

2-Arc-transitive metacyclic covers of complete graphs

Wenqin Xu ${ }^{\text {a,b }}$, Shaofei Du ${ }^{\text {a,b }}$, Jin Ho Kwak ${ }^{\text {c,d }}$, Mingyao Xu ${ }^{e}$
a School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
b Beijing Center for Mathematics and Information Interdisciplinary Sciences, China
c Department of Mathematics, POSTECH, Pohang 790-784, Republic of Korea
d Beijing Jiaotong University, Beijing 100044, China
e School of Mathematical Sciences, Peking University, Beijing 100871, China

A R T I C L E I N F O

Article history:

Received 13 June 2012
Available online 3 October 2014

Keywords:

Arc-transitive graph
Covering graph
Lifting
2-Transitive group
Linear group

Abstract

Regular covers of complete graphs whose fibre-preserving automorphism groups act 2 -arc-transitively are investigated. Such covers have been classified when the covering transformation groups K are cyclic groups \mathbb{Z}_{d} for an integer $d \geq 2$, metacyclic abelian groups \mathbb{Z}_{p}^{2}, or nonmetacyclic abelian groups \mathbb{Z}_{p}^{3} for a prime p (see S.F. Du et al. (1998) [5] for the first two metacyclic group cases and see S.F. Du et al. (2005) [3] for the third nonmetacyclic group case). In this paper, a complete classification is achieved of all such covers when K is any metacyclic group.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper graphs are finite, simple and undirected. For the group- and graph-theoretic terminology we refer the reader to [13,14]. For a graph X, let $V(X)$, $E(X), A(X)$, and Aut X denote the vertex set, edge set, arc set, and the full automorphism group of X, respectively. For an $\operatorname{arc}(u, v) \in A(X)$, we denote the corresponding undirected edge by $u v$. An s-arc of X is a sequence $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of $s+1$ vertices such
that $\left(v_{i}, v_{i+1}\right) \in A(Y)$ and $v_{i} \neq v_{i+2}$, and X is said to be 2-arc-transitive if Aut X acts transitively on the set of 2 -arcs of X.

Let X be a graph, and let \mathcal{P} be a partition of $V(X)$ into independent sets of equal size m. The quotient graph $Y:=X / \mathcal{P}$ is the graph with vertex set \mathcal{P} and two vertices P_{1} and P_{2} of Y are adjacent if there is at least one edge between a vertex of P_{1} and a vertex of P_{2} in X. We say that X is an m-fold cover of Y if the edge set between P_{1} and P_{2} in X is a matching whenever $P_{1} P_{2} \in E(Y)$. In this case Y is called the base graph of X and the sets P_{i} are called the fibres of X. An automorphism of X which maps a fibre to a fibre is said to be fibre-preserving. The subgroup K of all those automorphisms of X which fix each of the fibres setwise is called the covering transformation group. It is easy to see that if X is connected then the action of K on the fibres of X is necessarily semiregular; that is, $K_{v}=1$ for each $v \in V(X)$. In particular, if this action is regular on each fibre we say that X is a regular cover of Y.

By [20, Theorem 4.1], the class of finite 2-arc-transitive graphs can be divided into the following two subclasses: (i) the 2-arc-transitive graphs with the property that every normal subgroup N of a 2 -arc-transitive subgroup G of Aut X has at most two orbits on vertices; (ii) the 2-arc-transitive regular covers of the graphs given in case (i).

A finite connected 2 -arc-transitive graph X is bipartite if and only if Aut X has a normal subgroup N having two orbits on vertices. If every nontrivial normal subgroup of Aut X is transitive on vertices, then Aut X is said to be quasiprimitive. In particular, all primitive groups are quasiprimitive. During the past ten years, a lot of papers regarding the primitive, quasiprimitive or bipartite 2-arc-transitive graphs have appeared, see [6-8, $15-17,20,21]$. However, the known results concerning the 2 -arc-transitive covers are very few. To the best knowledge of the authors, even for complete graphs it is very difficult to determine all their 2 -arc-transitive covers.

In [5], the covers of a complete graph whose fibre-preserving automorphism groups act 2-arc-transitively and whose covering transformation groups are either a cyclic group \mathbb{Z}_{d} or \mathbb{Z}_{p}^{2}, p a prime, have been classified, and the classification has been extended in [3] to the case when the covering transformation group is \mathbb{Z}_{p}^{3}, p a prime. Note that these covering transformation groups are all abelian. In this paper, the same problem as in [5] is considered, where the covering transformation groups are metacyclic. Though \mathbb{Z}_{d} and \mathbb{Z}_{p}^{2} are metacyclic, most of metacyclic groups are nonabelian. For other papers related to covers of complete graphs, see [9-11].

