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Abstract 

 

Hepatocellular carcinoma (HCC) is developed by multiple steps accompanying progressive 

alterations of gene expression, which leads to increased cell proliferation and malignancy. 

Although environmental factors and intracellular signaling pathways that are critical for HCC 

progression have been identified, gene expression changes and the related genetic factors 

contributing to HCC pathogenesis are still insufficiently understood. In this study, we identify a 

transcriptional repressor Capicua/CIC as a suppressor of HCC progression and a potential 

therapeutic target. Expression of CIC is posttranscriptionally reduced in HCC cells. CIC levels 

are correlated with survival rates in patients with HCC. CIC overexpression suppresses HCC cell 

proliferation and invasion, whereas loss of CIC exerts opposite effects in vivo as well as in vitro. 

The levels of PEA3 group genes, the best-known CIC target genes, are correlated with lethality 

in patients with HCC. Among the PEA3 group genes, ETV4 is the most significantly upregulated 

gene in CIC-deficient HCC cells, consequently promoting HCC progression. Furthermore, ETV4 

induces expression of MMP1, the MMP gene highly relevant to HCC progression, in HCC cells, 

and knockdown of MMP1 completely blocks the CIC deficiency-induced HCC cell proliferation 

and invasion. Conclusion: Our study demonstrates that the CIC-ETV4-MMP1 axis is a novel 

regulatory module controlling HCC progression. 
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Introduction 

 

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide 

and the fifth most common malignancy, especially in East Asia and South Africa (1, 2). In most 

cases, human HCC is driven by chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) 

infections, alcoholic abuse, non-alcoholic fatty liver disease, autoimmune hepatitis, diabetes 

mellitus, and several metabolic diseases (3). 

Among multiple therapeutic strategies to overcome HCC, liver resection is still the best 

therapeutic strategy to treat HCC with a 5-year survival rate in approximately 70% (3). Another 

option of HCC treatment is the orthotopic liver transplantation, which has the lowest risk of 

tumor recurrence but is applied to very few patients. Radiofrequency ablation (RFA) and trans-

arterial chemoembolization (TACE) are other therapeutic strategies but have marginal effects. 

Because of these limitations of HCC treatment, many studies are focused on finding molecular 

therapies for HCC. Sorafenib, a related multikinase inhibitor, is currently the only drug approved 

for advanced HCC management. Despite sorafenib treatment, overall survival is increased by 

only 37%, with several major side effects including acne-like rash, diarrhea, fatigue, and 

hypertension (4).  

In search for a better understanding and efficacious treatment in HCC, many cancer drivers and 

molecular therapies have been reported (5). Some studies have explored HCC genomic 

alterations and identified frequently mutated genes, including TERT promoter, TP53, and 

CTNNB1 (β-catenin) (6, 7). In addition, chromosomal amplifications (1q, 6p, 8q, 11q, 17q, and 

20q) and deletions (4q, 8p, 13q, 16q, and 17p) that affect important oncogenes and tumor 

suppressors have been identified in samples from patients with HCC (8). Moreover, several 
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signaling pathways are investigated to be targeted by novel therapies for HCC including RAS, 

TGF-β, FGF-19/FGFR-4, and MET signaling pathways (9). Importantly, RAS signaling is 

related to cell survival and proliferation and is activated in more than 50% of HCCs (10, 11) . 

Although HCC progression is considered as a multistep and a long-term progressive process, the 

precise molecular mechanism of HCC pathogenesis remains largely unknown (12). 

Capicua/CIC is a transcriptional repressor that is highly conserved from C. elegans to humans 

(13). There are two main isoforms of CIC, the short (CIC-S) and long (CIC-L) form, which 

differ in their amino-terminal portions. CIC has two highly conserved domains: a DNA-binding 

high mobility group (HMG) box domain and a carboxy-terminal motif (C1) (13). CIC 

preferentially recognizes T(G/C)AATG(G/A)A sequences through the HMG-box and C1 

domains to repress expression of its target genes in Drosophila and mammals (14-16). CIC 

activity can be regulated by receptor tyrosine kinase (RTK) signaling pathways in Drosophila 

and mammals (17-19). Activation of RTK-MAPK pathways phosphorylates CIC, resulting in 

degradation and/or cytoplasmic localization of CIC (20, 21). 

Cic was firstly identified in a screen for mutations affecting tissue patterning in Drosophila 

embryo (17). In Drosophila, several studies revealed that Cic regulates not only anteroposterior 

and dorsoventral body patterning, but also intestinal stem cell proliferation (22), wing  

development (23), and other processes in development (24).  

In mammals, CIC has been implicated in pathogenesis of spinocerebellar ataxia type-1 

neurodegenerative disease (25), as well as regulation of essential processes such as lung 

alveolarization (26), liver homeostasis (27), learning and memory (28), and follicular helper T 

cell differentiation (29). CIC has also been studied in several cancer contexts, and its mutations 

were found in soft tissue, brain, lung, gastric, prostate, and breast cancers (14, 21, 30-32). 
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Furthermore, CIC directly suppresses expression of PEA3 group genes (ETV1, ETV4, and ETV5), 

which are known to be frequently overexpressed in many cancers and have tumor-promoting 

functions (14, 30, 33, 34). 

Although increasing evidences have indicated that CIC functions as a tumor suppressor in 

various cancers (19, 21, 35, 36), no studies have examined its clinicopathologic significance and 

molecular functions in HCC. In this study, we present the first evidence that decreased level of 

CIC is associated with HCC progression and indicates poor prognosis. Both in vitro and in vivo 

assays demonstrate that CIC has a tumor suppressive function in the progression of HCC. 

Molecular studies reveal that CIC regulates ETV4 expression in HCC cells and that MMP1 acts 

as a key downstream target of the CIC-ETV4 axis in HCC context. Therefore, our findings 

suggest that CIC-ETV4-MMP1 regulatory axis might have a critical role in HCC progression. 
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Experimental procedures 

 

Tissue microarray and immunohistochemistry 

Two liver cancer tissue microarrays with liver tumors and adjacent normal liver tissues (LV1221 

and LV6161) were purchased from Biomax (MD, USA). Formalin-fixed paraffin-embedded 

specimens were de-paraffinized and stained with rabbit polycolonal anti-CIC antibody. Each 

sample stained with anti-CIC antibody was scored as negative (-), weak (+), moderate (++), or 

strong (+++) according to the staining intensity. These scores were determined independently by 

two pathologists. The scoring by the pathologists was done in a blinded manner. 

