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Abstract

We count the supersymmetric vacua of mass-deformed N = 6 U(N) × U(N) Chern–Simons-matter
theory by calculating the Witten index. When the Chern–Simons level k is 1, our result perfectly agrees with
that from the gravity dual, given by partitions of N . For general k, our index generalizes partitions of N ,
including additional degrees. We also comment on non-relativistic superconformal theories constructed
from this model.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction and discussions

There has been a lot of recent progress in microscopic understanding of M2-branes from
Chern–Simons-matter theories. See [1,2] and an extensive list of references thereof. Much of
the work was on the conformal field theories and their AdS4 gravity duals. It is also interest-
ing to study nonconformal quantum field theories in 3 dimensions for M2-branes. A simple
nonconformal model which has drawn some attention is the U(N)k × U(N)−k N = 6 Chern–
Simons-matter theory with mass deformation [3,4]. From the M-theory perspective, this is the
worldvolume theory of N parallel M2-branes in R

8/Zk with a nonzero 4-form field on two R
4

factors of R
8. This theory compactified on a 2-torus also describes the discrete light-cone quan-

tization (DLCQ) of type IIB strings in the maximally supersymmetric plane wave [5].
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The mass-deformed theory has many discrete vacua. The classical vacua preserving super-
symmetry were studied in [4]. They are interpreted as M5-branes stretched along R

2+1 and
polarized into 3-spheres in one of the two R

4 parts in R
8 [6]. With 2-torus compactification,

these vacua are dualized to polarized half-BPS D3-branes in the plane wave [7].
For k = 1, M2-branes in R

8 show enhanced N = 8 supersymmetry. In this case, the super-
symmetric vacua have been extensively studied from the gravity side, relying on the constraints
from 16 supersymmetries [8,9]. These half-BPS geometries are governed by fermion droplets on
a cylinder, with a boundary condition that one end of the cylinder is filled. By a semi-classical
quantization, one obtains the partition function of supersymmetric vacua. The result I1N for
k = 1 is given by partitions of N , whose generating function is

I1(q) ≡
∞∑

N=1

I1NqN =
∞∏

n=1

1

1 − qn
. (1.1)

The same quantity can be obtained from the gauge theory dual of type IIB strings in the DLCQ
plane wave [10]. The result (1.1) is expected to be correct for both uncompactified M2-branes
and those on T 2.

There are various ways of understanding (1.1). In particular, from the gravity side, this can be
understood as coming from quantizing polarized D3-brane giant gravitons in the type IIB plane
wave background after T 2 compactification. From the classical probe brane perspective, branes
expanded in two R

4 yield two classes of solutions: one class called ‘giant graviton’ and another
‘dual giant graviton’ [11]. The prescription of getting the correct result (1.1), sometimes called
‘giant graviton complementarity,’ states that the true quantum degeneracy of half-BPS states (1.1)
is given by (naively) quantizing either giant gravitons or dual giant gravitons, but not both. This
notion is generalized to various 1

8 -BPS sectors [12,13].
Curiously, the classical vacua in the mass-deformed N = 6 Chern–Simons theory are similar

to the classical polarized brane solutions, in that there are two possible R
4 in R

8 in which the
scalar fields can be turned on [4]. See Section 2. The degeneracy of quantum vacua should be
compatible with the result obtained from the complementarity prescription, which now has to be
derived microscopically from quantum field theory.

In this paper, we count the quantum supersymmetric vacua of this theory for general k. Since
the strongly interacting regime, say k = 1, is included, we are naturally led to study the Witten
index for these vacua, counting the number of bosonic vacua minus that of fermionic ones. At
least for k = 1, the gravity states are all bosonic so that the partition function (1.1) should be
equal to the index.

To compute the index, it turns out to be possible (and helpful) to deform the Chern–Simons-
matter theory by turning on Yang–Mills kinetic terms for the gauge fields. We introduce such
a deformation preserving an N = 2 part of the full supersymmetry. Following [14], we also
compactify this theory on a small 2-torus to reduce our study to a mechanical index. A crucial
part of our analysis will come from the quantum dynamics of N = 2 Yang–Mills Chern–Simons
theory with the gauge group unbroken by a classical supersymmetric vacuum. Indices for such
theories are computed in [15,16], following [14].1 Strictly speaking, we are considering the vacua
on T 2, or half-BPS states in the DLCQ plane wave. However, from various indirect field theory

1 Deforming to N = 3 Yang–Mills theory might be physically more natural, considering the origin of M2-brane the-
ories from N = 3 D-brane systems. The resulting index would be the same: technically, this is because N = 2 and 3
Yang–Mills Chern–Simons theories have same index [15].
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arguments in [14] as well as successful applications of Yang–Mills Chern–Simons index on T 2

to D-branes living on uncompactified R
2+1 [15,16], we believe that our calculation also provides

the vacuum counting for M2-branes living on R
2+1.

