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Utilizing the holographic technique, we investigate how the entanglement entropy evolves along the
renormalization group flow. After introducing a new generalized temperature which satisfies the
thermodynamicslike law even in the IR regime, we find that the renormalized entropy and the generalized
temperature in the IR limit approach the thermal entropy and thermodynamic temperature of a real thermal
system. This result implies that the microscopic quantum entanglement entropy in the IR region leads to the
thermodynamic relation up to small quantum corrections caused by the quantum entanglement near the
entangling surface. Intriguingly, this IR feature of the entanglement entropy universally happens regardless
of the detail of the dual field theory and the shape of the entangling surface. We check this IR universality
with a most general geometry called the hyperscaling violation geometry which is dual to a relativistic
nonconformal field theory.

DOI: 10.1103/PhysRevD.95.106007

I. INTRODUCTION

Recently, considerable attention has been paid to the
entanglement entropy for understanding quantum aspects
of theoretical and experimental physics. In general, a
quantum system governed by a microscopic theory does
not prefer any specific direction in time. So it is generally in
a reversible process. For a macroscopic system, however,
the irreversibility naturally occurs as the second law of
thermodynamics. In the quantum information theory, it has
been shown that quantum information can be thermalized
via the unitary time evolution and that there exists the link
between the quantum information and the thermal entropy
[1,2]. In spite of these studies, it is still unclear what kind of
underlying structure for a microscopic theory leads to such
macroscopic irreversibility. In order to understand the
occurrence of thermodynamics from a microscopic quan-
tum theory, we need to study further the connection
between the microscopic theory and thermodynamics.
In the quantum field theory, it has been known that there

exists a microscopic irreversible process along the renorm-
alization group (RG) flow, which is called the c-theorem.
The c-theorem claims that the c-function decreases mono-
tonically along the RG flow. It was first proven for a
two-dimensional quantum field theory and later for a
four-dimensional case [3–8]. In order to represent the
microscopic irreversibility of a quantum system, an impor-
tant physical quantity is the entanglement entropy which
measures the entanglement between quantum states [9–20].
In general, it is not easy work to calculate the entanglement
entropy of an interacting quantum field theory. Based on the
AdS=CFT correspondence [21–24], recently, a new and

relatively simple way to evaluate the entanglement entropy
was proposed [25,26]. In the UV limit, it has been well
known that the entanglement entropy allows a thermody-
namicslike law [27,28]. The origin of the thermodynamics-
like law can be readily understood by the non-negativity of
the renormalized (or relative) entropy describing the dis-
tance between two quantum states. Introducing an entan-
glement temperature, the thermodynamicslike law in theUV
region can be rewritten as [29–39]

ΔS ≈
ΔE
TE

þ � � � ; ð1Þ

where the ellipsis means higher order corrections relying on
the small subsystem size. Ignoring all higher order correc-
tions, the entanglement temperature, TE, shows a universal
behavior inversely proportional to the subsystem size.
Despite the similarity to the real thermodynamic law, the
entanglement temperature is not a genuine thermodynamic
quantity because the real thermodynamic temperature is
independent of the system size. Thus, it would be interesting
to ask what the meaning of the entanglement temperature is
and how it can be connected to the real temperature. In this
work, we will investigate how the macroscopic thermody-
namics law can emerge from the microscopic quantum
system along the RG flow.
Recently, it has been shown that the above thermody-

namicslike law plays a central role in reconstructing the
linearized Einstein equation of the dual geometry only from
conformal field theory (CFT) data [40–43]. However, the
thermodynamicslike law and entanglement temperature
defined above are valid only in the UV region because
of neglecting all higher order corrections. In order to go
beyond the linearized level and to investigate the RG flow
correctly [44,45], it is required to define new quantities
which arevalid even in the IR regime.By involving all higher
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order corrections, we can define a generalized thermodyna-
micslike law such that it is valid in the entire RG scale. Even
in theUV region, the higher order corrections usuallymodify
the entanglement temperature, so that we all need to general-
ize the entanglement temperature which we simply call a
generalized temperature from now on. Note that these
generalized concepts are inevitable for representing the
RG flow of the entanglement entropy correctly.
Defining a renormalized entropy by subtracting the

ground-state entanglement entropy, it does not suffer from
the UV divergence anymore, and its generalized thermo-
dynamicslike law reproduces the previous result in (1) in
the UV region. In the IR limit, intriguingly, we find that the
renormalized entropy has a universal form regardless of the
microscopic detail and the shape of the entangling surface,

S̄ ¼ Sth þ Sq; ð2Þ

where Sth and Sq indicate a thermal entropy and a small
quantum correction, respectively. In this case, the thermal
entropy is nothingbut theBekenstein-Hawkingentropy of the
dual black hole geometry. Note that the similar structure also
appears in black hole physics [46–54]. The above universal
form of the IR entanglement entropy implies that the excited-
state entanglement entropy can be thermalized in the IR limit
with the small quantum correlation near the entangling
surface. Intriguingly, we find that the generalized temperature
also approaches the thermodynamic temperature in the IR
limit. This fact implies that the generalized thermodynamics-
like lawwedefined leads to the real thermodynamic law in the
IR limit up to the small quantum correction. In this work, we
holographically check the universal feature of the IR entan-
glement entropy in conformal and nonconformal field the-
ories with a strip- or ball-shaped entangling surface.
The rest of this paper is organized as follows. In Sec. II, we

first look into the RG flow of the entanglement entropy for a
two-dimensional CFT. In this case, since we can find an
analytic form of the entanglement entropy in the entire RG
scale, we explicitly show how the renormalized entropy and
generalized temperature approach the thermal entropy and
the real thermodynamic temperature along the RG flow. In
Sec. III, we take into account a higher-dimensional CFT in
which the entangling surface can have various different
shapes. We find that the thermal entropy gives the main
contribution to the IR entanglement entropy regardless of
the dimension and topology of the entangling surface. We
further show in Sec. IV that this IR feature of the entangle-
ment entropy universally appears even in the nonconformal
field theory. We finish this work with some concluding
remarks in Sec. V.

