layers.

Recently, dimensionality reduction phenotyping methods have been introduced to handle sparse and noisy 
data from EHRs’ large and heterogeneous features. These methods represent phenotypes as latent medical con-
cepts18. That is, the phenotypes are defined as a probabilistic membership to medical components, and patients 
also have a probabilistic membership to the phenotypes. For example, Bayesian finite mixture modeling discov-
ers Parkinson’s disease phenotypes as latent subgroups19. Another dimensionality reduction technique, matrix 
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factorization, decomposes time-series matrix data from EHRs into latent medical concepts20–22. Most recently, 
nonnegative tensor factorization (NTF) is becoming particularly popular due to its ability to capture high dimen-
sional data. It generates latent medical concepts using interaction between components from multiple informa-
tion source23–27. Ho et al. first introduce NTF for phenotyping23, 24. They define phenotypes as sets of co-occurring 
diagnoses and prescrptions, and obtain the phenotypes from latent representation of the co-occurrence. They use 
Kullback-Leibler divergence to decompose the observed co-occurrences that follow Poisson distribution based 
on CP decomposition. Ho et al. also incorporate sparsity constraints by setting thresholds for negligibly small 
values. Wang et al. enforce orthogonality constraints on NTF to derive less overlapping phenotypes25. Another 
NTF based on Tucker decomposition discovers (high-order) feature subgroups as decomposing the tensor into a 
core tensor multiplied by orthogonal factor matrices for each mode. It uses the core tensor to encode interactions 
among elements in each mode26, 28.

One of important characteristics that phenotypes should have is to be discriminative to a certain clinical 
outcome of interest such as mortality, readmission, cost, et al. So far, however, there has been little consideration 
about discriminative phenotypes associated with certain clinical outcomes. The discriminative phenotypes can be 
beneficial to clinicians because they can directly apply the phenotypes to their daily practice to improve the clin-
ical outcome of interest. For example, clinicians can use our phenotype to evaluate patients’ risk of hospital death 
like APACHE II or SAPS score does, and improve resource allocation and quality-of-care in ICUs. Membership to 
the several different phenotypes can provide an insight on the situation of a patient beyond a single score. In addi-
tion, another crucial characteristic for phenotypes is to be distinct from each other, because otherwise clinicians 
cannot interpret and use the phenotypes easily. For example, let us say a patient suffers from hypertension and 
diabetes. To represent the patient, we can use a mixture of two phenotypes. We prefer Phenotype 1 = {hyperten-
sion, ACE inhibitors}, Phenotype 2 = {diabetes, insulin} to Phenotype 1 = {hypertension, ACE inhibitors, insu-
lin}, Phenotype 2 = {diabetes}, because the former is more distinct and meaningful than the latter. Yet another 
critical concern about phenotypes is the compactness. Generally speaking, compact representation is more pref-
erable than the lengthy one to end users if both have the same discrimination power and distinctness.

This paper proposes a new tensor factorization methodology for generating discriminative and distinct phe-
notypes. We defined phenotypes as the sets of co-occurring diagnoses and prescriptions. We used a tensor to 
represent diagnosis and prescription information from EHRs, and decomposed the tensor into latent medical 
concepts (i.e., phenotypes). To discriminate a high-risk group (high mortality), we incorporated the estimated 
probability of mortality from logistic regression during the decomposition process. We also found cluster struc-
tures of diagnoses and prescriptions using contextual similarity between the components, and absorbed the clus-
ter structure into the tensor decomposition process.

Methods
We first describe a computational phenotyping method that we developed (Fig. 1) and experiment design.

Phenotyping based on tensor factorization. We built a third-order tensor  with co-occurrences of 
patients, diagnoses, and prescriptions from intensive care unit (ICU) EHRs. Detailed tensor construction can be 
found in Supplementary methods. The co-occurrence is a natural representation of interactions between many 
diagnoses and prescriptions. We only focused on diagnosis and prescription data as previous phenotyping defini-
tion29–31, but we can extend the tensor to a high order (>3) to utilize additional data such as laboratory results and 
procedures. Specifically, we first built a matrix for individual patient to represent association between prescription 