Our main result is the index IkN of supersymmetric vacua for general k ( �= 0):

Ik(q) ≡
∞∑

N=0

IkNqN =
∞∏

n=1

1

(1 − qn)|k|
∞∑

n1,n2,...,n|k|=−∞
(n1+n2+···+n|k|=0)

q
1
2 (n2

1+n2
2+···+n2|k|). (1.2)

For k = 1, the second factor of restricted infinite sum reduces to 1, so that the gravity result (1.1)
is immediately reproduced. See Section 3 for its derivation. An important reason enabling this
perfect agreement, reducing apparent richness of classical vacua, is the dynamical supersymme-
try breaking of Yang–Mills Chern–Simons theory [14] when the unbroken gauge group is large
compared to the Chern–Simons level k. See Section 3 for the details.

Our results for k � 2 do not seem to be well understood in the gravity dual. In any case, since
we started from R

8/Zk , the resulting geometry cannot be completely smooth. For instance, we
find the following expressions for some low values of k,

I2(q) =
∞∏

n=1

(1 + qn)(1 + q2n−1)2

1 − qn

I3(q) =
∞∏

n=1

(1 + qn)2(1 + q2n + q4n)

1 − qn

×
[ ∞∏

n=1

(
1 + q2n−1)(1 + q6n−3)2 + 4q

∞∏
n=1

(
1 + q2n

)(
1 + q6n

)2

]
(1.3)

after massaging the infinite sum in (1.3). There is always a factor like (1.1). All other infinite
products appearing in the numerator allude to contribution from additional degrees. It would be
very interesting to see if these can be understood from the gravity dual. For example, since the
case with k = 2 also preserves 16 supersymmetry, the local structure of the gravity solutions
should be the same as [8]. It seems to us that a factor of S3 × S3 appearing in the half-BPS
solution should be modded out by a Z2 in the following way. Near a boundary of black and white
regions in the droplet, one locally encounters the appearance of R

8 for k = 1, by combining
S3 × S3 with two radial directions. The Z2 we mentioned above should replace this by R

8/Z2
for k = 2. Even for general k with N = 6 supersymmetry, it might be that the relevant gravity
solutions come with Zk modding of the half-BPS solutions. The common appearance of the
factor (1.1) in (1.3) seems to imply that the cases with k � 2 share some common features with
the case with k = 1.

For k = 1, we also provide a concrete 1 to 1 map between the supersymmetric vacua and the
gravity solutions in [8]. Based on this map, one would be able to pick a supersymmetric vacua
whose gravity dual has small curvature and consider interesting holographic calculations. We
leave such studies to the future.

A motivation for previous studies of mass-deformed Chern–Simons-matter theories was
to find a microscopic realization of non-relativistic holography [17,18] with the so-called
Schrödinger symmetry. In [17], non-relativistic superconformal theories were constructed start-
ing from the classical vacuum in which no scalar fields are turned on (i.e. no polarization). See
also [19]. In our study, this vacuum dynamically breaks supersymmetry unless N � k. This could
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be signaling that the holography with super-Schrödinger symmetry obtained from this model
would be highly ‘stringy’ from the gravity side, in that the ’t Hooft coupling N

k
� 1 is small. See

also [18] for similar discussions.
There have also been studies of supersymmetric gravity solutions with Schrödinger symmetry.

It was observed that solutions with 14 or more supersymmetries, needed for the non-relativistic
superconformal theory obtained from mass-deformed N = 6 Chern–Simons theory, are not al-
lowed [20,21]. See also [22] for a study of enhanced supersymmetry in different class of solutions
with Schrödinger invariance. From our field theory study, it may perhaps be interesting to study
spontaneous supersymmetry breaking from the gravity side [23].

The remaining part of this paper is organized as follows. In Section 2 we review the mass-
deformed N = 6 Chern–Simons-matter theory and explain its classical supersymmetric vacua.
We explain them in the N = 2 formulation. We also add Yang–Mills term preserving this amount
of supersymmetry, and also discuss the order and signs of masses for fluctuations around various
vacua. In Section 3 we put this theory on a small 2-torus, explain the known result on Yang–
Mills Chern–Simons index and finally derive our result. We also explain the map between our
supersymmetric vacua and the fermion droplets of [8].

2. The theory and classical vacua

The N = 6 Chern–Simons-matter theory consists of two U(N) gauge fields Aμ, Ãμ, four
complex scalars Za , W̄ ȧ (a, ȧ = 1,2) in bifundamental representation of U(N) × U(N), and
four complex fermions ψa, χ̄

ȧ which are superpartners of the scalars. See [24,25] for our nota-
tion, which only shows manifest N = 2 supersymmetry. It was also shown in [3] that one can
introduce a mass deformation preserving N = 6 Poincare supersymmetry. The action is given by