 

Induction of HCC in mice 

To induce HCC, diethylnitrosamine (DEN, Sigma-Aldrich, MO, USA) was injected 

intraperitoneally (i.p.) into 2-week-old male mice (5 µg/g). For tumor formation analysis, mice 

were sacrificed to prepare liver tissues at 8 months after DEN treatment. Externally visible 

tumors (>1 mm) on liver were counted and measured. Livers were micro-dissected into tumor 

and non-tumor and stored at −80°C until analyzed by qRT-PCR. 

Lung metastasis and survival were analyzed at 15 months after DEN treatment. The survival of 

the mice was recorded weekly. After 15 months, the mice were sacrificed, and their lungs were 

dissected, paraffin-embedded, and used for H&E staining. Serial sections of entire lung tissues 

were conducted. Four sections per each lung tissue were chosen for H&E staining. Total number 

of metastasized tumor lesions was counted from the H&E-stained sections and used for 

calculation of the average number of tumor foci in a lung tissue per each genotype. 
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Other assays used in this study are described in the Supporting Information. 
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Results 

 

Inverse correlation between CIC protein levels and HCC severity 

Since the role of CIC in HCC development and progression has not yet been determined, we 

analyzed The Cancer Genome Atlas (TCGA) data sets for patients with HCC (Table S1) in order 

to gain insight on the relevance between CIC and HCC pathogenesis. CIC mRNA levels were 

not downregulated, but rather increased in HCC tissue samples compared with normal liver 

tissues (Fig. 1A). However, the survival rate was significantly decreased in HCC patients with 

low levels of CIC (the lower 20%, n=74) compared with those with high levels of CIC (the upper 

20%, n=74) (Fig. 1B and Table S2). Previous studies have demonstrated that activation of EGFR 

and its downstream signaling molecules, which promotes tumorigenesis and cancer metastasis, 

inactivates CIC via either degradation or cytoplasmic translocation (20, 21). Moreover, we have 

shown that CIC protein levels were dramatically decreased in prostatic adenocarcinoma (35). 

Thus, we examined CIC protein levels in normal liver and HCC tissues on tissue microarrays by 

immunohistochemistry using anti-CIC antibody. Reduced expression of CIC was more 

frequently observed in HCC samples than in normal liver tissues (Fig. 1C). To directly address 

whether CIC expression decreases in HCC tissues at protein level, but not at mRNA level, we 

examined expression profiles of both CIC protein and CIC mRNA in the same tissue samples of 

normal liver and HCC of different pathological stages (Table S3). Most HCC tissues showed 

reduction in CIC protein levels compared with normal liver tissues, whereas CIC mRNA level 

was not correlated with CIC protein level in each tissue sample (Fig. 1D), suggesting the 

posttranscriptional regulation of CIC expression in HCC cells. Taken together, these data 

indicate the association of CIC levels with HCC progression. 
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CIC suppresses HCC progression  

To test whether CIC has a suppressive function in HCC progression, we examined the effect of 

CIC overexpression on HCC cell growth and invasion. We chose SK-HEP-1 and MHCC-97H 

cells, which are highly metastatic and aggressive HCC cell lines (37, 38), for the experiments, 

because they express relatively low levels of CIC compared with other HCC cell lines (Fig. S1). 

Forced expression of either CIC-S or CIC-L suppressed cell proliferation, invasion, and 

migration in both cell lines (Figs. 2A-D). Then, we tested whether suppression of CIC expression 

has the opposite effects. HCC cells that stably express shRNA against CIC (shCIC) had 

increased proliferation rate and invasive and migratory activity compared with control HCC cells 

(Figs. 2E-H). CRISPR-Cas9-mediated knockout of CIC also promoted HCC cell proliferation 

and invasion (Fig. S2). We confirmed these results in vivo using xenograft mouse models. 

Control and shCIC-expressing SK-HEP-1 or MHCC-97H cells were subcutaneously injected into 

either posterior flank of the same nude mice, respectively, and tumor volume was measured 

every week. The CIC-deficient HCC cells grew more rapidly and formed larger tumor mass than 

the control cells (Fig. 3A). To compare metastatic activity between control and CIC-deficient 

HCC cells, the cells were intravenously injected into nude mice followed by quantification of 

GFP signal, which is expressed from shRNA-expressing lentiviral vectors (pGIPZ), in lung 

tissues. The CIC-deficient HCC cells had higher degree and frequency of metastasis to lung than 

control cells (Figs. 3B, C). Taken together, these findings indicate that CIC functions as a 

negative regulator in HCC progression.  

 

Increased lung metastasis and lethality in Cic-deficient mice treated with DEN 
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To better understand in vivo effect of CIC deficiency on HCC progression, we generated mice 

with a specific deletion of Cic alleles in hepatocytes (Cic
f/f
;Alb-Cre, Cic LKO) (Fig. 4A) and 

induced liver cancer in these mice by treatment with diethylnitrosamine (DEN). WT (Cic
f/f

) and 

Cic LKO mice were intraperitoneally injected with DEN at 2 weeks of age and subjected to 

analyses of tumorigenesis, lung metastasis, and viability (Fig. 4B). Tumor formation on liver 

tissues was comparable between WT and Cic LKO mice at 8 months of age (Fig. 4C). However, 

lung metastasis was substantially increased in Cic LKO mice at 15 months of age (Fig. 4D). 

Moreover, about 30% of Cic LKO mice died after 1 year of age, whereas none of WT mice did 

(Fig. 4E). These results demonstrate that reduction in CIC expression can critically contribute to 

promotion of HCC progression, which is consistent with the finding that the survival rate was 

decreased in the HCC patients with low levels of CIC (Fig. 1B). 

 

ETV4 is a critical CIC target that promotes HCC progression 

Many studies have shown that PEA3 group genes, which include ETV1, ETV4, and ETV5, are 

direct target genes of CIC (14, 19, 25, 26) and that overexpression of these genes promotes 

proliferation and invasion of various types of cancer cell (33). However, the role of PEA3 group 

transcription factors in HCC progression has not yet been comprehensively understood. 

Therefore, we analyzed expression profiles of PEA3 group genes and association of these gene 

expression levels with lethality in patients with HCC using the TCGA database (Tables S1 and 

S4). Among three genes, only ETV4 levels were increased in all stages of HCC cells with 

statistical significance compared with normal liver cells (Fig. 5A). On the other hand, overall 

survival rates of HCC patients were inversely correlated with the levels of all PEA3 group genes 
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(Fig. 5B), suggesting that PEA3 group transcription factors might also function as a tumor 

promoter in the context of HCC progression. 