Any metacyclic group can be presented by

$$
K=\left\langle a, b \mid a^{d}=1, b^{m}=a^{t}, a^{b}=a^{r}\right\rangle
$$

where $r^{m} \equiv 1(\bmod d), t(r-1) \equiv 0(\bmod d)$. If d is even, $m=2, r=-1$ and $t=d / 2$, then $K \cong Q_{2 d}$, the so-called generalized quaternion group of order $2 d$; if $m=2, r=-1$ and $t=0$, then $K \cong D_{2 d}$, the dihedral group of order $2 d$. Note that $Q_{4} \cong \mathbb{Z}_{4}$ and $D_{4} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

A purely combinatorial description of a covering can be introduced through a voltage graph, see the next section. To state the main result, we need to define a couple of covers of K_{n}.

First we define two covers of K_{4} with respective covering transformation group $K=$ $\langle a, b\rangle \cong D_{6}$ and Q_{12}, where $V\left(K_{4}\right)=\{1,2,3,4\}$:
(1) $A T_{D}(4,6)=K_{4} \times_{f} D_{6}$, with the voltage assignment $f: A\left(K_{4}\right) \rightarrow D_{6}$ defined by

$$
f_{1,2}=b, \quad f_{1,3}=b a, \quad f_{1,4}=b a^{-1}, \quad f_{2,3}=b a^{-1}, \quad f_{2,4}=b a, \quad f_{3,4}=b
$$

(2) $A T_{Q}(4,12)=K_{4} \times_{f} Q_{12}$, with the voltage assignment $f: A\left(K_{4}\right) \rightarrow Q_{12}$ defined by

$$
f_{1,2}=b, \quad f_{1,3}=b a^{2}, \quad f_{1,4}=b a^{4}, \quad f_{2,3}=b, \quad f_{2,4}=b a^{3}, \quad f_{3,4}=b
$$

Secondly, we define one cover of K_{5} with the covering transformation group $K=$ $\langle a, b\rangle \cong D_{6}$, where $V\left(K_{5}\right)=\{1,2,3,4,5\}$:
(3) $A T_{D}(5,6)=K_{5} \times_{f} D_{6}$, with the voltage assignment $f: A\left(K_{5}\right) \rightarrow D_{6}$ defined by

$$
\begin{aligned}
& f_{1,2}=a b, \quad f_{1,3}=b, \quad f_{1,4}=b a, \quad f_{1,5}=b, \quad f_{2,3}=b a, \\
& f_{2,4}=b, \quad f_{2,5}=b, \quad f_{3,4}=a b, \quad f_{3,5}=b, \quad f_{4,5}=b .
\end{aligned}
$$

Next, let $\operatorname{GF}(q)$ be the field of order q where q is odd, and let $\operatorname{GF}(q)^{*}=\langle\theta\rangle$. We identify the vertex set of the complete graph K_{1+q} with the projective line $\mathrm{PG}(1, q)=$ $\operatorname{GF}(q) \cup\{\infty\}$. Then we define two families of arc-transitive covers of K_{1+q} with the respective covering transformation groups $K=\langle a, b\rangle \cong Q_{2 d}$ and $D_{2 d}$:
(4) $A T_{Q}(1+q, 2 d)=K_{1+q} \times{ }_{f} Q_{2 d}$, where $d \mid q-1$ and $d \nmid \frac{1}{2}(q-1)$;
(5) $A T_{D}(1+q, 2 d)=K_{1+q} \times{ }_{f} D_{2 d}$, where $d \left\lvert\, \frac{1}{2}(q-1)\right.$ and $d \geq 2$,
and for both covers, the voltage assignments $f: A\left(K_{1+q}\right) \rightarrow K$ are given by:

$$
f_{\infty, i}=b ; \quad f_{i, j}=b a^{h} \quad \text { if } j-i=\theta^{h} \text { for } i, j \neq \infty
$$