L = LCS + LM + Lsup + Lμ,

LCS = k

4π
tr

[(
AdA − 2i

3
A2 + iλ̄λ − 2Dσ

)
−

(
ÃdÃ − 2i

3
Ã2 + i

¯̃
λλ̃ − 2D̃σ̃

)]
,

LM = tr

[
−DμZaD

μZ̄a − DμWȧD
μW̄ ȧ − iψ̄aγ μDμψa − iχ̄ ȧγ μDμχȧ

− (σZa − Zaσ̃ )
(
Z̄aσ − σ̃ Z̄a

) − (σ̃Wȧ − Wȧσ)
(
W̄ ȧσ̃ − σW̄ ȧ

)
+ Z̄aDZa − WȧDW̄ ȧ − ZaD̃Z̄a + W̄ ȧD̃Wȧ

− iψ̄aσψa + iψaσ̃ ψ̄a + iZ̄aλψa + iψ̄aλ̄Za − iψaλ̃Z̄a − iZa
¯̃
λψ̄a

+ iχȧσ χ̄ ȧ − iχ̄ ȧ σ̃ χȧ − iχȧλW̄ ȧ − iWȧλ̄χ̄ ȧ + iW̄ ȧ λ̃χȧ + iχ̄ ȧ ¯̃
λWȧ

]
,

Lsup = −2π

k

∫
d2θ εabεȧḃ tr(ZaWȧZbWḃ) + c.c.,

Lμ = −μ

2
tr[D + D̃]. (2.1)

In the N = 2 formulation, the mass deformation can be written either as a Fayet–Iliopoulos
term as shown above, or as an F-term deformation [4], which are shown to be equivalent after a
field redefinition [26]. The adjoint scalars σ, σ̃ and fermions λ, λ̃ are auxiliary at this stage. In
particular, the scalars are given by
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k

2π
σ = ZaZ̄

a − W̄ ȧWȧ − μ

2
,

k

2π
σ̃ = Z̄aZa − WȧW̄

ȧ + μ

2
(2.2)

from equations of motion of D,D̃.
The classical supersymmetric vacua of this theory are analyzed in [4]. Assuming μ > 0, the

classical vacua are given by a direct sum of the following irreducible rectangular blocks: the first
type of blocks is

Z1 = μ
1
2

⎛
⎜⎜⎜⎜⎜⎝

√
n − 1 0√

n − 2 0
. . .

. . .√
2 0

1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

Z2 = μ
1
2

⎛
⎜⎜⎜⎜⎜⎝

0 1
0

√
2

. . .
. . .

0
√

n − 2
0

√
n − 1

⎞
⎟⎟⎟⎟⎟⎠ (2.3)

with W̄ 1̇ = W̄ 2̇ = 0(n−1)×n (n = 1,2, . . .), and the second type is

W̄ 1̇ = μ
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
n

0
√

n − 1

0
. . .

. . .
√

2
0 1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W̄ 2̇ = μ
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1 0

√
2

. . .

. . . 0√
n − 1 0√

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

with Z1 = Z2 = 0(n+1)×n (n = 1,2, . . .), up to global gauge transformations. n in both types of
blocks is the number of columns. The first block with n = 1 is understood as an empty column.

The nonzero scalars in the first block can be written as Za = μ
1
2 M(n)

a , while those in the second
block can be written as W̄ ȧ = μ

1
2 (M(n+1)

a )†. The ‘traceless’ parts (in a, b indices) of J b
a =

μ−1ZaZ̄
b and J̃ a

b = μ−1Z̄aZb form representations of SU(2), and similar for Wȧ . The most
general solution is a direct sum of these,
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Za = μ
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M(n1)
a

. . .

M(ni )
a

0
. . .

0
[ 0 ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W̄ ȧ = μ
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

0

M(ni+1)
a

†

. . .

M(nf )
a

†

[ 0 ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.5)

where the rectangular matrices [0] at the bottom denote empty rows. We emphasize that the
irreducible blocks above are not square matrices. This is the only difference with [4], which
added an empty row to our M(n)

a to use square blocks only. Their general solution took the
form of (2.5) without explicit empty rows as ours, but necessarily has an empty row or column
per block. In our solution, the numbers of empty columns and rows are explicitly controlled by
M(1)

a in the first block and [0] in (2.5). The above solution is slightly more general in this sense,
which will play a role in the vacuum counting.

We parametrize the above classical vacua as follows. Firstly, the summation of numbers of
columns for all blocks is N , which is a partition of N . We further assign one of the two blocks to
each integer in the partition. Let Nn and N̂n denote the number of first and second type of blocks
with n columns, respectively. See Fig. 1. These ‘occupation numbers’ provide a labeled partition
of N :

∞∑
n=1

(nNn + nN̂n) = N. (2.6)

In particular, the number of empty columns is given by N1. On the other hand, the number of
empty rows is given by

∑∞
n=1(Nn − N̂n). Another constraint apart from (2.6) is

0 �
∞∑

n=1

(Nn − N̂n) � N. (2.7)

It is easy to see that (2.6) always guarantees the second inequality in (2.7). So a more convenient
set of constraints is (2.6) and

∞∑
n=1

(Nn − N̂n) � 0. (2.8)

The scalars can be written as
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Fig. 1. An example of our parametrization for N = 11, with N1 = 3, N̂1 = 2, N3 = 2. Grey boxes with longer hori-
zontal/vertical edges denote insertions of irreducible blocks of first/second type, respectively. Unbroken gauge group is
U(3)2 × U(2)2 in this case.