Next, we examined whether CIC regulates expression of PEA3 group genes in HCC cells. The 

levels of PEA3 group genes in control and shCIC-expressing HCC cells were determined by 

qRT-PCR analysis (Fig. 5C). Among three genes, ETV4 levels were most significantly 

upregulated in three different HCC cell lines with CIC RNAi (Fig. 5C). Knockdown of CIC did 

not increase levels of PEA3 group genes in HepG2 cells (Fig. 5C), suggesting that CIC 

differentially regulates its target gene expression in a cell-type dependent manner, which is 

consistent with previous findings (27, 35, 39). Furthermore, the upregulation of ETV4 expression 

in CIC knockdown HCC cells was confirmed at protein level (Fig. 5D). Increases in Etv4 levels 

were also most apparent in both normal liver and DEN-induced tumor tissues from Cic LKO 

mice compared with those in Etv1 and Etv5 (Figs. 5E-G). Overall, these data suggest that, among 

PEA3 group genes, ETV4 is a major target gene of CIC in hepatic cells. 

Given that ETV4 had the highest relevance to HCC progression (Figs. 5A, B) and that ETV4 

expression was most significantly regulated by CIC in HCC cells (Fig. 5C), we focused on the 

role of ETV4 in HCC progression. We first tested whether ETV4 has HCC-promoting activity. 

Overexpression of ETV4 indeed increased cell proliferation, invasion, and migration in HCC 

cells (Figs. 6A-D and S3). We next examined whether the increased cell proliferation, invasion, 

and migration in CIC-deficient HCC cells were due to derepression of ETV4. Knockdown of 

ETV4 completely blocked the CIC deficiency-mediated promotion of HCC progression (Fig. 6E-

H), demonstrating that ETV4 is a key target gene of CIC in regulation of HCC progression.  

 

Regulation of MMP1 expression by the CIC-ETV4 axis in HCC cells 
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 Matrix metalloproteinases (MMPs) promote cancer progression through various ways including 

destruction of extracellular matrix, activation of growth factors, suppression of apoptosis, and 

induction of angiogenesis (40). Therefore, MMPs are the principle mediators of cancer 

progression and frequently used as biomarkers for various types of cancer. There are 23 

members of MMP in humans. Previous studies revealed that PEA3 group transcription factors 

activate expression of various MMP genes and that most MMP genes harbor ETS binding 

elements in their promoters (26, 41). To gain insight on which MMPs are critically involved in 

HCC progression, we analyzed the relevance of each MMP to HCC progression using the TCGA 

database (Tables S1 and S5), as we did for CIC and PEA3 group genes. Among 23 MMP genes, 

levels of MMP1, MMP9, MMP10, MMP11, MMP12, and MMP14 were significantly higher in 

HCC tissues than in normal liver tissues (Figs. 7A and S4). Analysis of survival rates revealed 

that levels of MMP1, MMP7, MMP10, MMP12, MMP16, and MMP26 were inversely correlated 

with survival rates of HCC patients with statistical significance (Figs. 7B and S5). Thus, these 

analyses identified MMP1, MMP10, and MMP12 as MMP genes strongly associated with 

promotion of HCC progression.  

  Next, we investigated which of the selected MMP genes are regulated by the CIC-ETV4 axis in 

HCC cells. Among MMP1, MMP10, and MMP12, only MMP1 expression was significantly 

induced by ETV4 overexpression in both SK-HEP-1 and MHCC-97H HCC cell lines (Fig. 7C). 

We confirmed that ETV4 enhances MMP1 promoter activity by luciferase assay using MMP1 

promoter-containing reporter construct (Fig. 7D). We further examined regulation of MMP1 

expression by CIC in HCC cells. Knockdown of CIC significantly upregulated levels of MMP1, 

but neither MMP10 nor MMP12, in SK-HEP-1 and MHCC-97H HCC cell lines (Fig. 7E). 

Consistent with this result, overexpression of CIC downregulated MMP1 expression (Fig. S6). 

Page 13 of 69

Hepatology

Hepatology

This article is protected by copyright. All rights reserved.



14 

 

 

 

On the other hand, expression of MMP13, which belongs to the interstitial collagenase family as 

MMP1 does and shares high amino acid identity (86%) with MMP1 (42), was not significantly 

affected by either ETV4 overexpression or CIC RNAi in HCC cells (Fig. S7), suggesting that the 

CIC-ETV4 axis might selectively regulate expression of MMP1 rather than all members of the 

MMP subfamily with similar biochemical and pathological properties. The levels of Mmp1a, a 

mouse homolog of human MMP1, were also upregulated in liver tumors from 15-month-old Cic 

LKO mice treated with DEN compared with those from WT controls, while the levels of other 

Mmp genes including Mmp2, Mmp9, and Mmp12, which have been implicated in the promotion 

of HCC progression (43, 44), were comparable (Fig. S8). Overall, these results suggest that 

MMP1 might be a key effector MMP protein that functions at the downstream of the CIC-ETV4 

axis in the context of HCC progression. 

To directly address whether the increased expression of MMP1 in CIC-deficient HCC cells was 

due to derepression of ETV4, we examined levels of MMP1 in control and shCIC-expressing 

HCC cells treated with either control siRNA or siRNA against ETV4. Knockdown of ETV4 

certainly restored MMP1 expression to the normal level in CIC-deficient HCC cells (Fig. 7F). 

Taken together, these data suggest that MMP1 expression can be regulated by the CIC-ETV4 

axis in the process of HCC progression. 

 

CIC deficiency promotes HCC progression via MMP1 overexpression  

 Since we identified MMP1 as a critical downstream target gene of the CIC-ETV4 axis in HCC 

cells, we finally determined whether the induction of MMP1 expression contributed to the 

enhanced cancer progression in CIC-deficient HCC cells. We transfected control and shCIC-

expressing HCC cells with either control siRNA or two different siRNAs against MMP1 and 
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examined cell proliferation, invasion, and migration. Knockdown of MMP1 completely 

suppressed the increased cell proliferation and invasive and migratory activity in shCIC-

expressing HCC cells (Figs. 8A-D), demonstrating that the increased expression of MMP1 

indeed critically contributed to the CIC deficiency-mediated promotion of HCC progression. 
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Discussion  

In this study, we demonstrated for the first time that CIC could function as a negative regulator 

of HCC progression via control of ETV4-MMP1 axis (Fig. 8E). Overexpression of CIC 

suppressed HCC cell proliferation and invasion, whereas CIC deficiency promoted HCC 

progression in vivo as well as in vitro. We found a discrepancy between CIC-deficient HCC cells 

and DEN-induced HCC in liver-specific Cic null mice; CIC-deficient HCC cells had increased 

proliferation and invasive activity, while DEN-treated Cic-deficient mice exhibited the enhanced 

lung metastasis, but not tumor formation in livers. This finding implies that loss of CIC might 

not be enough to facilitate the onset of HCC, but nevertheless could contribute to the promotion 

of HCC progression once HCC has occurred. 