II. RG FLOW OF THE ENTANGLEMENT
ENTROPY

Although the entanglement entropy is well defined in a
general quantum field theory, it is not an easy task to

evaluate the entanglement entropy of an interacting quan-
tum field theory. However, recent holographic studies
proposed a new way to calculate the entanglement entropy
on the dual gravity side [25,26]. Based on the AdS=CFT
correspondence [21–24], the holographic entanglement
entropy can be obtained by evaluating the area of the
minimal surface extended to the corresponding dual geom-
etry. Through this holographic technique, in this work, we
try to understand how the entanglement entropy evolves
along the RG flow. In general, since the entanglement
entropy crucially relies on the dimension and shape of the
entangling surface dividing a total system into two sub-
systems, we first concentrate on a three-dimensional anti-de
Sitter (AdS) space which is dual to a two-dimensional CFT.
In this case, the entangling surface is just a point, so the
subsystem is always given by an interval on a line. The
black hole metric in a three-dimensional AdS space is
represented as

ds2 ¼ −
R2

z2
fðzÞdt2 þ R2

z2fðzÞ dz
2 þ R2

z2
dx2; ð3Þ

with the following black hole factor:

fðzÞ ¼ 1 −
z2

z2h
: ð4Þ

Following the AdS/CFT correspondence, this black hole
geometry can be matched to the two-dimensional CFT at
finite temperature. More precisely, black hole quantities
can be identified with macroscopic quantities classifying
thermodynamics of the dual field theory. Setting R ¼ 1
for simplicity, the Hawking temperature and Bekenstein-
Hawking entropy contained in the boundary volume,
−l=2 ≤ x ≤ l=2, are given by

TH ¼ 1

2πzh
; ð5Þ

Sth ¼
1

4G
l
zh

; ð6Þ

and the first law of thermodynamics, dE ¼ THdSth, leads
to the internal energy

E ¼
Z

THdSth ¼
1

16πG
l
z2h

¼ 1

2
THSth: ð7Þ

Note that the Hawking temperature is global in that it does
not depend on the system size, l.
Now, let us study the entanglement entropy of the

corresponding CFT. If we take a subsystem located at
−l=2 ≤ x ≤ l=2, the holographic entanglement entropy is
determined from
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SE ¼ 1

4G

Z
l=2

0

dx
R
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

f

s
; ð8Þ

where the prime means a derivative with respect to x. Due
to the absence of the explicit x-dependence, there exists a
well-defined conserved quantity,

H ¼ −
R
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02=f

p : ð9Þ

In addition, the Z2 symmetry (x → −x) allows a turning
point at x ¼ 0, and at the same time, the smoothness of the
minimal surface at the turning point leads to z0 ¼ 0. These
constraints determine the subsystem size and the holo-
graphic entanglement entropy in terms of the turning point
denoted as z0,

l ¼ 2

Z
z0

0

dz
zffiffiffi

f
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z20 − z2
p ; ð10Þ

SE ≡ A
4G

¼ 1

2G

Z
z0

ϵ
dz

z0
z

ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 − z2

p ; ð11Þ

where a UV cutoff ϵ corresponding to the lattice spacing
is introduced for the regularization. When f ¼ 1 with
zh ¼ ∞, the above black hole geometry reduces to a pure
AdS space corresponding to the ground state of the dual
CFT. In this case, the turning point is located at z0 ¼ l=2,
and the ground-state entanglement entropy reads

Sg ¼
1

2G
log

l
ϵ
: ð12Þ

Noting that theNewton constant is associatedwith the central
charge of the dual CFT, c ¼ 3R

2G, it is perfectlymatched to that
obtained from a two-dimensional CFT [55–57].
For f ≠ 1, the black hole geometry can be well described

by the previous thermodynamic quantities, which may be
understood as IR physics caused by thermalization of
quantum excitations. In the UV region, the holographic
entanglement entropy derived in the black hole geometry
can be regarded as the excited-state entanglement entropy,
and from the RG flow point of view, this microscopic
quantity must be continuously connected to the macro-
scopic one. Performing the integrals in (10) and (11) and
rewriting the entanglement entropy in terms of the sub-
system size, we can find the analytic form of the entangle-
ment entropy,

SE ¼ 1

2G
log

�
β

πϵ
sinh

�
πl
β

��
; ð13Þ

where β ¼ 1=TH. This is exactly the same as the entangle-
ment entropy obtained in a two-dimensional CFT at finite
temperature [55–57]. Following the previous RG flow

prescription, this excited-state entanglement entropy
should have a connection to the thermal entropy in the
IR region. From now on, we will discuss how the thermal
entropy can occur from the entanglement entropy along the
RG flow.
In order to see the connection between the entanglement

and thermal entropies, we should first define a renormal-
ized (or relative) entropy by subtracting the ground-state
entanglement entropy

S̄≡ SE − Sg ¼
1

2G
log

�
2zh
l

sinh

�
l

2zh

��
; ð14Þ

which is required to remove unphysical UV divergences.
In the UV region (l ≪ zh), it has been known that the
renormalized entropy satisfies the thermodynamicslike law
after introducing an appropriate entanglement temperature,
which is universally proportional to the inverse of the
subsystem size [29]. This fact becomes clear when expand-
ing the above renormalized entropy in the UV region,