Figure 1. Workflow of our phenotyping method. We constructed a tensor using the number of co-occurrences 
between diagnoses and prescriptions of each patient in EHRs. We then decomposed the tensor using the 
proposed constrained tensor factorization that incorporates regularizers for discriminative and distinct 
phenotypes. We defined phenotype as a set of co-occurring diagnoses and prescriptions, which can be inferred 
using decomposed tensors, and evaluated their discriminative and distinct power. We also selected top 10 
representative phenotypes and presented its meaning and usefulness.
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and diagnosis. For example, let us say patient 1 is diagnosed with acute respiratory failure and hypertension, and is 
ordered the medicine phenylephrine during his or her admission. Then, each co-occurrence of acute respiratory 
failure and phenylephrine, and hypertension and phenylephrine is one, respectively (Fig. 2). Again, let us say patient 
I is diagnosed with Alzheimer’s disease and is ordered medicine morphine sulfate twice. Then, the co-occurrence 
of Alzheimer’s disease and morphine sulfate is 2. We collected all the matrices from all the patients and built the 
third-order observed tensor . Entries at (i, j, k) of the tensor (i.e., i,j,k) is the number of co-occurrence of diag-
nosis j and prescription k for patient i.

To decompose the tensor, we used CP algorithm32, 33; detailed description of CP can be found in Supplementary 
methods. Recently, phenotyping based on Tucker model has been proposed26, 28. It provides a more flexible mod-
eling than does CP by allowing subgroups in each mode, but CP has an advantage in that it is computationally 
cheap and extendable by imposing regularizers. Using CP model, the third-order tensor  was decomposed into 
three factor matrices: A for patient mode, B for diagnosis mode, and C for prescription mode (Fig. 3). A pheno-
type consisted of diagnoses and prescriptions, and patients were involved in each phenotype. That is, the r th 
phenotype consisted of J diagnoses and K prescriptions with membership values that describe how much the 
diagnoses and prescriptions are involved and contribute to the r th phenotype. The membership values were nor-
malized values between 0 and 1, and stored in the normalized vectors B r:  and C r: , respectively. Meanwhile, 
patients were involved in the R phenotypes with membership values that represent how much the patient has the 
characteristic of the phenotypes. The membership values of patients were also normalized values between 0 and 
1, and stored in the normalized vector A r: . Ability of r th phenotype that can capture and describe the data was 
stored in λ = A B Cr r F r F r F: : : , because large values in A:r, B:r, and C:r means that the r th phenotype 
describes large portion of co-occurrence values in . So, conversely, a phenotype with highly co-occurring diag-
nosis and prescription may have large λr.

For example, ICU survived patients (half of total patients) have Phenotype 1 in Fig. 3, which consists of the first 
two elements of diagnosis mode and the first one element of prescription mode. The second diagnosis element has 
higher membership to the Phenotype 1 than the first element does. The patients who died in ICU have Phenotype 
2, which consists of the third diagnosis and the second prescription. Similarly, the deceased patients and a few 
patients who survived have Phenotype R, which consists of the fourth diagnosis and the third prescription. Note 
that in this example, elements in a phenotype are not overlapped with elements in other phenotypes; thus, we can 
interpret the phenotype easily. Also, note that phenotypes for the deceased patients and the patients who survived 
are separated so that we can easily determine which phenotypes are more associated with mortality; consequently, 
we can further use the phenotypes to evaluate the risk of patients according to the membership to the phenotypes. 
We introduced two regularizations to make the phenotype discriminative and distinct in the following sections.

Supervised phenotyping for discriminative power. We proposed a supervised approach to encourage 
the phenotypes separated according to mortality by adding a logistic regression regularization. In the previous 
section, patients had the membership values to the phenotypes. We used the membership as a feature vector to 
express patients, and used the feature vector to predict mortality. As a previous work on graph-based phenotyp-
ing method21, we added a regularization for supervised term. Let us say yi is a binary indicator of mortality, i.e., 
yi = 1 if i th patient dies during hospital admission and yi = −1 otherwise. The i th patient in training set L (i ∈ L) 
was represented as the membership values to the phenotypes, Ai:, which is the i th row vector of A. Given logistic 
regression parameters θ, a probability of i th patient’s mortality to be yi is

θ
δ

=
+ −

P y
y

A( , ) 1
1 exp( ) (1)

i i
i i

:

where δi = [Ai:, 1] · θ. We then maximized the log-probability, or minimize the negative log-probability,

θ− .P yAmin log ( , ) (2)i i:

Figure 2. Constructing tensor from EHRs. We built a third-order tensor  with co-occurrences of patients, 
diagnoses, and prescriptions from EHRs. Patient I is diagnosed with Alzheimer’s disease and is ordered 
morphine sulfate twice.
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Thus, the objective function for updating each row Ai: is

ω θ= − − .f P yA A C B O A( ) ( ) log ( , ) (3)i i
T

i F i i: : (1) :
2

:

with a weighting constant ω ( refers to Khatri-Rao product). Note that this objective function is with respect to 
row Ai: not the whole patient factor matrix A. Gradient of f(Ai:) is