 Analyses of the TCGA database and tissue samples from patients with HCC revealed that CIC 

expression is reduced in HCC cells at protein level, but not at mRNA level. These results suggest 

that HCC-promoting factors and/or signaling pathways might downregulate CIC expression in 

HCC cells at posttranscriptional level. It is well known that activation of RTK signaling 

suppresses CIC activity via degradation or cytoplasmic translocation of CIC in Drosophila and 

mammals (13, 20, 21, 25). In this process, ERK, a downstream effector kinase of RTK signaling 

pathways, plays a pivotal role. ERK can interact with CIC (45) and the inhibition of ERK rescues 

CIC activity in the context of EGFR activation (21). These findings suggest that activation of 

ERK and its upstream signaling cascades might be involved in downregulation of CIC protein 

levels. Many studies have demonstrated that RAS/RAF/MEK/ERK signaling pathway is 

associated with HCC pathogenesis (46, 47). Levels of total or phosphorylated ERK are often 

higher in HCC cells than in normal liver cells (48, 49). Moreover, it was reported that ERK is 
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mainly found in the nucleus of HCC cells (46). Therefore, it would be conceivable that the 

decrease in CIC levels in HCC cells was due to the enhanced ERK activity (Fig. 8E).  

 Our study demonstrated the significant relevance of MMP1 to HCC progression. In the context 

of HCC, functional significance of other MMPs, such as MMP2, MMP9, and MMP12, have 

been more appreciated than that of MMP1 (43, 44). However, our comprehensive analyses for 

MMP genes in HCC patients using the TCGA datasets indicated that MMP1 is more significantly 

associated with HCC pathogenesis than other MMPs previously recognized to promote HCC 

progression. The in vitro experiments using HCC cell lines showed that MMP1 deficiency is 

sufficient to suppress HCC cell growth and invasion, underlying the critical role of MMP1 in 

HCC progression. We also provided several evidences that MMP1 is a critical downstream target 

of the CIC-ETV4 axis that contributes to the CIC deficiency-mediated promotion of HCC 

progression. MMP1 expression is under the control of ETV4 and knockdown of MMP1 

completely blocks the increased cell proliferation and invasion in CIC-deficient HCC cells. 

Nevertheless, it cannot be ruled out that other MMPs could also contribute to the enhanced cell 

proliferation and invasion in CIC-deficient HCC cells, because most MMP genes have ETS 

binding elements in their promoters (26). To better understand the molecular mechanism 

underlying the CIC deficiency-mediated promotion of HCC progression, genome-wide 

identification of target genes of CIC as well as ETV4 and studies on their roles in HCC 

pathogenesis need to be followed. 

 This study suggests CIC-ETV4-MMP1axis as a novel genetic module that controls HCC 

progression. Patients with HCC have a poor survival rate mainly due to late diagnosis (50). 

Therefore, it is very important to identify genetic alterations that can predict HCC development 

and progression as early as possible. In this regard, our findings provide novel candidate 
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molecules that might be potentially developed as diagnostic markers as well as therapeutic 

targets for HCC. 

Page 18 of 69

Hepatology

Hepatology

This article is protected by copyright. All rights reserved.



19 

 

 

 

References 

 

1. Shariff MI, Cox IJ, Gomaa AI, Khan SA, Gedroyc W, Taylor-Robinson SD. 

Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and 

therapeutics. Expert Rev Gastroenterol Hepatol 2009;3:353-367. 

2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA 

Cancer J Clin 2011;61:69-90. 

3. El-Serag HB. Hepatocellular Carcinoma. N Engl J Med 2011;365:1118-1127. 

4. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, de Oliveira AC, et al. 

Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-390. 

5. Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for 

hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol 2015;12:408-424. 

6. Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ, Kato M, Tsuji S, et al. 

Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet 

2014;46:1267-1273. 

7. Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Rebouissou S, Couchy 

G, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures 

and potential therapeutic targets. Nat Genet 2015;47:505-511. 

8. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to 

environment. Nat Rev Cancer 2006;6:674-687. 

9. Torrecilla S, Llovet JM. New molecular therapies for hepatocellular carcinoma. Clin Res 

Hepatol Gastroenterol 2015;39:S80-S85. 

Page 19 of 69

Hepatology

Hepatology

This article is protected by copyright. All rights reserved.



20 

 

 

 

10. Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling 

pathways in hepatocellular carcinoma. Semin Liv Dis 2007;27:55-76. 

11. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012;379:1245-1255. 

12. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic Landscape and Biomarkers 

of Hepatocellular Carcinoma. Gastroenterology 2015;149:1226-1239. 

13. Jiménez G, Shvartsman SY, Paroush Ze. The Capicua repressor–a general sensor of RTK 

signaling in development and disease. J Cell Sci 2012;125:1383-1391. 

14. Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, 

Gotoh T, et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like 

sarcomas with t (4; 19)(q35; q13) translocation. Hum Mol Genet 2006;15:2125-2137. 

15. Ajuria L, Nieva C, Winkler C, Kuo D, Samper N, Andreu MJ, Helman A, et al. 

Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila. 

Development 2011;138:915-924. 

16. Forés M, Simón-Carrasco L, Ajuria L, Samper N, González-Crespo S, Drosten M, 

Barbacid M, et al. A new mode of DNA binding distinguishes Capicua from other HMG-box 

factors and explains its mutation patterns in cancer. PLoS Genet 2017;13:e1006622. 

17. Jiménez G, Guichet A, Ephrussi A, Casanova J. Relief of gene repression by torso RTK 

signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev 

2000;14:224-231. 

18. Tseng A-SK, Tapon N, Kanda H, Cigizoglu S, Edelmann L, Pellock B, White K, et al. 

Capicua regulates cell proliferation downstream of the receptor tyrosine kinase/ras signaling 

pathway. Curr Biol 2007;17:728-733. 

Page 20 of 69

Hepatology

Hepatology

This article is protected by copyright. All rights reserved.



21 

 

 

 

19. Dissanayake K, Toth R, Blakey J, Olsson O, Campbell DG, Prescott AR, MacKintosh C. 

ERK/p90RSK/14-3-3 signalling has an impact on expression of PEA3 Ets transcription factors 

via the transcriptional repressor capicua. Biochem J 2011;433:515-525. 