S̄ ¼ 1

48G
l2

z2h
þOðl4Þ: ð15Þ

Ignoring higher order corrections and applying the ther-
modynamicslike law, E ≈ TES̄=2, the entanglement tem-
perature reads [29,30,35]

TE ¼ 6

πl
: ð16Þ

This result shows the universal behavior mentioned
before and describes how the excitation energy increases
the entanglement entropy. The entanglement temperature
defined in the UV region is totally different from the
thermodynamic temperature because the thermodynamic
temperature is independent of the system size. Therefore,
the thermodynamicslike law of the entanglement entropy
has nothing to do with the real thermodynamic law.
However, this UV story dramatically changes in the IR
regime where the real thermodynamic law can universally
emerge from the IR entanglement entropy regardless of the
microscopic details and the shape of the entangling surface.
To see the universal IR feature for the above two-

dimensional CFT, it should first be noted that when
deriving (16), all higher order corrections of the renormal-
ized entropy were ignored. This fact implies that the
entanglement temperature defined in (16) is valid only in
the UV region. In order to represent the RG flow correctly,
we need to generalize the entanglement temperature to be
applicable even in the IR regime. We define a generalized
temperature as

1

T̄
≡ 1

2

S̄
Ē
¼ 4πz2h

l
log

�
2zh
l

sinh

�
l

2zh

��
; ð17Þ
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where all higher order corrections of the renormalized
entropy are involved. Then, the generalized thermodyna-
micslike law, E ¼ T̄ S̄ =2, becomes an exact relation
satisfied in the entire region of l, including the IR ðl → ∞Þ
as well as UV ðl → 0Þ region. In the UV region, the
renormalized entropy and the newly defined generalized
temperature are expanded into

S̄ ¼ 1

48G
l2

z2h

�
1 −

l2

120z2h
þ � � �

�
; ð18Þ

1

T̄
¼ 1

TE

�
1 −

l2

120z2h
þ � � �

�
; ð19Þ

where TE appears at leading order, as expected. Recently,
there was an interesting study to reconstruct the linearized
dual geometry from the thermodynamicslike law repre-
sented by TE [40–43]. In order to go beyond the linearized
level, the generalized temperature defined here may play an
important role, because it contains all higher order infor-
mation related to the inner region of the dual geometry.
Therefore, it would be interesting to reconstruct a nonlinear
Einstein equation from the generalized thermodynamics-
like law. We leave it as a future work.
To understand the connection between the entanglement

and thermal entropies, we look into the renormalized
entropy in the IR limit (l → ∞) where z0 approaches zh.
In the IR region, the renormalized entropy has the follow-
ing expansion,

S̄ ¼ 1

4G
l
zh

−
1

2G
log

�
l

4zh

�
þOðϵ−l=zhÞ; ð20Þ

where the leading contribution is exactly the same as the
thermal entropy. Intriguingly, this result indicates that the
quantum entanglement entropy in the UV region, which
has no connection to the thermal entropy, can evolve into

the macroscopic thermal entropy along the RG flow. For
more understanding, let us consider the inverse of the
generalized temperature, β̄ ¼ 1=T̄, which represents man-
ifestly how the entanglement entropy is thermalized in the
IR regime. In the UV regime, the leading behavior of β̄ is
linearly proportional to l, so that the entanglement entropy
describes quantum aspects rather than thermal ones. In the
IR regime, on the other hand, β̄ behaves as

β̄ ¼ 2πzh þ
4πz2h
l

log

�
zh
l

�
þ � � � ð21Þ

and approaches the inverse of the Hawking temperature. In
Fig. 1(a), we depict how the entanglement temperature
continuously approaches the Hawking temperature in the
IR regime. In order to characterize the thermal and quantum
aspects, let us consider the RG flow of β̄:

l
dβ̄
dl

¼ 2πzh

�
coth

l
2zh

−
2zh
l

�
1þ log

�
2zh
l

sinh
l

2zh

���
:

ð22Þ

Recalling that the thermodynamic temperature is indepen-
dent of the system size, the RG flow of β̄ in Fig. 1(b)
confirms that the generalized temperature really becomes
the thermodynamic temperature in the IR regime.
Intriguingly, Fig. 1(b) has a maximum near l ¼ 7.019. If
the subsystem size is smaller than this critical value, the
system behaves like a quantum system, whereas above the
critical value, the system approaches a thermal system.
For a two-dimensional CFT, in summary, we showed that

the excited-state entanglement entropy can be thermalized
and results in the thermal entropy in the IR regime. This
fact implies that the IR renormalized entropy can have the
following expansion form,

S̄ ¼ Sth þ Sq; ð23Þ

(a) (b)

FIG. 1. (a) The inverse of the entanglement temperature depending on the subsystem size and (b) its RG flow.
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where Sq indicates the quantum correction caused by the
remaining short-distance quantumcorrelation near the entan-
gling surface. The emergence of the macroscopic thermal
entropy from the quantum entanglement entropy requires
that Sth should be larger than Sq at least in the IR regime. For
the above two-dimensional example, Sth increases linearly as
l increases, while the quantum correction increases loga-
rithmically. The similar feature also occurs in a higher-
dimensional theory regardless of the microscopic details
and the topology of the entangling surface, as will be shown.
This fact implies that the emergence of the thermodynamic
properties in the IR region is a universal behavior of the
quantum entanglement entropy governing the microscopic
theory. We will check this universality in the following
sections.
Before going to our discussion on the entanglement

entropy above two dimensions, we would like to point out
the existence of a crossover scale given by the maximum of
dβE
d ln l in Fig. 1(b). This crossover scale should be regarded to
be a special feature detected by the entanglement entropy
near quantum criticality since such an energy scale is not
shown in any conventional thermodynamic properties.
Certainly, it shows the change of an entanglement pattern
in the ground-state wave function near quantum criticality.
We suspect that this energy scale may be involved with a
full development of thermalization; below this temperature
scale, strong inelastic scattering gives rise to thermal-
ization, where dynamic properties would be described
by emergent hydrodynamic equations. Unfortunately, it
is not clear at all how to verify the existence of such an
energy scale in correlation functions.