Now we are ready to state the main result of this paper, see Section 3 for its proof.
Theorem 1.1. Let X be a connected regular cover of the complete graph $K_{n}(n \geq 4)$ whose covering transformation group K is nontrivial metacyclic, and whose fibre-preserving automorphism group acts 2-arc-transitively on X. Then X is isomorphic to one of the following covers:
(1) The canonical double cover $K_{n, n}-n K_{2}$ with $K \cong \mathbb{Z}_{2}$;
(2) $n=4, A T_{D}(4,6)$ with $K \cong D_{6}$;
(3) $n=4, A T_{Q}(4,12)$ with $K \cong Q_{12}$;
(4) $n=5, A T_{D}(5,6)$ with $K \cong D_{6}$;
(5) $n=1+q \geq 4, A T_{Q}(1+q, 2 d)$ with $K \cong Q_{2 d}$, where $d \mid q-1$ and $d \nmid \frac{1}{2}(q-1)$;
(6) $n=1+q \geq 6$, $A T_{D}(1+q, 2 d)$ with $K \cong D_{2 d}$, where $d \left\lvert\, \frac{1}{2}(q-1)\right.$ and $d \geq 2$.

For the case when the covering transformation group K is nontrivial cyclic or is isomorphic to \mathbb{Z}_{p}^{2}, we have the following corollary, which is in fact the main result of [5].

Corollary 1.2. Suppose that X is a connected regular cover of the complete graph K_{n} $(n \geq 4)$ whose covering transformation group K is either nontrivial cyclic or \mathbb{Z}_{p}^{2}, and whose fibre-preserving automorphism group acts 2-arc-transitively on X. Then X is isomorphic to one of $K_{n, n}-n K_{2}$ with $K \cong \mathbb{Z}_{2} ; A T_{Q}(1+q, 4)$ with $K \cong \mathbb{Z}_{4}$ and $q \equiv 3(\bmod 4)$; or $A T_{D}(1+q, 4)$ with $K \cong \mathbb{Z}_{2}^{2}$ and $q \equiv 1(\bmod 4)$. Moreover, by [19, Theorem 5.3], $\operatorname{Aut}\left(A T_{i}(1+q, 4)\right) / K \cong \mathrm{P} \Gamma \mathrm{L}(2, q)$, where $i \in\{Q, D\}$.

Remark 1.3. The smallest graph in the family $A T_{Q}(1+q, 2 d)$ is $A T_{Q}(4,4)$ of order 16 ; and the smallest graph in the family $A T_{D}(1+q, 2 d)$ is $A T_{D}(6,4)$ of order 24.

2. Preliminaries

In this section we introduce some preliminary results needed in proving Theorem 1.1.
First we introduce some notation. The elementary abelian p-group of order p^{n} and the complete graph of order n will be denoted, respectively, by \mathbb{Z}_{p}^{n} and by K_{n}. Let q be a prime power. Then the finite field of order q and its corresponding multiplicative group will be denoted, respectively, by $\operatorname{GF}(q)$ and by $\operatorname{GF}(q)^{*}$. An n-dimensional vector space over $\operatorname{GF}(q)$ will be denoted by $V(n, q)$. Let G be a group and H a subgroup of G. Then we use $G^{\prime}, C_{G}(H)$ and $N_{G}(H)$ to denote the derived subgroup of G, the centralizer and the normalizer of H in G, respectively. Let M and N be two groups. Then we use $M \rtimes N$ to denote a semidirect product of M and N, in which M is a normal subgroup.

A purely combinatorial description of a covering was introduced through a voltage graph by Gross and Tucker $[12,13]$. Let Y be a graph and K a finite group. A voltage assignment (or, K-voltage assignment) on the graph Y is a function $f: A(Y) \rightarrow K$ with the property that $f(u, v)=f(v, u)^{-1}$ for each $(u, v) \in A(Y)$. For convenience, we denote $f(u, v)$ by $f_{u, v}$. The values of f are called voltages, and K is the voltage group. The derived graph $Y \times_{f} K$ from a voltage assignment f has as its vertex set $V(Y) \times K$ and as its edge set $E(Y) \times K$, so that an edge (e, g) of $Y \times_{f} K$ joins a vertex (u, g) to $\left(v, f_{u, v} g\right)$ for $(u, v) \in A(Y)$ and $g \in K$, where $e=u v$. Clearly, the graph $Y \times_{f} K$ is a covering of the graph Y with the first coordinate projection $p: Y \times_{f} K \rightarrow Y$, which is called the natural projection. For each $u \in V(Y),\{(u, g) \mid g \in K\}$ is a fibre of u. Moreover, by defining $\left(u, g^{\prime}\right)^{g}:=\left(u, g^{\prime} g\right)$ for any $g \in K$ and $\left(u, g^{\prime}\right) \in V\left(Y \times_{f} K\right), K$ can be identified with a subgroup of $\operatorname{Aut}\left(Y \times_{f} K\right)$ fixing each fibre setwise and acting regularly on each fibre. Therefore, p can be viewed as a K-covering. Conversely, each connected regular
cover X of Y with the covering transformation group K can be described by a derived graph $Y \times_{f} K$ from some voltage assignment f. Given a spanning tree T of the graph Y, a voltage assignment f is said to be T-reduced if the voltages on the tree arcs are the identity. Gross and Tucker [12] showed that every regular cover X of a graph Y can be derived from a T-reduced voltage assignment f with respect to an arbitrary fixed spanning tree T of Y. Moreover, the voltage assignment f naturally extends to walks in Y. For any walk W of Y, let f_{W} denote the voltage of W. Finally, we say that an automorphism α of Y lifts to an automorphism $\bar{\alpha}$ of X if $\alpha p=p \bar{\alpha}$, where p is the covering projection from X to Y.