Za = μ
1
2

∞⊕
n=1

(
[M(n)

a ](n−1)×n ⊗ 1Nn

0(n+1)×n ⊗ 1
N̂n

)
(2.9)

and

W̄ ȧ = μ
1
2

∞⊕
n=1

(
0(n−1)×n ⊗ 1Nn

[M(n+1)
a ]†

(n+1)×n
⊗ 1

N̂n

)
. (2.10)

The expectation values of the scalars σ, σ̃ are

k

2π
σ =

∞⊕
n=1

(
μn1(n−1)Nn

−μn1
(n+1)N̂n

)
⊕ 0∑

n(Nn−N̂n)
− μ

2
1N (2.11)

and

k

2π
σ̃ =

∞⊕
n=1

(
μ(n − 1)1nNn

−μ(n + 1)1
nN̂n

)
+ μ

2
1N. (2.12)

The gauge symmetry unbroken by the above background is

∞⊗
n=1

[
U(Nn) × U(N̂n)

] × U

(∑
n

(Nn − N̂n)

)
, (2.13)

from shuffling blocks with same sizes. The last factor comes from the empty rows.
For general k, the theory is strongly coupled and one should have a control over it to under-

stand the quantum vacua. For the purpose of studying supersymmetric vacua, one can study the
Witten index which is invariant under various deformations of the theory. We add the kinetic
terms for the U(N) × U(N) vector supermultiplets
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LYM = 1

g2
tr

[
−1

4
FμνF

μν − 1

2
DμσDμσ − iλ̄γ μDμλ − iλ̄[σ,λ] + 1

2
D2

− 1

4
F̃μνF̃

μν − 1

2
Dμσ̃Dμσ̃ − i

¯̃
λγ μDμλ̃ − i

¯̃
λ[σ̃ , λ̃] + 1

2
D̃2

]
(2.14)

with a continuous constant g2 having the dimension of mass. We will compute the index in the
next section assuming kg2 	 μ. The classical solution (2.9), (2.10), (2.11), (2.12) is unaffected.

For later use, we consider the order of masses for various fluctuations around classical vacua,
assuming the Yang–Mills deformation. The masses are affected by g for kg2 	 μ. The final
result is a natural one: all fields in the vector multiplets associated with the unbroken symmetry
(2.13) acquire small masses of order kg2 from the Chern–Simons terms, while the other fields
acquire large masses which scale positively with μ. More concretely, we will show that the
masses for heavy modes scale either like μ/k or

√
μg2.

We consider the fermion masses which are simpler. Bosonic masses follow from supersym-
metry. The masses come from various fermion quadratures in (2.1) and (2.14). To analyze
these in components, we label the Nn blocks of size n by in = 1,2, . . . ,Nn, and N̂n blocks
by în = 1,2, . . . , N̂n. The rows and columns within each block of size n are labeled by αn or α̂n,
which run from 1 to n, n − 1 or n + 1 as appropriate. The components connecting first type of
blocks (i.e. nonzero Za) are written as

[ψa]αmim;βnjn
, [χȧ]αmim;βnjn

, [λ]αmim;βnjn
, [λ̃]αmim;βnjn

, (2.15)

where the first and last two indices are for rows and columns, respectively. There are also com-
ponents connecting second type of blocks, and those connecting one first and one second type
of blocks. For the rows of ψa , χ̄ ȧ and for the rows and columns of λ, we need additional index
corresponding to empty rows in (2.5). Calling it α, running from 1 to

∑
n(Nn − N̂n), we have

components

[ψa]α;βnjn
,

[
χ̄ ȧ

]
α;βnjn

, [λ]α;β, [λ]α;βnjn
, (2.16)

and also similar components replacing βnjn by β̂nĵn.
We first consider the components in (2.15) connecting first type of blocks. After canonically

normalizing the gauginos λ, λ̃ → gλ,gλ̃, one obtains

−i
2πμ(m − n)

k

([λ̄]βnjn;αmim [λ]αmim;βnjn
+ [¯̃λ]βnjn;αmim [λ̃]αmim;βnjn

− [
ψ̄a

]
βmjm;αnin

[ψa]αnin;βmjm

)
+ ikg2

4π
[λ̄]βnjn;αmim[λ]αmim;βnjn

− ikg2

4π
[ ¯̃λ]βnjn;αmim[λ̃]αmim;βnjn

+ i

√
μg2

[
M(m)

a

]†
βm;αm

[λ]αmim;γnjn
[ψa]γnjn;βmim

+ i

√
μg2

[
ψ̄a

]
βmim;γnjn

[λ̄]γnjn;αmim

[
M(m)

a

]
αmβm

− i

√
μg2[ψa]αnin;γmjm

[λ̃]γmjm;βnin

[
M(n)

a

]†
βnαn

− i

√
μg2

[
M(n)

a

]
αnβn

[ ¯̃λ]βnin;γmjm

[
ψ̄a

]
γmjm;αnin

(2.17)

plus
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i
2πμ(m − n)

k

[
χ̄ ȧ

]
βmjm;αnin

[χȧ]αnin;βmjm
(2.18)

+ 2πμ

k

(
εabεȧḃ

[
M(m)

a

]
βm;δm

[χȧ]δmjm;γnin

[
M(n)

b

]
γn;αn

[χḃ]αnin;βmjm
+ c.c.