III. QUANTUM CORRECTION OF THE IR
ENTANGLEMENT ENTROPY

For a higher-dimensional theory unlike the two-
dimensional case, the entangling surface can have various
topologies, and the entanglement entropy crucially depends
on the shape of the entangling surface. In order to study the
universality of the IR entanglement entropy, therefore, we
should investigate what kind of quantum correction appears
to rely on the shape of the entangling surface. In this
section, we will consider strip- and ball-shaped entangling
regions and show that the IR entanglement entropy reduces
to the thermal entropy regardless of the shape of the
entangling surface.

A. Strip-shaped entangling region

For a (dþ 1)-dimensional AdS black hole dual to an
excited state of a d-dimensional CFT, a general metric is
given by

ds2 ¼ 1

z2

�
−fðzÞdt2 þ dx2i þ

1

fðzÞ dz
2

�
; ð24Þ

where i runs from 1 to d − 1 and the black hole factor is
given by

fðzÞ ¼ 1 −
zd

zdh
: ð25Þ

Let us first consider a strip-shaped subsystem with the
following parametrization,

−
l
2
≤ x ≤

l
2

and −
L
2
≤ x2;…; xd−1 ≤

L
2
; ð26Þ

where we replaced x1 by x for convenience. Above, l and L
denote the size of the subsystem and total system, respec-
tively. Then, the holographic entanglement entropy is
governed by

SE ¼ Ld−2

4G

Z
l=2

−=2
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ z02

p
zd−1

ffiffiffi
f

p ; ð27Þ

where the prime means a derivative with respect to x.
Denoting the turning point as z0, the subsystem size and the
entanglement entropy can be determined as functions of the
turning point,

l ¼ 2

Z
z0

0

dz
zd−1ffiffiffi

f
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2ðd−1Þ0 − z2ðd−1Þ
q ; ð28Þ

SE ¼ Ld−2

2G

Z
z0

0

dz
zd−10

zd−1
ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ðd−1Þ0 − z2ðd−1Þ

q : ð29Þ

From these relations, the entanglement entropy in the UV
region (z0=zh ≪ 1) has been well studied. Similar to the
previous two-dimensional case, the thermodynamicslike
law in the UV region leads to the entanglement temperature
proportional to the inverse of the subsystem size.
In order to define the renormalized entropy for an excited

state, let us first consider the ground-state entanglement
entropy. To do so, we consider a pure AdS space by taking
f ¼ 1. When the subsystem size is given by l, we need to
introduce a new turning point because the position of the
turning point relies on the background geometry. Denoting
the turning point of the pure AdS geometry as z�, it is
determined to be

l ¼ 2

Z
z�

0

dz
zd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2ðd−1Þ� − z2ðd−1Þ
q ¼

2
ffiffiffi
π

p
z�Γð d

2ðd−1ÞÞ
Γð 1

2ðd−1ÞÞ
: ð30Þ

Moreover, the exact ground-state entanglement entropy
reads

Sg ¼
Ld−2

2G

Z
z�

0

dz
zd−1�

zd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ðd−1Þ� − z2ðd−1Þ

q

¼ 1

2ðd − 2ÞG
Ld−2

ϵd−2
−

2d−3π
d−1
2 Γð d

2ðd−1ÞÞd−1
ðd − 2ÞGΓð 1

2ðd−1ÞÞd−1
Ld−2

ld−2
: ð31Þ
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Then, the renormalized entropy can be determined as

S̄≡ SE − Sg; ð32Þ

which represents the difference between the ground- and
excited-state entanglement entropies. One important thing
we should note is that the renormalized entropy has no UV
divergence and is independent of the renormalization
scheme.
For the higher-dimensional case unlike the previous two-

dimensional case, since the integrals in (28) and (29) do not
allow the exact calculation, we focus on the IR behavior
near z0 ≈ zh. The integrand of (28) is singular at z ¼ z0, so
the main contribution comes from the integration near
z ≈ z0. Using this fact, the subsystem size can be approx-
imately written as

l ≈ −
ffiffiffi
2

p
z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðd − 1Þp log

�
1 −

z0
zh

�
þ � � � ; ð33Þ

where the ellipsis denotes finite higher order correction.
This result shows that the subsystem size diverges loga-
rithmically when the turning point approaches the horizon.
From (29), one can see that the excited-state entanglement
entropy has two kinds of divergences. The first one is the
UV divergence appearing at z ¼ 0. Since the ground-state
entanglement entropy cancels this divergence, this UV
divergence does not appear in IR physics described by the
renormalized entropy. The second divergence appears at
z ¼ z0 only at z0 ¼ zh. This is crucial for understanding IR
physics because the ground-state entanglement entropy has
no such an IR divergence. In the IR region (z0 ≈ zh), the
leading contribution of (29) also gives rise to a logarithmic
behavior similar to (33)