ω
δ

θ∇ = − −
+

  f y
y

A A C B C B O C B( ) 2 ( ) ( ) 2 ( ) 1
1 exp( ) (4)

i i
T

i i
i i

T
: : (1) :

and hessian of f(Ai:) is

ω
δ δ

θθ∇ = +
+ + −

. f
y y

A C B C B( ) 2( ) ( ) 1
2 exp( ) exp( ) (5)

i
T

i i i i

T2
:

Using Newton’s gradient descent method, if i ∈ L, we update Ai: as

= − ∇ ∇ .−f fA A A Amax(0, ( ) ( )) (6)i i i i: :
2

:
1

:

If i ∉ L, we update Ai: as Eq. (6) with ω = 0, which is a traditional CP decomposition without any regulariza-
tion. Time complexity of Eq. (6) is bounded by O(JKR2) for i ∈ L; total time complexity to update A is bounded 
by O(IJKR2) (Table S1). The supervised term had negligible effects on the total time complexity. This updating 
rule can be linearly scaled up to the size of A. Updating the logistic regression parameters θ followed a typical 
logistic regression modeling method. We added a ridge penalty to shrink the size of θ and avoid overfitting (c is 
a weighting constant)34 as

θ θ− + .P y cAmin log ( , ) (7)i i:
2

Similarity-based phenotyping for distinct power. To derive distinct phenotypes with less overlapping 
with each other, we made phenotypes only consist of similar elements. We first derived components’ similarities 
from contexts in EHRs, used the similarities to infer cluster structures, and let phenotypes reflect the cluster 
structures.

Deriving contextual similarity. We derived contextual similarities from EHRs. Farhan et al. generate a 
vector representation of medical events (or elements in phenotype)17. Based on this work, we generated sequences 
that consist of diagnoses and prescriptions from EHRs in time order (Table 1). We applied Word2Vec, a two-layer 
neural network for natural language processing for numerical representation of discrete words35. We input the 
time-ordered EHRs sequences into Word2Vec and derived a set of vectors for each diagnosis or prescription. 
After several trials, we set cardinality of the vector as 500 and window size of the sequence (i.e., the number of 

Figure 3. Phenotyping by tensor factorization. Dark shade, light shade, and no shade represents high 
membership, low membership, and zero membership to the phenotype, respectively. Patients who died have 
high membership to Phenotype 2 and Phenotype R.

Lorazepam → Acetaminophen → Piperacillin-
Tazobactam → Ventricular fibrillation

Diltiazem → Pneumococcal Vac Polyvalent → Anemia → Chronic 
obst asthma

Pantoprazole Sodium → Acetaminophen

Oxycodone → Heparin Flush → Severe sepsis

Table 1. Examples of time-ordered EHRs sequences. Each sequence consists of formulary drug codes 
(prescription) and ICD-9 codes (diagnosis), and is used in Word2Vec to derive pairwise similarities.

http://S1
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diagnoses or prescriptions in a sequence to consider them contextually similar) as 30. We found that, as the car-
dinality increases, distribution of the pairwise similarities spreads widely (i.e., many similarity values are close to 
−1 or 1 other than 0), but computation time also increases rapidly. We also observed that most of the pairwise 
similarities become close to 0 as the window size decreases, and close to 1 as the window size increases.

We then computed cosine similarities between the vector representation of elements, and derived  
a pairwise similarity matrix (either J × J matrix SB for diagnosis or K × K matrix SC for prescription). For  
example, let us say the j1 th and j2 th diagnoses in our dataset refer to atrial fibrillation and congestive heart failure, 
respectively. The vector representation is atrial fibrillation =  (0.1, 0.6, 0.2, 0.1) and congestive  
heart failure = (0.3, 0.7, 0.1, 0.2). The similarity between them is stored at (j1, j2)-entry of SB, and the value is 

= ≈ .. × . + . × . + . × . + . × .
. .

S 0 95j j
B

,
0 1 0 3 0 6 0 7 0 2 0 1 0 1 0 2

0 42 0 631 2
.

We made S sparse for efficiency by ignoring trivial values. Many similarities were close to zero, and their small 
variance did not provide useful information. Similarities less than zero refer to dissimilarity, which was not the 
focus of this work. Considering all the less useful similarity values can increase computational overhead. We only 
used the highest l similarities value for each element, and consider the others as 0. We choose = ⌊ ⌋l Jlog2  for 
diagnosis and >⌊ ⌋K llog ( 0)2  for prescription according to previous works36, 37.