20. Grimm O, Sanchez Zini V, Kim Y, Casanova J, Shvartsman SY, Wieschaus E. Torso 

RTK controls Capicua degradation by changing its subcellular localization. Development 

2012;139:3962-3968. 

21. Okimoto RA, Breitenbuecher F, Olivas VR, Wu W, Gini B, Hofree M, Asthana S, et al. 

Inactivation of Capicua drives cancer metastasis. Nat Genet 2017;49:87-96. 

22. Jin Y, Ha N, Forés M, Xiang J, Gläßer C, Maldera J, Jiménez G, et al. EGFR/Ras 

signaling controls Drosophila intestinal stem cell proliferation via Capicua-regulated genes. 

PLoS Genet 2015;11:e1005634. 

23. Roch F, Jiménez G, Casanova J. EGFR signalling inhibits Capicua-dependent repression 

during specification of Drosophila wing veins. Development 2002;129:993-1002. 

24. Yang L, Paul S, Trieu KG, Dent LG, Froldi F, Forés M, Webster K, et al. Minibrain and 

Wings apart control organ growth and tissue patterning through down-regulation of Capicua. 

Proc Natl Acad Sci U S A 2016:10583-10588. 

25. Fryer JD, Yu P, Kang H, Mandel-Brehm C, Carter AN, Crespo-Barreto J, Gao Y, et al. 

Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science 

2011;334:690-693. 

26. Lee Y, Fryer JD, Kang H, Crespo-Barreto J, Bowman AB, Gao Y, Kahle JJ, et al. 

ATXN1 protein family and CIC regulate extracellular matrix remodeling and lung 

alveolarization. Dev Cell 2011;21:746-757. 

Page 21 of 69

Hepatology

Hepatology

This article is protected by copyright. All rights reserved.



22 

 

 

 

27. Kim E, Park S, Choi N, Lee J, Yoe J, Kim S, Jung H-Y, et al. Deficiency of Capicua 

disrupts bile acid homeostasis. Sci Rep 2015;5:8272. 

28. Lu H-C, Tan Q, Rousseaux MW, Wang W, Kim J-Y, Richman R, Wan Y-W, et al. 

Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in 

mice and humans. Nat Genet 2017;49:527-536. 

29. Park S, Lee S, Lee C-G, Park GY, Hong H, Lee J-S, Kim YM, et al. Capicua deficiency 

induces autoimmunity and promotes follicular helper T cell differentiation via derepression of 

ETV5. Nat Commun 2017;8:ncomms16037. 

30. Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH, Rodriguez FJ, et 

al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 

2011;333:1453-1455. 

31. Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, et al. 

The consensus coding sequences of human breast and colorectal cancers. Science 2006;314:268-

274. 

32. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, Yue P, et al. Diverse 

somatic mutation patterns and pathway alterations in human cancers. Nature 2010;466:869-873. 

33. Oh S, Shin S, Janknecht R. ETV1, 4 and 5: an oncogenic subfamily of ETS transcription 

factors. Biochim Biophys Acta 2012;1826:1-12. 

34. Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of 

oncogenic transcription factors in solid tumours. Nat Rev Cancer 2017;17:337-351. 

35. Choi N, Park J, Lee J-S, Yoe J, Park GY, Kim E, Jeon H, et al. miR-93/miR-106b/miR-

375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression. Oncotarget 

2015;6:23533-23547. 

Page 22 of 69

Hepatology

Hepatology

This article is protected by copyright. All rights reserved.



23 

 

 

 

36. Gleize V, Alentorn A, Connen de Kérillis L, Labussière M, Nadaradjane AA, Mundwiller 

E, Ottolenghi C, et al. CIC inactivating mutations identify aggressive subset of 1p19q codeleted 

gliomas. Ann Neurol 2015;78:355-374. 

37. Ao J, Meng J, Zhu L, Nie H, Yang C, Li J, Gu J, et al. Activation of androgen receptor 

induces ID1 and promotes hepatocellular carcinoma cell migration and invasion. Mol Oncol 

2012;6:507-515. 

38. Hao Q, Li T, Zhang X, Gao P, Qiao P, Li S, Geng Z. Expression and roles of fatty acid 

synthase in hepatocellular carcinoma. Oncol Rep 2014;32:2471-2476. 

39. LeBlanc VG, Firme M, Song J, Chan SY, Lee MH, Yip S, Chittaranjan S, et al. 

Comparative transcriptome analysis of isogenic cell line models and primary cancers links 

capicua (CIC) loss to activation of the MAPK signalling cascade. J Pathol 2017;242:206-220. 

40. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer 

progression. Nat Rev Cancer 2002;2:161-174. 

41. Ye S. Polymorphism in matrix metalloproteinase gene promoters: implication in 

regulation of gene expression and susceptibility of various diseases. Matrix Biol 2000;19:623-

629. 

42. Foley CJ, Kuliopulos A. Mouse matrix metalloprotease-1a (Mmp1a) gives new insight 

into MMP function. J Cell Physiol 2014;229:1875-1880. 

43. Ng KT-P, Qi X, Kong K-L, Cheung BY-Y, Lo C-M, Poon RT-P, Fan S-T, et al. 

Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with poor prognosis of 

hepatocellular carcinoma. Eur J Cancer 2011;47:2299-2305. 

44. Määttä M, Soini Y, Liakka A, Autio-Harmainen H. Differential expression of matrix 

metalloproteinase (MMP)-2, MMP-9, and membrane type 1-MMP in hepatocellular and 

Page 23 of 69

Hepatology

Hepatology

This article is protected by copyright. All rights reserved.



24 

 

 

 

pancreatic adenocarcinoma: implications for tumor progression and clinical prognosis. Clin 

Cancer Res 2000;6:2726-2734. 

45. Futran AS, Kyin S, Shvartsman SY, Link AJ. Mapping the binding interface of ERK and 

transcriptional repressor Capicua using photocrosslinking. Proc Natl Acad Sci U S A 

2015;112:8590-8595. 

46. Li L, Zhao GD, Shi Z, Qi LL, Zhou LY, Fu ZX. The Ras/Raf/MEK/ERK signaling 

pathway and its role in the occurrence and development of HCC. Oncol Lett 2016;12:3045-3050. 

47. Yang S, Liu G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. 

Oncol Lett 2017;13:1041-1047. 

48. Ito Y, Sasaki Y, Horimoto M, Wada S, Tanaka Y, Kasahara A, Ueki T, et al. Activation 

of mitogen‐activated protein kinases/extracellular signal‐regulated kinases in human 

hepatocellular carcinoma. Hepatology 1998;27:951-958. 