SE ∼ −
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þp Ld−2

2G
1

zd−20

log

�
1 −

z0
zh

�
: ð34Þ

Rewriting it in terms of l, the leading contribution of the IR
entanglement entropy is given by a term linearly propor-
tional to the subsystem size,

SE ∼
Ld−2l
4Gzd−1h

; ð35Þ

which is exactly the same as the thermal entropy of the dual
field theory. This result shows, as mentioned before, that the
leading behavior of the IR entanglement entropy defined in
the strip-shaped region reduces to the thermal entropy.
In order to check the universal behavior of the IR

entanglement entropy more precisely, we need to confirm
whether the remaining quantum correction of the IR
entanglement entropy is really smaller than the thermal
entropy. To do so, it is worth noting that one can rewrite the
renormalized entropy in the following form:

S̄ ¼ Ld−2

2G

Z
z0

0

dz
zd−1ffiffiffi

f
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2ðd−1Þ0 − z2ðd−1Þ
q

þ Ld−2

2G

Z
z0

0

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ðd−1Þ0 − z2ðd−1Þ

q
zd−10 zd−1

ffiffiffi
f

p − Sg: ð36Þ

When z0 → zh, the first integral gives rise to the leading
thermal entropy discussed above, while the remaining
terms correspond to the quantum correction. One can easily
check that the remaining quantum correction is finite in the
IR limit (z0 ¼ zh). Due to the finiteness of this quantum
correction in the IR region, the renormalized entropy can be
perturbatively expanded into

S̄ ¼ Ld−2l
4Gzd−1h

þ a0 þ aUVl−ðd−2Þ þ a1l−b1 þ a2l−b2…;

ð37Þ

where 0 < b1 < b2 < � � � and aUV is fixed from the ground-
state entanglement entropy

aUV ¼
2d−3π

d−1
2 Γð d

2ðd−1ÞÞd−1
ðd − 2ÞGΓð 1

2ðd−1ÞÞd−1
Ld−2: ð38Þ

Now, let us determine the coefficients, a0, a1, and b1.
Since the analytic evaluation of the integral in (36) is not
allowed, we can only determine these values numerically.
In Fig. 2, we depict the renormalized entropy and its slope
relying on the subsystem size where we take d ¼ 3,
L ¼ 1000, G ¼ 1, and zh ¼ 1 for simplicity. The leading
correction in the IR limit is given by a0 ≈ −435 approx-
imately, which is irrelevant to the RG flow. To determine
what the next quantum correction is, we should first know
whether b1 is larger than (d − 2) or not. If b1 > ðd − 2Þ, the
next quantum correction comes from the remnant of the UV
entanglement entropy, aUVl−ðd−2Þ. To see that, let us define
the following test function and numerically calculate it:

ST ≡ ld−1
dS̄
dl

: ð39Þ

If this value diverges in the IR limit, it indicates
b1 < ðd − 2Þ. Otherwise, b1 ≥ ðd − 2Þ. Furthermore, if
the IR value of ST approaches to −ðd − 2ÞaUV, it means
b1 > ðd − 2Þ because for b1 ¼ ðd − 2Þ it should converge
into another value, −ðd − 2Þða1 þ aUVÞ. The numerical
result in Fig. 3 indicates b1 > ðd − 2Þ. Therefore, the first
quantum correction comes from the short distance quantum
correlation near the entangling surface. Similar behavior
also occurs for d ¼ 4 case. These results imply that the IR
entanglement entropy approaches the thermal entropy, as
mentioned before, and the quantum correction is rapidly
suppressed by the l−ðd−2Þ power.
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B. Ball-shaped entangling region

In the previous section, we have shown that the entan-
glement entropy stored in a strip-shaped region reduces to
the thermal entropy in the IR limit. In addition, we also
found that, when the subsystem size increases, the quantum
correction caused by the short distance quantum correlation
is suppressed by l−ðd−2Þ for a d-dimensional CFT. For a
higher-dimensional field theory, one can consider a differ-
ent shape of the entangling surface, like a spherical one
which can give rise to additional information associated
with the free energy and central charge of a dual field
theory. In this section, we will investigate the IR entangle-
ment entropy accumulated in a ball-shaped region and its
universality discussed in the previous sections. For describ-
ing a spherical entangling surface with a rotational sym-
metry, it is more convenient to parametrize the AdS black
hole metric in terms of the spherical coordinate,

ds2¼ 1

z2

�
−fðzÞdt2þdρ2þρ2dΩ2

d−2þ
1

fðzÞdz
2

�
; ð40Þ

where Ωd−2 indicates the solid angle of a (d − 2)-
dimensional unit sphere. Denoting the radius of the

entangling surface as l, the range of ρ is limited to
0 ≤ ρ ≤ l. In this case, the entanglement entropy is given by

SE ¼ Ωd−2

4G

Z
z0

ϵ
dz

ρd−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fρ02

p
zd−1

ffiffiffi
f

p ; ð41Þ

where the prime means a derivative with respect to z.
In order to clarify the entanglement entropy in the IR

region, let us think of boundary conditions satisfied by the
minimal surface. First, ρðzÞ at z ¼ 0 must approach l
because the entangling surface is located at the boundary
denoted by z ¼ 0. Due to the rotational symmetry of the
minimal surface, ρðzÞ should vanish at the turning point,
ρðz0Þ ¼ 0. In addition, the smoothness of the minimal
surface requires ∂zρjz¼z0 ¼ −∞ at the turning point. These
constraints fix the leading behavior of ρðzÞ near the turning
point to be

ρðzÞ ≈ ðz0 − zÞνcðzÞ þ � � � ; ð42Þ

with 0 < ν < 1, where cðzÞ must be regular at the turning
point. Near the turning point, because ρ0 → −∞, the above
integral reduces to