The following two propositions show an information of a lifting of an automorphism of the base graph with respect to a voltage assignment.

Proposition 2.1. (See [18].) Let $X=Y \times{ }_{f} K$ be a regular cover of a graph Y derived from a voltage assignment f with covering transformation group K. Then an automorphism α of Y lifts to an automorphism of X if and only if, for each closed walk W in $Y, f_{W}=1$ implies $f_{W^{\alpha}}=1$.

Proposition 2.2. (See [3].) Let K be a finite group, and let $X=Y \times_{f} K$ be a connected regular cover of a graph Y derived from a voltage assignment f with the voltage group K. If $\alpha \in$ Aut Y is an automorphism one of whose lifting $\tilde{\alpha}$ centralizes K, considered as the covering transformation group, then for any closed walk W in Y, there exists $k \in K$ such that $f_{W^{\alpha}}=k f_{W} k^{-1}$. In particular, if K is abelian, $f_{W^{\alpha}}=f_{W}$ for any closed walk W of Y.

The next proposition deals with a basic group-theoretic result.
Proposition 2.3. (See [14, Satz 4.5].) Let H be a subgroup of a group G. Then $C_{G}(H)$ is a normal subgroup of $N_{G}(H)$, and the quotient $N_{G}(H) / C_{G}(H)$ is isomorphic with a subgroup of Aut H.

The following result may be deduced from the classification of doubly transitive groups (see [1] and [2, Corollary 8.3]).

Proposition 2.4. Let G be a 3-transitive permutation group of degree $n \geqslant 4$. Then one of the following cases occurs.
(1) The symmetric group $G=S_{4}$, with $n=4$;
(2) The affine group $G=\mathbb{Z}_{2}^{m} \rtimes \operatorname{GL}(m, 2)$ with $m \geq 3$ and $n=2^{m}$, or $G=\mathbb{Z}_{2}^{4} \rtimes A_{7}$ with $n=16$;
(3) G is an almost simple group, and the socle of G is either 3-transitive, or $\operatorname{PSL}(2, q)$ acting 2-transitively on the projective line, of degree $n=q+1$, where $q \geq 5$ is an odd prime power.

Finally, we quote a property of $\operatorname{PSL}(2, q)$ acting on the projective line $\operatorname{PG}(1, q)$.

Proposition 2.5. (See [5].) Let $q=r^{s}$ be an odd prime power, and let $\operatorname{PG}(1, q)$ be the projective line over $\mathrm{GF}(q)$. Then, for any three distinct points x, y, z in $\mathrm{PG}(1, q)$ there exists an element of $\operatorname{PSL}(2, q)$ which maps an ordered triple (x, y, z) to an ordered triple (x, z, y) if and only if $q \equiv 1(\bmod 4)$.

3. Proof of Theorem 1.1

Now we prove Theorem 1.1. Let $n \geq 4$ and let $p: X \rightarrow K_{n}$ be a connected regular covering projection with a cover $X=K_{n} \times_{f} K$ of K_{n} and a nontrivial metacyclic covering transformation group K. We assume that the fibre-preserving automorphism group A acts 2 -arc-transitively on X. Let \mathcal{F} be the set of fibres. Then A is the largest subgroup of Aut X having \mathcal{F} as an imprimitive block system, and K is the kernel of the action of A on \mathcal{F}. Hereafter, let $\bar{A}=A / K$. Since A acts 2-arc-transitively on X, \bar{A} acts 2-arc-transitively on K_{n}. This forces \bar{A} to be a 3 -transitive permutation group on $V\left(K_{n}\right)$, and so it is one of the groups listed in Proposition 2.4. Choose a vertex $p(F)$ in K_{n} for a fixed fibre $F \in \mathcal{F}$ and take a star having the base vertex $p(F)$ as a spanning tree T in K_{n}. We assume that the voltage assignment f is T-reduced.