49. Yoshida T, Hisamoto T, Akiba J, Koga H, Nakamura K, Tokunaga Y, Hanada S, et al. 

Spreds, inhibitors of the Ras/ERK signal transduction, are dysregulated in human hepatocellular 

carcinoma and linked to the malignant phenotype of tumors. Oncogene 2006;25:6056-6066. 

50. Hernaez R, El‐Serag HB. Hepatocellular carcinoma surveillance: The road ahead. 

Hepatology 2017;65:771-773. 

 

Author names in bold designate shared co-first authorship. 

Page 24 of 69

Hepatology

Hepatology

This article is protected by copyright. All rights reserved.



25 

 

 

 

Acknowledgment 

 We thank the Lee lab members for helpful discussion and comments on this study. Human HCC 

(HepG2, Hep3B, SH-J1, Huh 7, SNU-449, SNU-475, and SK-HEP-1) and THLE2 cells were 

kindly provided by Dr. Kwanyong Choi (POSTECH, Korea). MHCC-97L, MHCC-97H, and 

HCC-LM3 cells were kindly provided by Dr. Paula Y.P. Lam (National Cancer Centre 

Singapore, Singapore). 

Page 25 of 69

Hepatology

Hepatology

This article is protected by copyright. All rights reserved.



26 

 

 

 

Figure legends 

 

Figure 1. Decreased CIC protein levels in HCC cells and its correlation with poor survival 

rates in HCC patients. A. Analysis of TCGA database for expression levels of CIC mRNA in 

normal liver (NL) and HCC samples of four different clinicopathologic stages (I, II, III, and IV). 

The numbers in parentheses mean the number of subjects in each group. ***P < 0.001. B. 

Kaplan-Meier analysis of overall survival for HCC patients with high (the upper 20%) or low 

(the lower 20%) CIC expression (74 patients per each subgroup). *P < 0.05. C. Analysis of CIC 

protein levels in normal liver (n=33) and HCC (n=554) tissues using tissue microarrays. 

Immunohistochemical staining of CIC was conducted. Representative immunohistochemistry 

images showing four different expression levels of CIC in normal liver and HCC tissues were 

presented in the left panel. Scale bars indicate 100 µm. The right panel shows the proportion of 

tissue samples with different CIC expression scores. D. Western blot and qRT-PCR analyses of 

CIC expression profiles in normal liver (NL) and HCC samples.  

 

Figure 2. CIC suppresses cell proliferation, migration, and invasion in HCC cells. A. 

Western blot analysis for ectopic expression of CIC-S and CIC-L in HCC cells (SK-HEP-1 and 

MHCC-97H). B. Cell growth assay of control and CIC-overexpressing HCC cells. C. Matrigel 

invasion assay of control and CIC-overexpressing HCC cells. The bottom panel is a bar graph for 

quantification of cell invasiveness. D. Transwell migration assay of control and CIC-

overexpressing HCC cells. The bottom panel is a bar graph for quantification of cell migration. 

E. Western blot analysis showing knockdown efficiency of shCIC in HCC cells. shNC is for a 

negative control shRNA. F. Cell growth assay of control and shCIC-expressing HCC cells. G. 
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Matrigel invasion assay of control and shCIC-expressing HCC cells. The right panel is a bar 

graph for quantification of cell invasiveness. H. Transwell migration assay of control and shCIC-

expressing HCC cells. The right panel is a bar graph for quantification of cell migration. Three 

independent experiments were performed. All error bars show s.e.m. *P < 0.05, **P < 0.01, and 

***P < 0.001.  

 

Figure 3. CIC deficiency promotes tumor growth and metastasis in vivo. A. In vivo 

subcutaneous tumor growth curves of SK-HEP-1 and MHCC-97H cells with shNC- or shCIC-

lentiviral infection. n=12 per each group. The middle panel is a representative image of xenograft 

tumors dissected from the mice after the last measurement of tumor size. The right panel is a 

graph for average weights of the dissected tumors. B. In vivo imaging of lung tissues into which 

intravenously-injected control or shCIC-expressing SK-HEP-1 and MHCC-97H cells 

metastasized. GFP signals expressed in the injected cells are shown as dot plots. The right panel 

is a bar graph for quantification of GFP signals. n=10 per each group. All error bars show s.e.m. 

*P < 0.05 and **P < 0.01. C. A bar graph for the incidence (black area) of lung metastasis in 

each group of the nude mice. 

 

Figure 4. Enhanced lung metastasis in liver-specific Cic null mice treated with DEN. A. 

Western blot images of CIC and β-actin (loading control) in liver and lung tissues of wild-type 

(WT) and liver-specific Cic null (Cic LKO) mice. B. Experimental scheme for analysis of 

tumorigenesis and lung metastasis of HCC in mice treated with diethylnitrosamine (DEN). C. 

Representative images of tumor-bearing livers from 8-month-old WT and Cic LKO mice treated 

with DEN. Arrows indicate tumor foci. The right panel is a bar graph for the average numbers of 
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tumor foci on liver tissues of the DEN-treated WT and Cic LKO mice at 8 months of age. n=6 

per each group. D. Representative images of H&E-stained lung tissues of DEN-treated WT and 

Cic LKO mice at 15 months of age. The right panel is a bar graph for the average numbers of 

tumor lesions in randomly selected lung tissue sections. Numbers of WT and Cic LKO mice used 

for this analysis are 10 and 8, respectively. E. Kaplan–Meier survival curve of the DEN-treated 

WT (n=11) and Cic LKO mice (n=11). All error bars show s.e.m. *P < 0.05. 

 

Figure 5. ETV4 is a major CIC target with the most significant relevance to HCC among 

PEA3 group genes. A. Analysis of TCGA database for expression levels of ETV1, ETV4, and 

ETV5 in normal liver (NL) and HCC samples of four different clinicopathologic stages (I, II, III, 

and IV). The numbers in parentheses mean the number of subjects in each group. B. Kaplan-

Meier analysis of overall survival for HCC patients with high or low expression of PEA3 group 

genes (74 patients per each subgroup). C. qRT-PCR analysis of PEA3 group gene expression 

levels in control and CIC knockdown HCC cells. Experiments were performed more than three 

times, independently. D. Western blot analysis for levels of ETV4 in control and CIC 

knockdown HCC cells. E. qRT-PCR analysis for levels of Cic, Etv1, Etv4, and Etv5 in livers of 

7-week-old WT and Cic LKO mice. n=6 per each genotype. F and G. qRT-PCR analysis for 

levels of Cic, Etv1, Etv4, and Etv5 in liver tumors harvested from the DEN-treated WT and Cic 

LKO mice at 8 months of age (F) and at 15 months of age (G). n=5 per each genotype. All error 

bars show s.e.m. *P < 0.05, **P < 0.01, and ***P < 0.001.  