Ωd−2

4G

Z
dz

ρd−2
ffiffiffiffiffiffi
ρ02

p
zd−10

→
Ω1

4Gzd−10

Z
dρρd−2: ð43Þ

From this fact, we can rewrite the excited-state entangle-
ment entropy in the following form:

SE ¼ Ωd−2

4Gzd−10

Z
l

0

dρρd−2

þ Ωd−2

4G

Z
z0

ϵ
dz

ρd−2ðzd−10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fρ02

p
− zd−1

ffiffiffiffiffiffiffiffi
fρ02

p
Þ

zd−10 zd−1
ffiffiffi
f

p :

ð44Þ

(a) (b)

FIG. 2. The renormalized entropy and its derivative depending on the subsystem size. Figure 1(a) shows that the renormalized entropy
monotonically decreases along the RG flow. Since its derivative approaches zero in Fig 1(b), we see that the renormalized entropy
converges into a certain value (≈ − 435) as l → ∞.

FIG. 3. The value of the test function ST . In the IR limit, it
approaches to ST ≈ −359, which is almost equal to the value of
−ðd − 2ÞaUV.
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In the IR limit (l → ∞ and z0 → zh), this decomposition
shows that the first term reduces to the thermal entropy
corresponding to the Bekenstein-Hawking entropy of the
dual black hole. On the other hand, the remaining quantum
correction is finite up to a UV divergence similar to the
previous strip case. This finiteness of the quantum correc-
tion again implies that the thermal entropy naturally
appears as the leading contribution to the IR entanglement
entropy regardless of the dimension and shape of the
entangling surface.
In the UV limit, the entanglement entropy stored in the

ball-shaped region shows a totally different behavior
depending on the dimension, so we should be careful to
investigate the entanglement entropy in the UV region.
However, the dimension of the entangling surface is not
crucial when investigating the IR behavior. In this work,
thus, we focus on the cases with d ¼ 3. If we set f ¼ 1, the
resulting geometry becomes a pure AdS space dual to a
(2þ 1)-dimensional CFT. The entanglement entropy evalu-
ated in this background geometry corresponds to the
ground-state entanglement entropy of the dual CFT, which
is determined in terms of the subsystem size

Sg ¼
Ω1

4G
l
ϵ
−
Ω1

4G
: ð45Þ

The entanglement entropy for the excited state can be
determined by the black hole geometry with f ¼ 1 − z3=z3h.
From (41), the minimal surface configuration is governed
by ρ0

0 ¼ ρ00 þ 2ðz3h − z3Þρ03
z3hz

−
ρ02

ρ
þ ð4z3h − z3Þρ0

2zðz3h − z3Þ −
z3h

ρðz3h − z3Þ :

ð46Þ

Substituting the expected ansatz in (42) into this equation
of motion, the solution has the following perturbative
expansion,

0 ¼ 2ν3c30
z0

ðz0 − zÞ3ν−3 − c0νðz0 − zÞν−2

−
1

c0
ðz0 − zÞ−ν þ � � � ; ð47Þ

where c0 indicates the value of cðzÞ at the turning point and
the ellipsis involves less divergent terms. In order to
determine ν, let us consider the following three cases:

(i) For ν > 1=2, the last two terms in (47) are more
dominant. The canceling of these two terms in (47)
fixes ν to be 1. However, since 0 < ν < 1 from the
smoothness of the minimal surface, there is no ν
satisfying the equation of motion and smoothness of
the minimal surface simultaneously.

(ii) For ν < 1=2, the first and third terms are dominant.
This means ν ¼ 3=4, which is inconsistent with the
assumption ν < 1=2. Thus, there is also no solution.

(iii) For ν ¼ 1=2, the first two terms are dominant. In
order to satisfy (47) at leading order, c0 must be

c0 ¼
ffiffiffiffiffiffiffi
2z0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z30=z

3
h

q : ð48Þ

Near the turning point parametrized by z0 − δ ≤ z ≤ z0,
the corresponding distance in the x-direction is given by
0 ≤ x ≤ lx with

lx ∼
ffiffiffiffiffiffiffiffiffi
2z0δ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z30=z

3
h

q : ð49Þ

Substituting the solution (42) with the above c0 into (41),
we can find that the renormalized entropy near the turning
point behaves as

SE ¼ Ωδ
12Gðzh − z0Þ

þ � � � : ð50Þ

Rewriting it by using (49), we finally reach

SE ¼ Ω1l2x
8Gz2h

þ � � � ; ð51Þ

which is the main contribution to the IR entanglement
entropy. In the IR limit, since lx ≈ l, this result exactly
reproduces the thermal entropy corresponding to the
Bekenstein-Hawking entropy of the dual black hole. This
result indicates that the IR excited-state entanglement
entropy is thermalized from the center of the entangling
region. This result becomes more manifest when we rewrite
the renormalized entropy as the form in (44)

S̄ ¼ Ω1

4Gz20

Z
l

0

dρρ

þ Ω1

4G

�Z
z0

ϵ
dz

ρðz20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fρ02

p
− z2

ffiffiffiffiffiffiffiffi
fρ02

p
Þ

z20z
2

ffiffiffi
f

p −
l
ϵ

�

þ Ω1

4G
: ð52Þ

In the IR limit, the first term corresponds to the thermal
entropy appearing in (51), while the remaining terms
represent the quantum correction which is finite in the
entire region of l. Since the thermal entropy is dominant in
the IR limit, the IR entanglement entropy of the ball-shaped
region reduces to the thermal entropy, as mentioned before.