)
.

Summations over matrix indices as well as m,n are understood. The first two lines of (2.17)
provide masses of order μ/k, which is the biggest unless m = n. The fourth–fifth and sixth–
seventh lines are of order

√
μg2. The third line is of order kg2.

We first study the order of masses for the coupled modes λ, λ̃,ψ from (2.17). When m �= n,
the leading masses for all fields are of order μ/k from the first and second lines. When m = n,
we have to study the zero modes from fourth–fifth and sixth–seventh lines to see if they give
dominant contribution to masses or if we have to consider the third line. The numbers of complex
degrees of freedom in ψa , λ, λ̃ are

2N2
n

(
n2 − n

)
, N2

n(n − 1)2, N2
nn2, (2.19)

respectively. The sum of the latter two minus the former is N2
n , which is exactly what we expect

for light gauginos from enhanced U(Nn) gauge symmetry. To exactly identify these modes, we
consider the null vector condition for the gauginos[

M(n)
a

]†
λin;jn

− [λ̃]in;jn

[
M(n)

a

]† = 0 (2.20)

where we suppressed the appearance of αn type matrix indices. One can explicitly solve this
equation and show that the general zero modes are given by

λ = 1n−1 ⊗ ΛNn×Nn, λ̃ = 1n ⊗ ΛNn×Nn, (2.21)

providing the expected N2
n complex modes. The mass of Λ is kg2 from the third line of (2.17).

The remaining 4N2n(n−1) real nonzero modes have masses of order
√

μg2. For the last nonzero
modes, there are as many positive masses as there are negative ones, due to the off-diagonal
structure of the last four lines between ψ and λ, λ̃.

We also consider the χ masses from (2.18). These masses are not affected at all by deforming
with Yang–Mills like terms. So the fact that all fields have masses of order μ/k follows from the
same fact in the original Chern–Simons-matter theory. We also checked it ourselves.

The mass analysis for the modes connecting the second type of blocks, like [ψa]α̂mîm;β̂nĵn
,

is similar to the above, with the role of ψ , χ changed, as well as changing the role of λ, λ̃. In
particular, we obtain the N̂2

n light fermions for each unbroken U(N̂n) symmetry, whose solution
takes the form of (2.21) with Nn replaced by N̂n, and 1n−1 replaced by 1n+1.

We then consider blocks connecting one first and one second type of blocks, like [ψa]αmim;β̂nĵn
.

There always come dominant mass terms from coupling to σ, σ̃ background, similar to the first
lines of (2.17) and (2.18). From the structure of (2.11) and (2.12), these mass terms come with
coefficient 2πμ(m+n)

k
instead of 2πμ(m−n)

k
in the previous cases, which is always nonzero.

We finally consider the blocks containing α type indices. For bi-fundamental matter modes
ψa , χ̄ ȧ , the dominant masses of order μ/k again come from coupling to σ, σ̃ . For gaugi-
nos λ, most of the modes acquire nonzero masses of order μ/k except λα;β , which acquires
mass of order kg2 from Chern–Simons term. This is the expected light modes from unbroken
U(

∑
n(Nn − N̂n)) gauge symmetry in (2.13).

We close this section by summarizing the light mode contents and their effective action. From
the light fermion modes of the form (2.21) corresponding to the unbroken symmetry (2.13), we
also expect similar light modes from the adjoint bosons. In fact,



H.-C. Kim, S. Kim / Nuclear Physics B 839 (2010) 96–111 105
Aμ = 1n−1 ⊗ [aμ]Nn×Nn, σ = 1n−1 ⊗ [τ ]Nn×Nn;
Ãμ = 1n ⊗ [aμ]Nn×Nn, σ̃ = 1n ⊗ [τ ]Nn×Nn;
Aμ = 1n+1 ⊗ [aμ]

N̂n×N̂n
, σ = 1n+1 ⊗ [τ ]

N̂n×N̂n
;

Ãμ = 1n ⊗ [aμ]
N̂n×N̂n

, σ̃ = 1n ⊗ [τ ]
N̂n×N̂n

;
Aμ = [aμ]p×p, σ = [τ ]p×p

(
where p ≡

∑
(Nn − N̂n)

)
(2.22)

corresponding to U(Nn), U(N̂n), U(
∑

(Nn − N̂n)), respectively, are the superpartner modes.
aμ, τ,Λ form an N = 2 vector multiplet. One can integrate out the heavy modes whose masses
scale either like μ/k or

