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Enhanced performance of sulfur-
infiltrated bimodal mesoporous 
carbon foam by chemical solution 
deposition as cathode materials for 
lithium sulfur batteries
Tae-Gyung Jeong1,2, Jinyong Chun3, Byung-Won Cho2, Jinwoo Lee3 & Yong-Tae Kim1

The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle 
life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized 
mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume 
(1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the 
conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical 
solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 
73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity 
(889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 
2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles.

Lithium sulfur batteries (LSB) have received attention as next generation energy storage device because of higher 
capacity (1675 mAh/g) and energy density (2600 Wh/kg) than conventional Li-ion battery1,2. However, the main 
drawback of LSB is poor cyclability because the lithium polysulfide is easily dissolved in the electrolyte during 
charge-discharge process3–6.

Most of researches have focused on how to prevent the polysulfide dissolution and to enhance the cycla-
bility. To prevent the polysulfide dissolution, various approaches have been suggested, such as employment of 
mesoporous carbon, carbon coating and polymer coating. Among these, an employment of mesoporous carbon 
has successfully suppressed the polysulfide dissolution by spatial confinement of sulfur in the electrochemically 
accessible mesopores7–13. Since Nazar et al. introduced a mesoporous carbon host (CMK-3) for sulfur encapsu-
lation7, this approach has demonstrated a great improvement in cyclability by preventing the polysulfide dissolu-
tion. To date, various types of carbon matrix have been examined as sulfur reservoirs for the composite cathode of 
LSB. However, most of reported micro-mesoporous carbon/S composites had very low sulfur content because of 
small pore volume, which is not suitable for achieving a high energy density14,15. Li et al. prepared the peapodlike 
mesoporous carbon with large pore volume and sulfur was infiltrated into pores by melt-diffusion method for 
preparation of S/C composite. Although the composite was included more than 70 wt% sulfur, it had the problem 
that the capacity is continuously decreased by polysulfide dissolution. That is, a large pore size is advantageous for 
the sulfur loading amount but disadvantageous for the polysulfide confinement. On the contrary, a small pore size 
has a directly opposite feature to the case of large pore size. Hence, it is desirable for the sulfur reservoir to have a 
proper combination of characteristics of both large and small pore size.

In this study, we examined a new type of mesoporous carbon foam as the sulfur reservoir having bimodal mes-
opores (4 and 30 nm), synthesized with mesocelluer silica foam (MSUF) as a template, referred to as MSUF-C. 
The surface nature of MSUF-C was changed from hydrophobic to hydrophilic thorough an acid treatment in 
order to form stronger bonding between carbon and sodium thiosulfate pentahydrate (sulfur precursor). Sulfur 
was infiltrated into the pores in MSUF-C with three methods; a ball mixing (BM), a melt diffusion (MD), and 
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a chemical solution deposition (CSD), referred to as MSUF-C/S BM, MSUF-C/S MD, and MSUF-C/S CSD, 
respectively.

Among the prepared samples, the MSUF-C CSD particularly demonstrated a well-balanced feature of large 
pore size being beneficial for sulfur loading and small pore size having a merit of polysulfide confinement. The 
CSD approach with a sodium polysulfide precursor solution led to a uniform infiltration of sulfur even into 4 nm 
pore as confirmed by Small-angle X-ray scattering (SAXS) and therefore a marked increase of sulfur loading up 
to 73 wt.%. On the other hand, BM or MD methods could not fully infiltrate the sulfur into the 4 nm pore. As a 
result, the MSUF-C/S CSD exhibited enhanced cyclability and retained a stable capacity of 889 mAh/g after 100 
cycles.

Results and Discussion
Structural analysis of MSUF-C and MSUF-C/S composites. Transmission electron microscopy 
(TEM) and nitrogen adsorption measurement was used to investigate the morphology and particle size of syn-
thesized MSUF-C, as shown in Fig. 1. In Fig. 1(a), TEM images show that the particle size of MSUF-C is around 
30 nm and MSUF-C has the interconnected mesoporous channels. This mesoporous carbon with interconnected 
nanochannels has been reported conducting networks for transference of Li ion and electron16. In addition, the 
flexibility of the mesoporous carbon sufficiently alleviates the structure degradation caused by the volume expan-
sion of sulfur.