We converted S into a normalized-cut similarity matrix38. Incorporating the normalized cut similarity helped 
our problem to increase both the total dissimilarity between the different phenotypes and the total similarity 
within the phenotypes, thus avoid overlapping between the phenotypes. Converting to the normalized cut sim-
ilarity matrix is

← − −S D SD (8)1
2

1
2

where D is a diagonal matrix of = … = ∑ =diag d d dD S( , , ),J j l
J

jl1 1 .

Incorporating cluster structure. With the similarity matrix, we inferred a cluster structure from the sim-
ilarity and incorporated it to our NTF optimization. The cluster structure contained information on which ele-
ments should be in the same phenotype together. We introduced a regularization term for the spectral clustering. 
We increased the sum of pairwise similarity within a phenotype. Because how much the elements are involved 
in each phenotype is different, the pairwise similarity was weighted by the two elements’ membership values to 
the phenotype. That is, in terms of diagnosis similarity matrix SB, the sum of weighted pairwise similarity within 
a phenotype r is

∑ ∑
= =

B B S ,
(9)j

J

j

J

j r j r j j
B

1 1
, , ,

1 2
1 2 1 2

and the sum of all the similarity in Eq. (9) throughout the R phenotypes is

∑ ∑ ∑ ∑= = .
= = = =

B B S B S B B S BTr( ) Tr( )
(10)r

R

j

J

j

J

j r j r j j
r

R

r
T

r
TB B B

1 1 1
, , ,

1
: :

1 2
1 2 1 2

Here, Tr(BTSBB) is the objective of spectral clustering in which B represent the clustering assignment of each 
element37. Consequently, the phenotypes preserved the spectral clustering structure by incorporating sum of 
weighted similarity. Meanwhile, Tr(BTSBB) is also equivalent to symmetric nonnegative matrix factorization of 
similarity matrix SB36, 39, i.e.,

↔ −B S B S BBmax Tr( ) min (11)T TB B 2

because

↔ − = − +

= −

B S B B S B S B S B B B

S BB

max Tr( ) min 2Tr( ) min 2Tr( )

min (12)

T T T T

T

B B B

B

2 2

2

by relaxing a constraint on BTB = I39. This transformation is beneficial because it helps phenotypes to be more 
orthogonal (or distinct) by retaining BT orthogonality approximately39. Thus, the objective function with the 
cluster structure is

µ= − + −g B B C A O S BB( ) ( ) (13)T TB
(2)

2 2

with a weighting constant μ. By incorporating −S BBTB 2, our phenotyping method can absorb the spectral 
clustering structure and improve the orthogonality at the same time. Although it is a fourth-order non-convex 
function and it is difficult to find a global optimum, it can converge to a stationary point36. To find an optimum 
value, we derived the gradient of g(B):

µ∇ = − + −  g B B C A C A O C A BB S B( ) 2 ( ) ( ) 2 4 ( ) , (14)T T B
(2)

and hessian of g(B):
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µ∇ = ⊗ +

+ − ⊗
×

× ×

 g vec vec vec

vec vec

B C A C A I B B

B B I I S

( ( )) 2( ) ( ) 4 (2 ( ) ( )

( ) ( ) ), (15)

T
J J

T

T
JR JR R R

B

2

where a vec(B) of length JR is a vectorization of B by column i.e., = …vec B B B( ) [ , , ]T
R

T T
:1 : , and ⊗ refers to 

Kronecker product. Using Newton’s gradient descent method, we updated B as

= − ∇ ∇ .−vec vec g vec g vecB B B B( ) max(0, ( ) ( ( )) ( ( ))) (16)2 1

Time complexity of Eq. (16) is bounded by O(IJKR) + O(J3R3). The similarity term had negligible effects on the 
total time complexity (Table S2). The updating rule for B contained matrix inversion of ∇ ∈ ×g vec B( ( )) JR JR2 , 
which may not be scaled up well with large J. In this case, we can use a constant learning rate instead of 
∇ −g vec B( ( ))2 1 although sacrificing converging rate.

Similarly, the factor matrix C for prescriptions followed the same update procedure. We repeated the updating 
procedures for the factor matrices A, B and C and logistic regression parameter θ until convergence. We assumed 
convergence when − < × −fit fit 5 10old

4 where fit is defined as O X
O

= −
−fit 1 , and fitold is the fit of the 

previous iteration. After normalizing, we removed trivial values less than threshold ε because those values are too 
small for meaningful membership value and worsen the conciseness. We summarized the entire updating proce-
dures in Algorithm 1.