IV. UNIVERSAL THERMALENTROPY FROMTHE
IR ENTANGLEMENT ENTROPY

In the previous sections, we showed that the main
contribution to the IR entanglement entropy comes from
the thermal entropy regardless of the shape of the entan-
gling surface for a d-dimensional CFT. In order to figure
out this feature holographically, an important ingredient is
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the existence of the horizon in the dual geometry. The
minimal surface extended near the horizon, corresponding
to the center of the entangling region, gives rise to most of
the entanglement entropy in the IR limit. The existence of
the horizon is a natural property of a black hole solution
even for non-AdS geometries. Applying the gauge/gravity
duality, therefore, one can expect that the thermal entropy
universally appears in the IR entanglement entropy even for
nonconformal field theories. In order to check the universal
feature of the IR entanglement entropy, in this section, we
will show holographically that the thermal entropy leads to
the main contribution to the IR entanglement entropy even
for nonconformal relativistic field theories.
For a (dþ 1)-dimensional gravity theory, a general black

hole metric can be represented as

ds2 ¼ 1

z2

�
−e2AðzÞfðzÞdt2 þ e2BðzÞδijdxidxj þ

e2CðzÞ

fðzÞ dz2
�
;

ð53Þ
where i ¼ 1;…; d − 1 and fðzÞ indicates the black hole
factor. Depending on the detail of the gravity theory, the
black hole factor can have several roots. We denote the
largest root as zh, which is called the black hole horizon.
For convenience, the black hole factor can be further
rewritten in the following form,

fðzÞ ¼
�
1 −

z
zh

�
FðzÞ; ð54Þ

where FðzÞ must be regular for 0 ≤ z ≤ zh and approaches
to 1 as z → 0. The other unknown functions, e2AðzÞ, e2BðzÞ,
and e2CðzÞ, are also regular except z ¼ 0. Using these facts,
the Bekenstein-Hawking entropy reads from the area law

Sth ¼
Vd−1

4G
eðd−1ÞBðzhÞ

zd−1h

; ð55Þ

where Vd−1 indicates a regularized volume in Rd−1.
Following the gauge/gravity duality, the Bekenstein-
Hawking entropy can be reinterpreted as the thermal
entropy of the dual quantum field theory (QFT). In this
case, the area of the black hole proportional to Vd−1 can be
mapped to the volume of the dual QFT. This fact is
important for identifying the Bekenstein-Hawking entropy
with the thermal entropy because the thermal entropy of a
usual thermal system should be an extensive quantity.
Above, we assumed a rotational invariance in Rd−1. We
can further generalize it to a more general black hole
solution breaking such a rotational symmetry. However,
since breaking of the rotational invariance does not affect
our study on the universality of the IR entanglement
entropy, we concentrate on the above black hole metric.
Note that we can set e2CðzÞ ¼ 1without loss of generality

because of the diffeomorphsim invariance. In this case, the

resulting metric and its dual field theory can be classified
by AðzÞ and BðzÞ as follows:

(i) For e2AðzÞ ¼ e2BðzÞ ¼ 1, the metric reduces to that of
the AdS black hole studied in the previous sections.
The dual field theory is conformal.

(ii) For e2AðzÞ ≠ e2BðzÞ ¼ 1, it reduces to the Lifshitz
black hole which breaks the boost symmetry in the
t − xi plane. The resulting dual field theory is a
nonrelativistic field theory with a scale invariance
[58–60].

(iii) For e2AðzÞ ¼ e2BðzÞ ≠ 1, it leads to a black hole on the
hyperscaling violation geometry which has no scale
symmetry. The dual field theory can be identified
with a relativistic quantum field theory without a
scale symmetry [61–65].

(iv) For e2AðzÞ ≠ 1, e2BðzÞ ≠ 1, and e2AðzÞ ≠ e2BðzÞ, it is
the combination of the previous two cases. In this
case, the scale and boost symmetry are broken, and
the dual field theory is given by a nonrelativistic
theory without a scale symmetry.

For a strip-shaped region, the entanglement entropy is
governed by

SE ¼ Ld−2

4G

Z
l=2

−l=2
dx

eðd−2ÞB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fe2B þ z02

p
zd−1

ffiffiffi
f

p : ð56Þ

Using the conserved quantity caused by the translational
symmetry in the x-direction, the width of the strip and the
entanglement entropy are parametrized as functions of the
turning point, z0,

l ¼ 2

Z
z0

0

dz
zd−1eðd−1ÞB0

eB
ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðd−1ÞBz2ðd−1Þ0 − e2ðd−1ÞB0z2ðd−1Þ

q ;

ð57Þ

SE¼
Ld−2

2G

Z
z0

0

dz
zd−10 eð2d−3ÞB0

zd−1
ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðd−1ÞBz2ðd−1Þ0 −e2ðd−1ÞB0z2ðd−1Þ

q ;

ð58Þ
where B0 implies the value of BðzÞ at z ¼ z0. Here, the
range of the turning point is restricted to 0 ≤ z0 ≤ zh, and
1=z corresponds to the energy scale of the dual QFT. These
relations imply that z0 ¼ 0 and z0 ¼ zh can map to a UV
and IR limit of the dual QFT. When z0 approaches to zero,
the integral in (57) automatically vanishes. On the other
hand, if z0 approaches zh, the integrand of (57) gives rise to
a simple pole. Performing the integral in (57) near z0 ¼ zh
yields the following relation at leading order:

l ≈ z0 log ðzh − z0Þ: ð59Þ
This implies that the width of the strip diverges logarithmi-
cally in the IR limit. Rewriting the entanglement entropy by
using (57), we can find the following form:
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SE ¼ lLd−2