 

Figure 6. CIC deficiency-mediated promotion of HCC progression is due to derepression of 

ETV4. A. Western blot analysis showing ectopic expression of ETV4 in SK-HEP-1 and MHCC-
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97H cells. B-D. Cell growth assay (B), matrigel invasion assay (C), and transwell migration 

assay (D) of control and ETV4-overexpressing HCC cells. E. qRT-PCR analysis for ETV4 

mRNA levels in control and CIC knockdown HCC cells transfected with either control or ETV4 

siRNA. NN: control HCC cells transfected with control siRNA, N4: control HCC cells 

transfected with ETV4 siRNA (siETV4), CN: CIC knockdown HCC cells transfected with 

control siRNA, and C4: CIC knockdown HCC cells transfected with siETV4. F-H. Cell growth 

assay (F), matrigel invasion assay (G), and transwell migration assay (H) of control and CIC 

knockdown HCC cells treated with either control or ETV4 siRNA. Three independent 

experiments were performed. All error bars show s.e.m. *P < 0.05, **P < 0.01, and ***P < 

0.001.  

 

Figure 7. MMP1 expression is regulated by the CIC-ETV4 axis. A. Analysis of TCGA 

database for expression levels of MMP1 in normal liver (NL) and HCC samples of four different 

clinicopathologic stages (I, II, III, and IV). The numbers in parentheses mean the number of 

subjects in each group. B. Kaplan-Meier analysis of overall survival for HCC patients with high 

or low MMP1 expression (74 patients per each subgroup). C. qRT-PCR analysis for levels of 

MMP1, MMP10, and MMP12 in control and ETV4-overexpressing HCC cells (SK-HEP-1 and 

MHCC-97H). D. Dual luciferase assay for regulation of MMP1 promoter activity by ETV4. The 

left panel is a schematic illustration for the luciferase reporter construct harboring MMP1 

promoter region (-663/+1), in which there are two putative ETV4 binding sites (-323/-319 and -

155/-149). The right panel is a bar graph for relative luciferase activity in the presence or 

absence of ETV4 overexpression. E. qRT-PCR analysis for levels of MMP1, MMP10, and 

MMP12 in control and CIC knockdown HCC cells. F. qRT-PCR analysis for MMP1 levels in 
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control and CIC knockdown HCC cells treated with either control or ETV4 siRNA. NN: control 

HCC cells transfected with control siRNA, N4: control HCC cells transfected with siETV4, CN: 

CIC knockdown HCC cells transfected with control siRNA, and C4: CIC knockdown HCC cells 

transfected with siETV4. Three independent experiments were performed. All error bars show 

s.e.m. *P < 0.05, **P < 0.01, and ***P < 0.001.  

 

Figure 8. Upregulation of MMP1 expression contributes to the increased cell proliferation 

and invasion in CIC knockdown HCC cells. A. qRT-PCR analysis for MMP1 levels in control 

and CIC knockdown HCC cells treated with either control or MMP1 siRNAs. NN: control HCC 

cells transfected with control siRNA, N1-1: control HCC cells transfected with MMP1 siRNA-1 

(siMMP1-1), N1-2: control HCC cells transfected with MMP1 siRNA-2 (siMMP1-2), CN: CIC 

knockdown HCC cells transfected with control siRNA, C1-1: CIC knockdown HCC cells 

transfected with siMMP1-1, and C1-2: CIC knockdown HCC cells transfected with siMMP1-2. 

B-D. Cell proliferation assay (B), matrigel invasion assay (C), and transwell migration assay (D) 

of control and CIC knockdown HCC cells treated with either control or MMP1 siRNAs. Three 

independent experiments were performed. All error bars show s.e.m. *P < 0.05, **P < 0.01, and 

***P < 0.001. E. Proposed model for the regulation of HCC progression by CIC-ETV4-MMP1 

axis. 
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Figure 1. Decreased CIC protein levels in HCC cells and its correlation with poor survival rates in HCC 
patients. A. Analysis of TCGA database for expression levels of CIC mRNA in normal liver (NL) and HCC 

samples of four different clinicopathologic stages (I, II, III, and IV). The numbers in parentheses mean the 

number of subjects in each group. ***P < 0.001. B. Kaplan-Meier analysis of overall survival for HCC 
patients with high (the upper 20%) or low (the lower 20%) CIC expression (74 patients per each subgroup). 
*P < 0.05. C. Analysis of CIC protein levels in normal liver (n=33) and HCC (n=554) tissues using tissue 
microarrays. Immunohistochemical staining of CIC was conducted. Representative immunohistochemistry 

images showing four different expression levels of CIC in normal liver and HCC tissues were presented in the 
left panel. Scale bars indicate 100 µm. The right panel shows the proportion of tissue samples with different 
CIC expression scores. D. Western blot and qRT-PCR analyses of CIC expression profiles in normal liver (NL) 

and HCC samples.  
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Figure 2. CIC suppresses cell proliferation, migration, and invasion in HCC cells. A. Western blot analysis for 
ectopic expression of CIC-S and CIC-L in HCC cells (SK-HEP-1 and MHCC-97H). B. Cell growth assay of 

control and CIC-overexpressing HCC cells. C. Matrigel invasion assay of control and CIC-overexpressing HCC 

cells. The bottom panel is a bar graph for quantification of cell invasiveness. D. Transwell migration assay of 
control and CIC-overexpressing HCC cells. The bottom panel is a bar graph for quantification of cell 
migration. E. Western blot analysis showing knockdown efficiency of shCIC in HCC cells. shNC is for a 

negative control shRNA. F. Cell growth assay of control and shCIC-expressing HCC cells. G. Matrigel invasion 
assay of control and shCIC-expressing HCC cells. The right panel is a bar graph for quantification of cell 
invasiveness. H. Transwell migration assay of control and shCIC-expressing HCC cells. The right panel is a 
bar graph for quantification of cell migration. Three independent experiments were performed. All error bars 

show s.e.m. *P < 0.05, **P < 0.01, and ***P < 0.001.  
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Figure 3. CIC deficiency promotes tumor growth and metastasis in vivo. A. In vivo subcutaneous tumor 
growth curves of SK-HEP-1 and MHCC-97H cells with shNC- or shCIC-lentiviral infection. n=12 per each 

group. The middle panel is a representative image of xenograft tumors dissected from the mice after the last 

measurement of tumor size. The right panel is a graph for average weights of the dissected tumors. B. In 
vivo imaging of lung tissues into which intravenously-injected control or shCIC-expressing SK-HEP-1 and 
MHCC-97H cells metastasized. GFP signals expressed in the injected cells are shown as dot plots. The right 
panel is a bar graph for quantification of GFP signals. n=10 per each group. All error bars show s.e.m. *P < 
0.05 and **P < 0.01. C. A bar graph for the incidence (black area) of lung metastasis in each group of the 

nude mice.  
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Figure 4. Enhanced lung metastasis in liver-specific Cic null mice treated with DEN. A. Western blot images 
of CIC and β-actin (loading control) in liver and lung tissues of wild-type (WT) and liver-specific Cic null (Cic 