Pore structure of MSUF-C was characterized with nitrogen adsorption studies. Figure 1(b) and (c) 
show the nitrogen adsorption isotherm and pore size distribution of MSUF-C calculated using the BJH 
(barrett-Joyner-Halenda) method. The nitrogen adsorption/desorption isotherms of MSUF-C (Fig. 1(b)) exhibit 
hysteresis at P/P0 =  0.7 and P/P0 =  0.9. The hysteresis loop at P/P0 =  0.7 and P/P0 =  0.9 are contributed to the small 
mesopores caused by dissolution of the microcellular silica walls and the large mesopore, respectively17. The pore 
size distribution (Fig. 1(c)) calculated from the nitrogen isotherms using the BJH method. Pore size distribution 
plot exhibited two narrow peaks centered at 4 nm and 30 nm, which clearly indicates that both the small and 
large pore were successfully formed. The small pore (4 nm) can be expected to efficiently inhibit the polysulfide 
dissolution. In addition, the large pore (30 nm) can provide a sufficient space to accommodate the active material, 
leading to high loading density. The schematic diagram of MSUF-C structure was presented in Fig. 1(d), based 
on the TEM and the pore size distribution results, showing that MSUF-C consists of bimodal structure with 4 nm 
small pore and 30 nm large pore.

In order to prepare the MSUF-C/sulfur composites, sulfur was infiltrated into pore of MSUF-C via vari-
ous methods, such as a simple ball mixing (MSUF-C/S BM), a melt diffusion method (MSUF-C/S MD)18 and 
a chemical solution deposition method (MSUF-C/S CSD). The prepared MSUF-C/S composites were observed 
by TEM as shown in Figure S1. The morphology of MSUF-C in MSUF-C/S BM or MSUF-C/S MD was slightly 
defecting owing to the harsh preparation condition and deformity. On the other hand, the spherical morphology 

Figure 1. (a) TEM image of MSUF-C. (b) Nitrogen adsorption-desorption isotherm and (c) pore size 
distribution obtained using BJH method from the adsorption branch of the N2 adsorption isotherm.  
(d) Schematic diagram of MSUF-C structure.
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of MSUF-C in MSUF-C/S CSD was well retained without defect. This indicates that a synthetic condition of 
CSD-method is enough mild not to affect the morphology of MSUF-C, compared to other synthesis methods. 
The unchanged structure of MSUF-C could be beneficial for the transfer of lithium ion and electron in cathode. 
In addition, sulfur was well encapsulated into MSUF-C pores and therefore polysulfide may be less soluble into 
electrolyte.

The difference of crystal structure of MSUF-C/S composites was observed by X-ray diffraction (XRD) and 
Small angle x-ray scattering (SAXS) patterns in Fig. 2. Additionally, Super-P/S simple ball-mixing composite 
(S-P/S BM) as pristine electrode was synthesized for the comparison. Super-P carbon was mixed with sulfur by 
only simple ball-mixing, because the carbon has no characterization of porous structure. As shown in Fig. 2(a), 
elemental sulfur generally exhibits in a crystalline state with an Fddd orthorhombic structure19. The sulfur in 
S-P/S BM, MSUF-C/S BM and MSUF-C/S CSD show a diffraction pattern corresponding to the orthorhom-
bic structure, indicating that the process for the C/S composite did not occur any structure transformation for 
sulfur. The diffraction patterns for all the prepared samples were similar each other, but the peak intensity of 
sulfur in MSUF-C/S CSD is markedly higher than that of S-P/S BM and MSUF-C/S BM. This implies that the 
CSD approach is more beneficial to form a homogenous sulfur crystal than other methods. On the other hand, 
the diffraction peak of sulfur in MSUF-C/S MD disappeared and the broad peak around 2θ  =  24° was observed, 
suggesting that the sulfur exists in an amorphous state after melting20,21.

The SAXS patterns of MSUF-C show two diffraction peaks at 0.25 nm and 0.4 nm, as shown in Fig. 2(b). The 
diffraction peak at 0.25 nm and 0.4 nm is corresponding to the large pore (30 nm) and the small pore (4 nm), 
respecively22,23. The SAXS pattern of MSUF-C/S BM was not changed, indicating that the sulfur is only coated 
on surface of MSUF-C, not in pore. That of MSUF-C/S MD at 0.25 nm is slightly decreased, suggesting that some 
sulfur is infiltrated into only the large pore (30 nm) of MSUF-C7,24. It is however interesting to note here that no 
SAXS pattern was detected for the MSUF-C/S CSD, demonstrating that all the pores of MSUF-C were perfectly 
filled with sulfur. Based on SAXS results, the schematic diagrams of different MSUF-C/S composites were pre-
sented in Figure S2.