4G
eðd−1ÞB0

zd−10

þ Ld−2

2Gzd−10

Z
z0

ϵ
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðd−1ÞBz2ðd−1Þ0 − e2ðd−1ÞB0z2ðd−1Þ

q
zd−1eB

ffiffiffi
f

p :

ð60Þ

Noting that the volume of the strip is given byVd−1 ¼ lLd−2,
we can easily see that in the IR limit (l → ∞), the first term
exactly reduces to the thermal entropy of the dual field
theory. Ignoring the UV divergence which is absent for the
renormalized entropy, the quantum correction part gives rise
to the regular contribution. As a consequence, since the first
term is dominant in the IR region, the IR entanglement
entropy reduces to the thermal entropy, as expected before.
Now, let us further study the entanglement entropy

accumulated in a ball-shaped region. Due to the rotational
symmetry of the ball-shaped region, it is more convenient
to rewrite the metric in (53) as the following form, which
makes the rotational symmetry manifest:

ds2 ¼ 1

z2

�
−e2AðzÞfðzÞdt2 þ e2BðzÞdρ2

þ e2BðzÞρ2dΩ2
d−2 þ

1

fðzÞ dz
2

�
: ð61Þ

On this background metric, the entanglement entropy reads

SE ¼ Ωd−2

4G

Z
l

0

dρ
eðd−2ÞBρd−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Bf þ z02

p
zd−1

ffiffiffi
f

p : ð62Þ

For pure AdS geometry with B ¼ 0 and f ¼ 1, the exact
configuration of the minimal surface has been known as
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − ρ2

p
. However, if B ≠ 0 or f ≠ 1, it is not easy to

find an exact solution. In spite of this fact, there are several
constraints the solution must satisfy. First, the entangling
surface is located at the boundary, so that the solution must
have zðlÞ ¼ 0. Another constraint is that z has a turning
point at ρ ¼ 0 due to the rotational symmetry. Furthermore,
the smoothness of the minimal surface is required to be
z0 ¼ 0 at the turning point. Due to these constraints, the
entanglement entropy near the turning point should be
approximately proportional to

Ωd−2eðd−1ÞB0

4Gzd−10

Z
z≈z0

dρρd−2: ð63Þ

This behavior becomes manifest when we rewrite the above
entanglement entropy in the following form:

SE ¼ Ωd−2eðd−1ÞB0

4Gzd−10

Z
l

0

dρρd−2 þ Ωd−2

4Gzd−10

Z
l

0

dρ
ρd−2ðzd−10 eðd−1ÞB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ e−2Bz02

p
− zd−1eðd−1ÞB0

ffiffiffi
f

p Þ
zd−1

ffiffiffi
f

p : ð64Þ

Noting that the volume of the ball-shaped region is given by
Vd−2 ¼ Ωd−2

R
l
0 dρρ

d−2, one can see that in the z0 → zh
limit, the first integral is exactly reduced to the thermal
entropy which diverges as l → ∞. Ignoring the UV
divergence, the second term corresponding to the quantum
correction is always finite. Similar to the strip case, the IR
entanglement entropy of the ball-shaped region exactly
reduces to the thermal entropy in the IR limit.
Intriguingly, all results studied in this work show that the

IR entanglement entropy reduces to the thermal entropy in
the IR limit regardless of the microscopic detail. This
implies that, through the generalized temperature defined in
this work, the macroscopic thermodynamic law can be
derived from the thermodynamicslike law of the quantum
entanglement entropy in the IR limit.

V. DISCUSSION

In the quantum information theory, it has been shown
that quantum information evolves into the thermal entropy
via a unitary time evolution [1,2]. This fact implies that
there exists a connection between the quantum entangle-
ment entropy and the thermal entropy. Thus, clarifying

such a connection plays a crucial role for understanding the
microscopic origin of various macroscopic and thermody-
namic phenomena. In this work, we introduced the gen-
eralized temperature, which is valid even in the IR region
and required to describe the RG flow correctly, and
then investigated holographically how the quantum entan-
glement entropy evolves into the thermal entropy along the
RG flow.
In the UV regime, the entanglement entropy has nothing

to do with the thermal entropy. This becomes manifest from
the UV behavior of the generalized temperature. In the UV
region, the leading contribution to the generalized temper-
ature is inversely proportional to the subsystem size, while
the thermodynamic temperature must be independent of the
system size. Due to this fact, although the similar thermo-
dynamicslike relation governs the UV entanglement
entropy, it cannot be reinterpreted as the thermodynamic
law of a real thermal system. However, this UV story
dramatically changes in the IR regime.
In the IR limit, the entanglement entropy can be

decomposed into two parts. One is the dominant contri-
bution caused by the thermalization of the excited-state
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entanglement entropy, which leads to the thermal entropy
corresponding to the Bekenstein-Hawking entropy of the
dual black hole geometry. The other is the remaining
quantum entanglement near the entangling surface, which
is always smaller than the thermal entropy in the IR region.
In addition, the generalized temperature approaches the
thermodynamic temperature corresponding to the Hawking
temperature of the dual black hole geometry. These IR
features of the entanglement entropy and the generalized
temperature universally occur regardless of the microscopic
detail and the shape of the entangling surface. These facts
imply that the thermodynamicslike law governed by the
entanglement entropy evolves to the real thermodynamic
law governed by the thermal entropy. The universal IR
feature has been checked in various holographic models, so
it would be interesting to derive the same IR universality on
the quantum field theory side, for example, a variety of the
low-dimensional Ising models [66,67].
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