LKO) mice. B. Experimental scheme for analysis of tumorigenesis and lung metastasis of HCC in mice 

treated with diethylnitrosamine (DEN). C. Representative images of tumor-bearing livers from 8-month-old 
WT and Cic LKO mice treated with DEN. Arrows indicate tumor foci. The right panel is a bar graph for the 

average numbers of tumor foci on liver tissues of the DEN-treated WT and Cic LKO mice at 8 months of age. 
n=6 per each group. D. Representative images of H&E-stained lung tissues of DEN-treated WT and Cic LKO 

mice at 15 months of age. The right panel is a bar graph for the average numbers of tumor lesions in 
randomly selected lung tissue sections. Numbers of WT and Cic LKO mice used for this analysis are 10 and 
8, respectively. E. Kaplan–Meier survival curve of the DEN-treated WT (n=11) and Cic LKO mice (n=11). All 

error bars show s.e.m. *P < 0.05.  
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Figure 5. ETV4 is a major CIC target with the most significant relevance to HCC among PEA3 group genes. 
A. Analysis of TCGA database for expression levels of ETV1, ETV4, and ETV5 in normal liver (NL) and HCC 
samples of four different clinicopathologic stages (I, II, III, and IV). The numbers in parentheses mean the 

number of subjects in each group. B. Kaplan-Meier analysis of overall survival for HCC patients with high or 
low expression of PEA3 group genes (74 patients per each subgroup). C. qRT-PCR analysis of PEA3 group 
gene expression levels in control and CIC knockdown HCC cells. Experiments were performed more than 
three times, independently. D. Western blot analysis for levels of ETV4 in control and CIC knockdown HCC 
cells. E. qRT-PCR analysis for levels of Cic, Etv1, Etv4, and Etv5 in livers of 7-week-old WT and Cic LKO 
mice. n=6 per each genotype. F and G. qRT-PCR analysis for levels of Cic, Etv1, Etv4, and Etv5 in liver 

tumors harvested from the DEN-treated WT and Cic LKO mice at 8 months of age (F) and at 15 months of 
age (G). n=5 per each genotype. All error bars show s.e.m. *P < 0.05, **P < 0.01, and ***P < 0.001.  
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Figure 6. CIC deficiency-mediated promotion of HCC progression is due to derepression of ETV4. A. Western 
blot analysis showing ectopic expression of ETV4 in SK-HEP-1 and MHCC-97H cells. B-D. Cell growth assay 

(B), matrigel invasion assay (C), and transwell migration assay (D) of control and ETV4-overexpressing HCC 

cells. E. qRT-PCR analysis for ETV4 mRNA levels in control and CIC knockdown HCC cells transfected with 
either control or ETV4 siRNA. NN: control HCC cells transfected with control siRNA, N4: control HCC cells 

transfected with ETV4 siRNA (siETV4), CN: CIC knockdown HCC cells transfected with control siRNA, and C4: 
CIC knockdown HCC cells transfected with siETV4. F-H. Cell growth assay (F), matrigel invasion assay (G), 

and transwell migration assay (H) of control and CIC knockdown HCC cells treated with either control or 
ETV4 siRNA. Three independent experiments were performed. All error bars show s.e.m. *P < 0.05, **P < 

0.01, and ***P < 0.001.  
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Figure 7. MMP1 expression is regulated by the CIC-ETV4 axis. A. Analysis of TCGA database for expression 
levels of MMP1 in normal liver (NL) and HCC samples of four different clinicopathologic stages (I, II, III, and 
IV). The numbers in parentheses mean the number of subjects in each group. B. Kaplan-Meier analysis of 

overall survival for HCC patients with high or low MMP1 expression (74 patients per each subgroup). C. qRT-
PCR analysis for levels of MMP1, MMP10, and MMP12 in control and ETV4-overexpressing HCC cells (SK-HEP-
1 and MHCC-97H). D. Dual luciferase assay for regulation of MMP1 promoter activity by ETV4. The left panel 
is a schematic illustration for the luciferase reporter construct harboring MMP1 promoter region (-663/+1), 
in which there are two putative ETV4 binding sites (-323/-319 and -155/-149). The right panel is a bar 

graph for relative luciferase activity in the presence or absence of ETV4 overexpression. E. qRT-PCR analysis 
for levels of MMP1, MMP10, and MMP12 in control and CIC knockdown HCC cells. F. qRT-PCR analysis for 
MMP1 levels in control and CIC knockdown HCC cells treated with either control or ETV4 siRNA. NN: control 
HCC cells transfected with control siRNA, N4: control HCC cells transfected with siETV4, CN: CIC knockdown 
HCC cells transfected with control siRNA, and C4: CIC knockdown HCC cells transfected with siETV4. Three 
independent experiments were performed. All error bars show s.e.m. *P < 0.05, **P < 0.01, and ***P < 
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Figure 8. Upregulation of MMP1 expression contributes to the increased cell proliferation and invasion in CIC 
knockdown HCC cells. A. qRT-PCR analysis for MMP1 levels in control and CIC knockdown HCC cells treated 
with either control or MMP1 siRNAs. NN: control HCC cells transfected with control siRNA, N1-1: control HCC 

cells transfected with MMP1 siRNA-1 (siMMP1-1), N1-2: control HCC cells transfected with MMP1 siRNA-2 
(siMMP1-2), CN: CIC knockdown HCC cells transfected with control siRNA, C1-1: CIC knockdown HCC cells 
transfected with siMMP1-1, and C1-2: CIC knockdown HCC cells transfected with siMMP1-2. B-D. Cell 

proliferation assay (B), matrigel invasion assay (C), and transwell migration assay (D) of control and CIC 
knockdown HCC cells treated with either control or MMP1 siRNAs. Three independent experiments were 

performed. All error bars show s.e.m. *P < 0.05, **P < 0.01, and ***P < 0.001. E. Proposed model for the 
regulation of HCC progression by CIC-ETV4-MMP1 axis.  
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