√
μg2, after which one obtains the N = 2 Yang–Mills Chern–Simons

theory with gauge group U(Nn)−k , U(N̂n)k , U(
∑

(Nn − N̂n))k and the Yang–Mills coupling
constant g√

2n−1
, g√

2n+1
, g, respectively. The subscripts for gauge groups denote the Chern–

Simons levels. These values of Chern–Simons levels and Yang–Mills coupling can be obtained
by inserting (2.22) to (2.1) and (2.14). For instance, considering the gauge fields on the first two
lines of (2.22), one obtains

k

4π

∫
(tr 1n−1 − tr 1n) trNn

(
ada − 2i

3
a3

)
= − k

4π

∫
trNn

(
ada − 2i

3
a3

)
. (2.23)

The integrated out heavy fermions do not shift the Chern–Simons levels for the unbroken gauge
groups. To show this, it suffices to check that numbers of positive and negative masses are equal
for all charged fermions under a U(r) factor in (2.13). From the above analysis of masses, this
structure is obvious for almost all modes. For instance, it is easy to see that [λ]im;jn

and [λ]in;jm

for m �= n always have masses of opposite signs, providing canceling contribution to the level
shifts. Appropriate pairs of (ψa , χ̄ ȧ) have masses of opposite signs as well, except when the mass
term involves superpotential, say as (2.18). We briefly explain the structure for ψa and χȧ modes
connecting first types of blocks (same argument applies to second type of blocks), which is the
only nontrivial case. When m = n, ψa modes gain masses of order

√
μg2 by mixing with λ, λ̃,

which was already shown to come with equal positive/negative masses. For χȧ , one can explicitly
diagonalize the second line of (2.18) by using SU(2) Clebsch–Gordan analysis for the vacuum.
The basic idea is to consider Mχ M appearing in the mass term as a linear operator acting on χ ,
whose eigenvalues can be obtained as square-roots of M† Mχ M M†. This always provides
pairs of positive/negative masses. For m < n, the modes [ψa]im;jn

and [ψa]in;jm
have opposite

signs in their masses, but the numbers of complex degrees of freedom are 2NmNn(m − 1)n and
2NmNn(n − 1)m, whose difference is

2NmNn(n − m). (2.24)

On the other hand, the χȧ modes in (2.18) can be diagonalized again using Clebsch–Gordan de-
composition. Now there appears kernel of the operation εab M(m)

a [χȧ]im;jn
M(n)

b , whose complex
dimension is exactly 2(n − m). The masses of these modes, of definite sign, come from the first
line of (2.18) and exactly compensates the unbalance of (2.24). The remaining masses involving
nonzero-modes of this operator come in pairs of positive and negative masses.

3. The index

Following [14], we consider the theory discussed in the previous section (with Yang–Mills
kinetic term) compactified on a 2-torus with radii r for two circles. The Witten index tr(−1)F
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that we would like to compute is independent of the continuous parameters g, r,μ in this theory.2

The three mass scales r−1,μ, kg2 play important roles in our calculation. r−1 is the energy of
the Kaluza–Klein modes of fields along the 2-torus. μ is the mass appearing in our Lagrangian,
setting the two mass scales μ/k and

√
μg2. kg2 is the bare mass of the gauge fields and their

superpartners unbroken by a classical vacuum. Assuming generic k, and taking advantage of the
fact that we can change the values of the mass scales without affecting the index, we set

r−1 � μ

k
�

√
μg2 � kg2. (3.1)

We shall calculate the index by a ‘Born–Oppenheimer approximation’. Firstly, we reduce the
index calculation in the quantum field theory to that in the mechanics after compactification on a
small torus [14], ignoring all the Kaluza–Klein modes with masses of order r−1.

After this reduction, we pick a classical vacuum, around which there appear modes with large
masses scaling with μ and modes with small masses of order kg2, as we explained in the previous
section. We study the heavy modes first. The analysis of supersymmetric states for these modes
is done by ‘Gaussian’ (or quadratic) approximation, which reduces to the study of supersym-
metric harmonic oscillators with frequencies given by their masses. The only issue is whether
the supersymmetric ground state for a super-oscillator is bosonic or fermionic. It is well known
that the ground state of the oscillator is bosonic/fermionic if the sign of the fermion mass is
positive/negative. Let us denote by MP the total number of negative fermion masses for a given
vacuum P . Then the contribution of heavy modes to the index is (−1)MP . MP is basically the
Morse index associated with a critical point P of the Morse function in supersymmetric quantum
mechanics, studied by Witten [27]. The essential point in [27] which enabled the above quadratic
approximation to provide the exact index was the existence of a nilpotent operator, providing a
cohomology structure to the Hilbert space. In our N = 2 formulation, we keep four supersym-
metries Qα , Q̄α manifest. Any of them is nilpotent off-shell, so we expect this argument to be
true in our case.