Experiment design. Dataset and preprocessing. We used a large publicly available dataset MIMIC-III 
(Medical Information Mart for Intensive Care III)40. MIMIC-III contains comprehensive de-identified data on 
around 46,520 patients in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012, 
and it includes information such as demographics, prescription, diagnosis ICD codes, and clinical outcomes such 
as mortality. We selected 10,028 patients, including all 5,014 patients who died during admission and a random 
sample of 5,014 of patients who survived. If a patient who survived had multiple admission histories, we used the 
first admission. We used 202 diagnosis ICD-9 codes that are appeared in the charts of at least 5% of the patients 
and 316 prescription codes that appeared in at least 10% of the patients. We excluded diagnosis ICD-9 ‘V’ or ‘E’ 
codes that describe supplementary factors for health status. We excluded trivial base type prescriptions such as 
0.9% sodium chloride, 5% dextrose, and sterile water. Most nonzero co-occurrence values are one, and skewed 
right (Fig. S1). To prevent small-dosage frequent medicines from having high co-occurrences, we truncated the 
co-occurrence values to 1% percentile, 10 (Fig. S1).

Evaluation measures. We evaluated our proposed method in terms of discrimination and distinction. We meas-
ured the discrimination by the area under the receiver operating characteristic curve (AUC), sensitivity, and 
specificity. We measured distinction by a relative length of phenotype and an average overlap. An absolute length 
of r th phenotype is the number of nonzero in membership vector B:r and C:r. The relative length of the phenotype 
is the absolute length divided by the maximum length J + K. We averaged the R relative lengths of phenotype. The 
average overlap41 measures the degree of overlapping between all phenotype pairs. It is defined as the average of 
cosine similarities between phenotype pairs:

=
∑ ∑ +

−
.

> { }
R R

B B C C
Avg Overlap

cos( , ) cos( , )

( 1) (17)
r
R

r r
R

r r r r: : : :1 2 1 1 2 1 2

Setting R = 50, we repeatedly ran our models ten times for 10-fold cross validation. We used the training set to 
compute the regression parameter θ and the likelihood term in supervised phenotyping, and used the test set to 
measure the discrimination (Table S3). Because tensor factorization is not deterministic method, the factorized 
tensors are different in each trial; so, we computed mean and 95% confidence interval.

Algorithm 1 Discriminative and distinct phenotyping
Input: ω µ, ,

  1:  Randomly initialize A, B, C.

  2:  repeat

  3:          = − ∇ ∇−f fA A A Amax(0, ( ) ( ))i i i i: :
2

:
1

:  for all i.

  4:         Update θ for logistic regression

  5:          = − ∇ ∇−vec vec g vec g vecB B B B( ) max(0, ( ) ( ( )) ( ( )))2 1 .

  6:          = − ∇ ∇−vec vec g vec g vecC C C C( ) max(0, ( ) ( ( )) ( ( )))2 1 .

  7:   until Converged

  8:    ←A r
r
r

A
A:

:
:

, ←B r
r
r

B
B:

:
:

, ←C r
r
r

C
C:

:
:

, ∀ r

  9:    ← < −A A0 if 10ir ir
6, ← < −B B0 if 10jr jr

3, ← < ∀− i j k rC C0 if 10 , , ,kr kr
3

  10:   return λ= ∑ = A B Cr
R

r r r r1 : : : .
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Baselines. We compared the discrimination and the distinction of our proposed methods with that of several 
baseline methods. The baselines are:

•	 APACHE II, SAPS II, OASIS, APS III score: Disease severity scores for predicting mortality in intensive 
care unit (for comparing discrimination only)42–45. These scores assess the severity of disease using variables 
from pre-existing conditions, physiological measurements, biochemical/hematological indices, and source of 
admission. The weighted sum of individual values produces the severity scores46.

•	 CP: Basic NTF model47, 48.
•	 Rubik: A state-of-the-art computational phenotyping method based on CP. Rubik generates a phenotype 

candidate using count of diagnoses and treatments. It incorporates the orthogonality between phenotypes to 
derive concise phenotypes41. We assume no existing knowledge term and bias term.

Our proposed methods are:

•	 The supervised phenotyping that incorporates the prediction term for discriminative phenotypes (ω ≠ 0, 
μ = 0).

•	 The similarity-based phenotyping that incorporates the cluster structure term for distinct phenotypes 
(ω = 0, μ ≠ 0).

•	 The final model that incorporates the both supervised and similarity-based approach (ω ≠ 0, μ ≠ 0).