Electrochemical performances of C/S composites. To examine the sulfur content in MSUF-C/S com-
posites, TGA analysis was carried out. As shown in Figure S3, the weight loss of MSUF-C/S MD and MSUF-C/S 
CSD were 65.46% and 72.86%, respectively, indicating that the CSD approach is more effective for the sulfur 
infiltration than other methods.

Figure 2. (a) X-ray diffraction (XRD) and (b) small angle x-ray scattering (SAXS) patterns of different C/S 
composites.
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To evaluate the electrochemical properties of prepared samples, we performed electrochemical measurements 
using coin-type cell. The cyclic voltammogram (CV) curves of S-P/S BM and MSUF-C/S composites range of 1 
from 3 V at a scan rate of 0.1 mV/s exhibits two main cathodic peaks at 2.4 V and 2.0 V as shown in Fig. 3, which 
are attributed to the transformation of elemental sulfur to long chain lithium polysulfides (Li2Sn, n >  4) and 
reduction of lithium polysulfides to insoluble lithium sulfide (Li2S2, Li2S), respectively18,21,25,26. It is noteworthy 
that MSUF-C/S CSD showed much less change of CV curves with cycles than other samples, indicating that 
the sulfurs were infiltrated into the pores homogeneously. In the case of MSUF-C/S CSD, peaks are observed at 
2.3 V and 2.0 V during cathodic scan of the first cycle. During the reverse scan, sharp peak is observed at 2.6 V. In 
comparison with the other samples, the redox peak shape was much sharper, implying that the kinetics of lithium 
sulfur formation is much faster than other samples. This higher kinetics can be also supported the fact that the 
potential of MSUF-C/S CSD was higher for cathodic peaks (discharge process) and lower for anodic peak (charge 
process) than other samples. The peak intensity of 2nd and 3rd cycles was maintained during the redox reaction, 
indicating that MSUF-C/S CSD has a markedly higher utilization of sulfur and reversible electrochemical sulfur 
reaction. These results evidently demonstrate that MSUF-C/S CSD has a good electrical contact between sulfur 
and carbon and then inhibited the dissolution of polysulfide.

Battery performance of prepared samples was evaluated using conventional galvanostatic test at 0.2C. Figure 4 
represents the voltage profiles and cycle performance of lithium sulfur cell during the charge/discharge process. 
Two distinct plateaus are observed in the discharge curves of the cells, which are well consistent with the CV 
results. The discharge capacities for the first cycle and after 100 cycles were 1142 mAh/g and 325 mAh/g (57.4% 
of capacity retention on the basis of 20th cycle) for S-P/S BM, 889 mAh/g at first discharge and 261 mAh/g (47.2% 
of capacity retention on the basis of 20th cycle) for MSUF-C/S BM, 1375 mAh/g at first discharge and 572 mAh/g 
(66.2% of capacity retention on the basis of 20th cycle) for MSUF-C/S MD, and 1575 mAh/g at first discharge, 
889 mAh/g (87.1% of capacity retention on the basis of 20th cycle) for MSUF-C/S CSD, respectively. As can be 
seen in these data set, MSUF-C/S CSD exhibited much better discharge capacity and capacity retention than 
other samples. MSUF-C/S CSD achieved the high loading density of active sulfur material and simultaneously 
was successfully inhibited the polysulfide dissolution in comparison with other samples, because sulfur was uni-
formly infiltrated into small pores of MSUF-C with no defect and no deformation by chemical solution depo-
sition method, as can be seen in TEM and SAXS result. On the other hand, the sulfur particles in the carbon/
sulfur composites synthesized by simple ball mixing exist on the surface of MSUF-C due to no infiltration into the 
carbon. Moreover, sulfur is difficult to embed into Super-P carbon with no porous structure. The sulfur particles 
nonembedded in the carbon therefore can be easily diffused out the electrode and deposited on Li metal anode 
during cycling, resulting in poor capacity retention.