One can easily see that MP is always even in our case. Firstly, recall that we showed at the
end of Section 2 that the heavy modes whose masses scale with μ come in pairs of positive and
negative masses. So it suffices to show that the total number of heavy Majorana fermions is a
multiple of 4 (i.e. even complex fermions). The total numbers of complex fermions from matters
ψa,χȧ and gauginos λ, λ̃ are 4N2 and 2N2, respectively, so it suffices to show that the number
of complex light fermions is even. The last number is given by

∞∑
n=1

(
N2

n + N̂2
n

) +
( ∞∑

n=1

(Nn − N̂n)

)2

= 2
∞∑

n=1

(
N2

n + N̂2
n

) + 2
∑
m<n

(NmNn + N̂mN̂n) − 2
∞∑

m,n=1

NmN̂n, (3.2)

from the unbroken gauge symmetry (2.13). This is indeed even, which proves (−1)MP = 1.

2 This argument may be subtle in the limit g, r → ∞ in general. We expect g → ∞ to be safe since the mechanical

model reduced on T 2 describes the motion of a ‘charged particle’ with mass of order g−2, subject to k units of magnetic
flux [14]. In the zero mass limit, we keep the lowest Landau level (supersymmetric states) while heavy states on the
higher levels are irrelevant. On the other hand, the limit r → ∞ is expected to be safe mostly for circumstantial reasons:
the result on T 2 was used to successfully understand, among others, the s-rule of D-branes [15] or the domain wall
degeneracy [16] in uncompactified cases.
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Finally, we should consider the dynamics of modes with masses of order kg2. As explained in
the last paragraph of the previous section, the mechanical system that we have is the T 2 reduction
of N = 2 Yang–Mills Chern–Simons theory with gauge group and levels given by

∞⊗
n=1

[
U(Nn)−k × U(N̂n)k

] × U
(∑

(Nn − N̂n)
)

k
. (3.3)

The degrees of freedom associated with different factors of unitary gauge group do not interact,
so that we can simply multiply the index computed in each part. Indices for N = 2 Yang–Mills
Chern–Simons theories at level ±k with SU(r) and U(r) gauge groups are studied in [15] and
[16], respectively. The index for U(r) is( |k|

r

)
≡ |k|!

r!(|k| − r)! (3.4)

for r � |k|, and zero otherwise.3 It is believed that the vanishing of the index for r > |k| im-
plies dynamical supersymmetry breaking. Combining the results for different gauge groups, one
obtains

∞∏
n=1

[( |k|
Nn

)( |k|
N̂n

)]( |k|∑
(Nn − N̂n)

)
(3.5)

for each classical vacuum parametrized by Nn, N̂n, satisfying (2.6) and (2.8).
Let us compute the generating function

Ik(q) ≡
∞∑

N=1

IkNqN (3.6)

for the index IkN , introducing a chemical potential q . To conveniently keep track of the condition
(2.8) later, we also introduce another chemical potential z, and define a quantity

Ik(q, z) ≡ tr
[
(−1)F q

∑
n(nNn+nÑn)z

∑
n(Nn−Ñn)

]
, (3.7)

where the trace denotes summation over the nonnegative occupation numbers Nn and Ñn with-
out imposing (2.6), but subject to (2.8), taking into account the degeneracy (3.5). The actual
generating function Ik(q) is obtained from this by

Ik(q) =
2π∫

0

dθ

2π

( |k|∑
p=0

e−ipθ

)
Ik

(
q, eiθ

)
. (3.8)

The summation in the parentheses stops at p = |k|, since the index for U(p)k Yang–Mills Chern–
Simons theory is zero beyond this value. More concretely, one finds

Ik(q) =
|k|∑

p=0

2π∫
0

dθ

2π
e−ipθ

|k|∑
Nn,N̂n=0

( |k|∑
(Nn − N̂n)

)

×
∞∏

n=1

[( |k|
Nn

)( |k|
N̂n

)
qnNn+nN̂n

]
eiθ

∑
(Nn−N̂n). (3.9)

3 Overall sign is always positive here, in contrast to the N = 1 case where (−1)r appears if k < 0 [14].
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All summations of Nn, N̂n stop at |k| again from dynamical supersymmetry breaking. One might
think that the summation over Nn, N̂n should be restricted to those satisfying (2.8). However,
this is already taken care of by the θ integration, which yields

2π∫
0

dθ

2π
eiθ(

∑
(Nn−N̂n)−p) = δ∑

(Nn−N̂n),p
(3.10)

with positive p. From (3.10), one can replace
∑

(Nn − N̂n) appearing in the combinatoric factor
by p and obtain

Ik(q) =
|k|∑

p=0

2π∫
0

dθ

2π
e−ipθ

( |k|
p

) |k|∑
Nn,N̂n=0

∞∏
n=1

[( |k|
Nn

)( |k|
N̂n

)(
qneiθ

)Nn
(
qne−iθ

)N̂n

]
,

(3.11)

where the summation over Nn, N̂n is still unrestricted due to (3.10). Now one finds that the sum-
mations over Nn and N̂n all factorize: after using the binomial expansion formula, one obtains
the following simple expression

Ik(q) =
2π∫

0

dθ

2π

[(
1 + e−iθ

) ∞∏
n=1

(
1 + qneiθ

)(
1 + qne−iθ

)]|k|
. (3.12)