When evaluating discrimination (AUC, sensitivity, specificity) of NTF-based models, we used the patient’s 
membership values (i.e., Ai: of size 1 × R) as features to fit a binary logistic regression to predict mortality. 
Particularly, for the supervised model, we fitted a binary logistic regression (after normalization) other than θ that 
are used during updating procedures. To examine the performance of the supervised and similarity-based phe-
notyping respectively, we compared the discrimination of CP and the supervised phenotyping (regardless of 
similarity term), and also compared the distinction of Rubik and similarity-based phenotyping (regardless of 
supervised term). We then combined the supervised approach and similarity-based approach together to achieve 
both discrimination and distinction. The weighting constants ω and μ were selected as ω = 1 and μ = 1000 after 
several trials. Note that ω was comparably small because it sensitively applied to each row of A whereas μ applies 
to the l2 norm of the whole matrix B or C. We used a tensor Matlab Tensor Toolbox Version 2.549 from Sandia 
National Laboratories to represent tensors and compute tensor operations.

Results
We present the experimental evaluation and phenotypes derived from our method.

Discriminative and distinction power comparison. We found that our methods outperformed other 
baselines in terms of discrimination and distinction. The supervised phenotyping method showed the highest 
AUC and sensitivity among the other methods including APACHE II and SAPS II (Table 2). The similarity-based 
phenotyping method showed the lowest relative length and average overlap among the other methods. 
Particularly when compared with Rubik25 that considers orthogonality for the distinction, the similarity-based 
method improved the distinction significantly (the relative length of 0.3934 vs 0.0714).

Phenotypes. We presented the phenotypes that are derived from the similarity-based phenotyping method 
for maximum conciseness. After the tensor decomposition procedures with R = 50, we selected 25 phenotypes 
by forward feature selection50 to remove phenotypes that are redundant and not statistically significant for pre-
dicting mortality (Table 3). Among them, we reported ten representative phenotypes in which coefficients from 
the feature selection were large enough (absolute value of coefficient >20) to discriminate mortality (Table 4): 

RMSE AUC Sensitivity Specificity Rel. Length Avg. overlap

APACHE II42 — 0.7364 0.6712 0.6728 — —

SAPS II43 — 0.8129 0.7970 0.6720 — —

OASIS44 — 0.7227 0.6253 0.7077 — —

APS III45 — 0.7419 0.6861 0.6994 — —

CP32, 33 2.2153 (±0.0015) 0.8469 (±0.0156) 0.8375 (±0.0391) 0.7342 (±0.0401) 0.6807 (±0.0047) 0.3777 (±0.0064)

Supervised 2.2152 ±(0.0016) 0.8568 (±0.0106) 0.8392 (±0.0377) 0.7518 (±0.0393) 0.6828 (±0.0019) 0.3787 (±0.0059)

Rubik25 2.5025 (±0.0003) 0.7779 (±0.0247) 0.7310 (±0.0304) 0.7242 (±0.0377) 0.3934 (±0.0102) 0.2806 (±0.0075)

Sim.-based 2.5069 (±0.0130) 0.7796 (±0.0204) 0.7615 (±0.0378) 0.7097 (±0.0473) 0.0714 (±0.0406) 0.0013 (±0.0014)

Supervised + Sim.-
based 2.3014 (±0.0060) 0.8389 (±0.0199) 0.8223 (±0.0387) 0.7487 (±0.0409) 0.3958 (±0.0137) 0.1267 (±0.0100)

Table 2. Discriminative and distinction power comparison. RMSE, discrimination (AUC, sensitivity, 
specificity) and distinction (Relative length, Average overlap) with 95% confidence interval of baselines and 
our proposed models when R = 50. CP = CP decomposition, Supervised = the supervised phenotyping for 
discriminative power, Sim.-based = the similarity-based phenotyping for distinct power, Supervised + Sim. 
-based = the final model that incorporates the both supervised and similarity-based phenotyping.
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sepsis with acute kidney injury, cardiac surgery, anemia, respiratory failure, heart failure, cardiac arrest, meta-
static cancer (requiring ICU), end-stage dementia (requiring ICU – sepsis, aspiration, trauma – and transitioned 
to comfort care), intraabdominal conditions, and alcohol abuse/withdrawal.

We categorized the phenotypes into four groups according to frequency (common or rare) and risk (high 
or low). Common phenotypes were the top five with high λ and prevalence (and rare otherwise). High-risk 
(low-risk) phenotypes were ones with positive (negative) logistic regression coefficients (Table 3). As a result, 
common and high-risk phenotypes are sepsis with acute kidney injury, respiratory failure, and heart failure; rare 
but high-risk phenotypes are cardiac arrest, metastatic cancer requiring ICU, and end-stage dementia requiring 
ICU; common but low-risk phenotypes are anemia and cardiac surgery; and rare and low-risk phenotypes are 
intraabdominal conditions and alcohol abuse/withdrawal (Fig. 4).

To examine the risk of each phenotype in detail, we computed mortality of patients who were highly involved 
to each phenotype (Table 5). We observed that the mortality of patients who have high membership to pheno-
types that are denoted as high-risk in Fig. 4 tends to increase to 1.