Figure 3. Cyclic voltammogram of (a) S-P/S MD, (b) MSUF-C/S BM, (c) MSUF-C/S MD, and (d) MSUF-C/S 
CSD cells at scan rate of 0.1 mV/s.
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Electrochemical Impedance Techniques. It is widely recognized that the cycle stability of lithium ion 
batteries is attributed to the interfacial charge transfer and lithium ion diffusion27. Electrochemical impedance 
spectroscopy (EIS) studies were carried out in order to check the interfacial resistance of MSUF-C/S composites. 
The impedance spectra were recorded at the open circuit potential before and after cycling. (see Figure S4) The 
EIS spectrum consists of one semicircle at high frequency region corresponding to the charge transfer resist-
ance (resistance of the electrode surface) and short inclined line at low frequency region to the ion diffusion 
in electrode28. The cell for MSUF-C/S CSD shows lower interfacial resistance than other cells, indicating again 
that the good electrical contact between sulfur and carbon facilitates faster charge transfer through the elec-
trode/electrolyte interface. With the increase of cycle number, the difference in charge transfer resistance became 
gradually broader between MSUF-C/S CSD and other samples. The highest sulfur trapping ability of MSUF-C/S 
CSD can be also confirmed with the change of electrolyte bulk resistance corresponding to the first Z’-intercept 
in the x-axis. The initial bulk resistance was identical for all the samples, while a clear difference was shown 
with the increase of cycle number. After 100 cycles, the electrolyte resistance determined by extrapolation of the 
Nyquist plot to the initial frequency had 21.20 ohm (MSUF-C/S BM), 13.02 ohm (MSUF-C/S MD) and 5.75 ohm 
(MSUF-C/S CSD), respectively. The lower bulk resistance for MSUF-C/S CSD than other samples is attributed to 
the fact that the polysulfide is less soluble into the electrolyte during cycling. Therefore, it can be confirmed again 
that MSUF-C/S CSD could inhibit polysulfide dissolution into electrolyte.

Rate capability of MSUF-C/S composites. Finally, the rate performances of the MSUF-C/S composites 
were examined at various current densities, as can be seen in Fig. 5. Discharge capacities at 2C were 23.01 mAh/g 
(3.83% of that at 0.2C) for MSUF-C/S BM, 208 mAh/g (23.1%) for MSUF-C/S MD, and 420 mAh/g (35%) for 
MSUF-C/S CSD. The MSUF-C/S CSD demonstrated a much enahanced rate capability than other samples, which 
is attributed to lower charge transfer resistance due to good electrical contact between sulfur and mesoporous 
carbon.

In summary, we synthesized the bimodal mesoporus carbon foam (MSUF-C) with large pore (30 nm) and 
small pore (4 nm). Sulfur was infiltrated into synthesized mesoporous carbon using various methods, such as 
the simple ball-mixing, the melt-diffusion and the chemical solution deposition method. In comparison with the 
simple ball-mixing and the melt diffusion method, the MSUF-C synthesized by CSD-method had less surface 
defect and structural distortion, and the sulfur was uniformly dispersed in mesopores of MSUF-C, as confirmed 
by TEM and SAXS analysis. The sulfur with MSUF-C/S CSD loaded in mesopores as high as 73% on the basis 
of TGA result, due to the large pore volume and uniformly dispersed sulfur by CSD-method. MSUF-C/S CSD 
resulted in higher capacity, capacity retention and rate capability than other samples and showed enhanced cycle 
perforamnce by suppressing the polysulfide dissolution. This result can be attributed to the fact that the sul-
fur was uniformly infiltrated into even small pores of MSUF-C by CSD-method. Also, MSUF-C/S CSD showed 
enhanced rate capability because of lower charge transfer resistance from good electrical contact between sulfur 

Figure 4. Electrochemical performances of S-P/S BM and MSUF-C/S composite cells. (a) 1st, (b) 50th,  
(c) 100th discharge/charge profiles and (d) cycling performances at 0.2 C rates.
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and mesoporous carbon. MSUF-C/S CSD achieved high loading density of sulfur by large pore volume and CSD 
approach, and successfully prohibited the polysulfide dissolution thanks to the sulfur imbedded into small pores 
of MSUF-C. Hence, a combination of the MSUF-C with bimodal mesopores and the CSD-method can be a prom-
ising solution to achieve a long cycle life and a high rate capability for lithium sulfur batteries.

Methods
Synthesis of MSUF-C. MSUF-C was synthesized following the procedure reported by Kim et al.29–31. After 
calcination at 550 °C for 4 h, alumination (Si/Al =  20) was performed, by means of the impregnation method, to 
generate acidic catalytic sites for the polymerization of furfuryl alcohol inside the mesopores. 1 g of aluminated 
MSU-F silica is wetted with 2 ml furfuryl alcohol using the incipient wetness technique, and is then polymerized 
at 80 °C for 12 h. The resulting aluminated MSU-F composite was carbonized at 850 °C for 2 h under a nitrogen 
atmosphere and etched by HF solution (5 wt%) to generate MSUF-C.