The quantity appearing in [ ]|k| can be simplified using the Jacobi’s triple product identity, in the
form which is useful in studying bosonization of 2 dimensional QFT [28]:

2q
1
8 cos

θ

2

∞∏
n=1

(
1 − qn

)(
1 + qneiθ

)(
1 + qne−iθ

) =
∞∑

n=−∞
q

1
2 (n+ 1

2 )2
ei(n+ 1

2 )θ . (3.13)

Using this, one obtains the index

Ik(q) =
2π∫

0

dθ

2π

[ ∞∏
n=1

1

1 − qn

∞∑
n=−∞

q
n(n+1)

2 einθ

]|k|

=
∞∏

n=1

1

(1 − qn)|k|
∞∑

n1,n2,...,n|k|=−∞
(n1+n2+···+n|k|=0)

q
1
2 (n2

1+n2
2+···+n2|k|), (3.14)

which is the asserted expression (1.2).
As explained in the introduction, this expression immediately reproduces the partitions of N

for k = 1, perfectly agreeing with the expectation from the gravity dual. The underlying structure
can be understood formally from bosonization. For k = 1, the unbroken gauge symmetry of
supersymmetric vacua should be no larger than U(1), since U(r) N = 2 Yang–Mills Chern–
Simons theory at level k admits supersymmetric vacua only for r � |k|. So all the occupation
numbers Nn and N̂n effectively behave like those for ‘fermions,’ taking 0 or 1.4 Now the partition
function for the supersymmetric vacua is like the contribution from two chiral fermions in 2

4 Of course we do not mean fermions in the statistical sense.
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dimensions. The Jacobi’s identity that we used is nothing but an equality of 1-loop partition
function of 2 chiral fermions and that of a chiral boson [28].

One can see more explicitly that the above fermions are nothing but the fermions appearing
in the half BPS gravity solutions of [8]. To clearly see this, let us rename the N̂n occupation
numbers as follows: define N ′

n = N̂n−1 for n � 2, i.e. n in N ′
n denotes the number of rows

of the block of second type. N ′
n for n � 2 are what we considered before. We also introduce

N ′
1, which is now the number of empty rows. From the discussions before (2.8), we find that

N ′
1 = ∑

n=1(Nn − N̂n). We can parametrize our supersymmetric vacua by two sets of fermionic
occupation numbers Nn,N

′
n (with n � 1) satisfying

∞∑
n=1

Nn =
∞∑

n=1

N ′
n. (3.15)

This is nothing but the condition in [8] that the ‘U(1) charge’ is set to zero, namely the Fermi
level of the droplet should be such that we have equal number of particles and holes. Having
Nn = 1 corresponds to exciting a droplet of unit area in [8] whose height is n − 1 from the
Fermi level, while N ′

n = 1 corresponds to having an empty area (white region) with depth n − 1
beneath the Fermi level. In this fashion, we can concretely map each supersymmetric vacuum to
the corresponding gravity solution. In particular, we can say which vacua have gravity duals with
small curvatures (in which case we can do reliable gravity calculations). It should be interesting
to consider such vacua and study them holographically, like [29], for instance.

For k = 2, the infinite sum in (3.14) is given by

∞∑
n=−∞

qn2 =
∞∏

n=1

(
1 − q2n

)(
1 + q2n−1)2

, (3.16)

which yields the expression for I2(q) in (1.3). For k = 3, one encounters

∞∑
m,n=−∞

qm2+n2+mn =
∞∑

m=−∞
q

3
4 m2

∞∑
n=−∞

q(n+ m
2 )2

. (3.17)

We first consider the summation over n, with m fixed. For even m, one uses (3.16): further
summation over even m can be changed into infinite product using the same formula, replacing
q by q3. For odd m, the summation over n is

∑
n

q(n+ 1
2 )2 = 2q

1
4

∞∏
n=1

(
1 − q2n

)(
1 + q2n

)2 (3.18)

which is obtained by inserting θ = 0 in (3.14). Collecting all, one obtains the expression for
I3(q) in (1.3). It is not clear to us which expression will be more physically suggestive between
the infinite sum in (3.17) or the product form (1.3), but the product form makes it clear that one
factor of (1.1) appears for k � 2. Similar rearrangement can be made for larger values of k.

We also comment on the totally symmetric vacuum, where all scalars Z1,Z2,W1̇,W2̇ are
zero. After integrating out the massive matter fields, we have to consider an N = 2 Yang–Mills
Chern–Simons theory with gauge group U(N) × U(N) at levels k and −k. Since the index for
this theory is zero for N > |k|, it is likely that the supersymmetry of this vacuum is spontaneously
broken. This implies that the classical analysis of non-relativistic superconformal Chern–Simons
theory [17] based on this vacuum should acquire serious non-perturbative correction for N > k,
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at least as long as the symmetry of the vacuum is concerned. This may be a field theory explana-
tion of the observation in [20,21] that gravity solutions with Schrödinger invariance and N = 6
supersymmetry could not be found.
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