Discussion
The objective of this study was to develop a phenotyping method that can generate discriminative and distinct 
phenotypes. As a result, we derived phenotypes that consist of interactions between related diagnoses and pre-
scriptions, and patients had membership to each phenotype. The phenotypes from the supervised model were 
more discriminative than APACHE II, SAPS II scores and the phenotypes from CP model32, 33; the phenotypes 
from the similarity-based model were more distinct than the phenotypes from Rubik25. We also observed that 

Phenotype Coefficient p-value λ Prevalence

Intercept −0.19 <0.001 — —

1 28.47 <0.001 749 94.53

3: Sepsis with 
acute kidney 
injury

44.64 <0.001 96 45.24

4: Cardiac surgery −138.00 <0.001 95 50.43

5: Anemia −19.76 <0.001 58 36.81

6: Respiratory 
failure 88.87 <0.001 56 30.98

10: Heart failure 30.79 <0.001 39 27.19

11 15.13 <0.001 37 16.74

13 −15.23 <0.001 31 22.48

15 −7.74 0.02 30 19.02

16 8.69 <0.001 29 42.99

18: Cardiac arrest 47.08 <0.001 28 9.14

20 −11.49 <0.001 23 9.70

21 −5.54 0.02 22 18.46

23: Metastatic 
cancer requiring 
ICU

25.10 <0.001 20 12.29

24: End-stage 
dementia 
requiring ICU

34.46 <0.001 20 12.72

25 12.81 <0.001 18 15.08

28 −9.00 <0.001 17 10.23

29 10.78 <0.001 16 18.06

31 10.42 0.01 16 6.13

32: 
Intraabdominal 
conditions

−19.21 <0.001 15 4.84

33 −6.41 0.04 14 5.12

34: Alcohol abuse/
withdrawal −22.82 <0.001 13 12.57

41 −19.89 <0.001 10 16.23

46 13.54 <0.001 8 7.20

47 −9.78 <0.001 6 7.96

Table 3. Logistic regression coefficient from feature selection, p-value, and prevalence. Ten representative 
phenotypes are 3: Sepsis with acute kidney injury, 4: Cardiac surgery, 5: Anemia, 6: Respiratory failure, 10: 
Heart failure, 18: Cardiac arrest, 23: Metastatic cancer requiring ICU, 24: End-stage dementia requiring ICU 
for comport care, 32: Intraabdominal conditions, 34: Alcohol abuse/withdrawal. λr = ||A:r||F||B:r||F||C:r||F (for 
frequency). Prevalence = (the number of patients whose membership to the phenotype is non-zero/the total 
number of patients) × 100%.
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the supervised phenotyping and the similarity-based phenotyping have an opposite effect on each other in terms 
of the discrimination and distinction. The distinct phenotypes from the similarity-based approach lost its dis-
criminative power, and the discriminative phenotypes from the supervised approach lost distinction power. A 
possible explanation for this trade-off is that the similarity-based model tends to ignore less relevant elements in 
a phenotype to achieve the best distinction, although the “less relevant elements“ can contribute to increasing the 
discriminative power overall. However, the combined phenotypes from both approaches achieved the high dis-
crimination and distinction at the same time (Table 2). When combining the supervised and the similarity-based 
phenotyping, the discrimination increased (with the AUC of 0.8389) compared to the similarity model (with the 
AUC of 0.7796), and distinction improved (with the relative length of 0.3958 and average overlap of 0.1267) com-
pared to the supervised model (with the relative length of 0.6828 and average overlap of 0.3787).

We also described the most representative phenotypes: sepsis with acute kidney injury, cardiac surgery, 
anemia, respiratory failure, heart failure, cardiac arrest, metastatic cancer (requiring ICU), end-stage dementia 
(requiring ICU and transitioned to comfort care), intraabdominal conditions, and alcohol abuse/withdrawal. 
These conditions are fairly consistent with the list of conditions known to require ICU care in US hospitals51.