Acid treatment. Acid treatment was carried out using nitric acid. Acid solution was prepared at 3.0 M. For 
the acid treatment, 0.5 g of MSUFC was mixed with 100 Ml of the acid solution by mechanically stirring for 6 h. 
Then, the solution was filtered and washed with DI water. The filtered MSUF-C was dried in oven at 80 °C.

Synthesis of MSUF-C/Sulfur composite.  Chemical solution deposition method (CSD-method).  
Mesoporous carbon/sulfur composite was prepared by a chemical solution deposition method in an aqueous 
solution: Na2S2O3(aq) + 2HCl − > S(s) + SO2(g) + 2NaCl(aq).

Sodium thiosulfate penta hydrate (Aldrich, 10 g) was dissolved in DI water (100 ml) and then the as-prepared 
MSUF-C (0.5 g) was added. The mixture was homogeneously dispersed using a magnetic stirrer for 1 h. Well 
dispersed mixture was filtered and washed with DI water several times and dried at 80 °C for 12 h in a vacuum 
oven. Dried powder and cetyltrimethylammoniumbromide (CTAB) were added in HCl solution (2.48 ml of HCl 
in 100 ml of water) and was stirred. The precipitate was filtered and washed with DI water to eliminate salts and 
impurities, and was dried at 80 °C in a vacuum oven.

Melt-diffusion method. Mesoporous carbon (MSUF-C, 0.3 g) and sulfur (Aldrich, 0.9 g) were homogeneously 
mixed by ball mixer. Mixed carbon/sulfur powder was thermally treated at 155 °C for 2 h.

Simple Ball-mixing. Sulfur (Aldrich, 0.9 g) was mixed with mesoporous Carbon (MSUF-C, 0.3 g) or Super-P 
carbon (0.3 g) using a ball mill-mixer (pulverisette 23).

Characterization. TEM image were taken using Tecnai F20 G2 (accelerating voltage 200 kV), respectively. 
Crystalline structure of the samples was characterized by X-ray Diffraction (Rigaku D MAX-2500/PC, 40 kV, 

Figure 5. Charge and discharge curves of (a) MSUF-C/S BM, (b) MSUF-C/S MD and (c) MSUF-C/S CSD cell. 
(d) Rate capacility of MSUF-C/S composite cells at various current rates from 0.2 C to 2 C.
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100 mA Cu-ka). Small angle X-ray scattering (SAXS) was collected using a PANalytical PW3830 (40 kV, 30 mA 
Cu-ka). Nitrogen adsorption-desorption isotherms and pore size distributions were measured at 77 K using a 
Micromeritics ASAP2000 analyzer and calculated using BJH (Bareet-Joyner-Halenda) method from N2 adsorp-
tion branches. Thermal gravimetric analysis (TGA) was conducted on a TA instruments.

Electrochemical measurements. To prepare the cathode for lithium sulfur battery, 80 wt.% of MSUF-C/S 
composites were mixed with 10 wt.% of conductor (Super P) and 10 wt.% of binder (poly vinyliden fluoride) 
using a ball-mixer (pulverisette 23) in N-methyl-2pyrrolidinone to form a slurry. The slurry was coated on alu-
minum foil using a doctor blade and dried in a vacuum oven at 60 for 12 h. The loading density of sulfur was 
about 1 mg/cm2. 2032-type coin cells were assembled in a drying room using lithium foil on copper as the coun-
ter electrode. Polyethylene membrane used as the separator was obtained from SK-innovation Inc. The elec-
trolyte used was 1 M Lithium bis(trifluoromethan sulfonyl) imide in tetra (ethylene glycol) dimethyl ether and 
1,3-dioxolane (1:1 v/v) containing 0.2 M LiNO3. The electrolyte volume of 60 μ l was injected into the 2032 coin 
cell. Galvanostatic cycling was carried out using a battery tester (Maccor 4300 K) from 1.5–2.8 V versus Li+/Li at 
0.1 C (1 C =  1675 mAh/g). Cyclic voltammetry (CV) measurements were performed on solartron 1286 at a scan 
rate of 0.1 mV/s. Electrochemical Impedance Spectroscopy (EIS) measurement were performed using Solartron 
1260 impedance gain-phase analyzer in combination with Solartron 1286 within the frequency range of 1 MHz 
to 100 mHz at amplitudes of 5 mV.
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