Sepsis with acute kidney injury Cardiac surgery (CABG/valve replacements)

Diagnosis Prescription Diagnosis Prescription

Acute kidney failure NOS, 
Acute kidny fail - tubr necr, 
Acute respiratry failure, Severe 
sepsis, Septic shock, Septicemia 
NOS

Vancomycin, Ciprofloxacin, 
Piperacillin-Tazobactam, 
CefePIME, Linezolid, 
Meropenem, Miconazole 
Powder, Nystatin Oral 
Suspension, Alteplase, 
Fluconazole, Loperamide HCl

Hypertension NOS, 
Crnry athrscl natve vssl, 
Hyperlipidemia NEC/NOS, 
Atrial fibrillation, DMII 
wo cmp nt st uncntr, Pure 
hypercholesterolem, Surg compl-
heart, Aortic valve disorder

Phenylephrine HCl, 
Neostigmine, Aspirin EC, 
Ketorolac, Oxycodone-
Acetaminophen, Ranitidine, 
Milk of Magnesia, 
Furosemide, Ibuprofen, 
TraMADOL (Ultram)

Anemia (variation in other diagnoses) Respiratory failure

Anemia NOS, Ac 
posthemorrhag anemia, Chr 
blood loss anemia, Iron defic 
anemia NOS

Insulin, Metformin

Acute respiratry failure, 
Pulmonary insufficiency 
following trauma and surgery, 
Other pulmonary insuff, Acute & 
chronc resp fail

Albumin, PHENYLEPHrine, 
Dextrose 50%, 
Chlorhexidine Gluconate, 
Milrinone, Epinephrine

Heart failure Cardiac arrest

CHF NOS
Morphine Sulfate, 
Nitroprusside Sodium, 
Nitroglycerin, Aspirin EC, 
Sucralfate

Ventricular fibrillation, 
Cardiogenic shock, Parox ventric 
tachycard, Atriovent block 
complete, Cardiac arrest, AMI 
anterior wall - init

Acetaminophen IV, Fentanyl 
Citrate, Influenza Virus 
Vaccine, Morphine Sulfate, 
NORepinephrine, Glucagon, 
Readi-Cat 2, Midazolam, 
Omeprazole

Metastatic cancer requiring ICU (cord compression, need for 
bronch, etc)

End-stage dementia requiring ICU (sepsis, aspiration, 
trauma) and transitioned to comfort care

Secondary malig neo bone, 
Secondary malig neo brain/
spine, Secondary malig neo 
lung, Secondary malig neo liver, 
Neurohypophysis dis NEC

Propofol, Midazolam, 
Fentanyl Citrate, 
Dexmedetomidine HCl, 
Vecuronium Bromide

Alzheimer’s disease, Paralysis 
agitans, Dementia w/o behav 
dist, Mental disor NEC oth dis

Morphine Sulfate, 
Scopolamine Patch

Intraabdominal conditions–alcoholic pancreatitis, gallstone 
pancreatitis, perforated ulcer, etc Alcohol abuse/withdrawl

Paralytic ileus, Digestive system 
complications not elsewhere 
classified, Acute pancreatitis, 
Cholangitis

Captopril, Metoprolol 
Tartrate

Alcohol dep NEC/NOS-unspec, 
Alcohol withdrawal, Alcohol 
dep NEC/NOS-contin, Bipolar 
disorder NOS

Hydromorphone, 
Diphenhydramine 
HCl, Morphine Sulfate, 
Prochlorperazine

Table 4. Ten representative phenotypes. Listed in order of frequency.

Cardiac surgery ●

Anemia ●

Respiratory failure ●

●
Heart failure

●
Cardiac arrest

●
Metastatic cancer 
requiring ICU

● Dementia
requiring ICU 
for comport

● Intraabdominal condition
● Alcohol abuse

CommonRare

High risk

Low risk

●
Sepsis with 

acute kidney injury

Figure 4. Phenotype maps. Phenotypes are positioned according to frequency and mortality risk.
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Our study also had some limitations. One limitation is that our approach used the entire ICU stay to generate 
our predictive models. Other predictive models, such as SAPS II, use only the first 24 hours of data as prediction 
at that point of the hospitalization is more clinically useful. However, our objective was to demonstrate how our 
approach could be used with a clinically significant outcome. Future work could create additional phenotypes 
using only the first 24 hours of data to generate models. A second limitation is that some of the phenotypes gen-
erated are not obvious to clinicians. For example, the main medications in the “anemia” phenotype are diabetic 
medications. This is likely because non-pharmacologic therapy is the main treatment for anemia and diabetic 
patients were highly represented in the “anemia” population.

With refinement, future applications of our proposed computational phenotyping method include clinical 
decision support to quickly identify subgroups of patients at different levels of important clinical outcomes (e.g., 
mortality, clinical decompensation, hospital readmission, etc.). It could also be used in cohort identification for 
quality improvement or research projects to find those who share similar characteristics by representing patients’ 
heterogeneous medical records into membership of phenotypes. In addition, the phenotypes we derived can pro-
vide genomic scientists an insight into genotype-phenotype mapping for precision medicine52, 53. In conclusion, 
computational phenotyping using non-negative tensor factorization shows promise as an objective method for 
identification of important cohorts with promise for clinical, quality improvement and research purposes.
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