We divide the proof into the following three subsections: some preliminary lemmas in Section 3.1; the two cases when K is abelian or nonabelian are considered separately in Sections 3.2 and 3.3.

3.1. Some lemmas

First we introduce two pure group-theoretical lemmas.
Lemma 3.1. For any positive integers t_{1} and t_{2}, $\operatorname{Aut}\left(\mathbb{Z}_{t_{1}} \times \mathbb{Z}_{t_{2}}\right)$ does not contain a nonabelian simple subgroup.

Proof. $G=\langle a\rangle \times\langle b\rangle$, where $|a|=t_{1}$ and $|b|=t_{2}$. Clearly, the conclusion is true provided one of t_{1} and t_{2} is 1 . Now we assume $t_{1}, t_{2} \geq 2$.

First, assume that $t_{1}=p^{\ell_{1}}$ and $t_{2}=p^{\ell_{2}}$, where p is a prime, and $\ell_{1}, \ell_{2} \geq 1$. Let $G_{1}=\left\langle a^{p}, b^{p}\right\rangle$. Then G_{1} is a characteristic subgroup of G and so Aut G induces an automorphism action on $G / G_{1} \cong \mathbb{Z}_{p}^{2}$. Let L be the kernel of this action. Then $(\operatorname{Aut} G) / L$ can be viewed as a subgroup of $\operatorname{Aut}\left(G / G_{1}\right) \cong \mathrm{GL}(2, p)$ and so it does not contain a nonabelian simple subgroup by [5, Lemma 2.7]. Moreover, L consists of all automorphisms σ of G of the form: $a^{\sigma}=a^{1+i p} b^{j p}$ and $b^{\sigma}=a^{i_{1} p} b^{1+j_{1} p}$ for integers $1 \leq i, i_{1} \leq p^{\ell_{1}-1}$ and $1 \leq j, j_{1} \leq p^{\ell_{2}-1}$. Hence $|L|=p^{2\left(\ell_{1}+\ell_{2}-2\right)}$ and so L is a p-group which is solvable. Suppose that Aut G contains a nonabelian simple group H. Then H cannot be contained in L. Since $H \cap L$ is normal in H and since H is simple, we have $H \cap L=1$. Since $H L / L \cong H$, we obtain a nonabelian simple subgroup $H L / L$ of $(\operatorname{Aut} G) / L$, a contradiction.

Now for any positive integers t_{1} and t_{2}, write $G=P_{1} \times P_{2} \times \cdots \times P_{h}$ as a product of Sylow p_{i}-subgroups P_{i} of G, where $h \geq 2$. Then for each i, Aut P_{i} does not contain any nonabelian simple subgroup by the above arguments. Moreover, Aut $G \cong$ Aut $P_{1} \times$ Aut $P_{2} \times \cdots \times$ Aut P_{h}. Suppose that Aut G contains a nonabelian simple subgroup, say M, whose component on Aut P_{j} is nontrivial for some j. Let ϕ be the natural homomorphism from Aut G to Aut P_{j}. Then $\phi(M)$ is a nonabelian simple subgroup of Aut P_{j}, a contradiction.

A section of a group G is a quotient group of a subgroup of G.
Lemma 3.2. For any nonabelian metacyclic group G,
(1) if $\operatorname{Aut}\left(G / G^{\prime}\right)$ is solvable, then $\operatorname{Aut} G$ is solvable;
(2) if G / G^{\prime} is cyclic, then no section of Aut G can be isomorphic to S_{4}.

Proof. It is well known that every nonabelian metacyclic group G can be presented as follows:

$$
G=\left\langle a, b \mid a^{d}=1, b^{m}=a^{t}, b^{-1} a b=a^{r}\right\rangle
$$

where $t(r-1) \equiv 0(\bmod d), r^{m} \equiv 1(\bmod d)$ and $r \not \equiv 1(\bmod d)$. Note that $G^{\prime}=\left\langle a^{r-1}\right\rangle$.
(1) Since G^{\prime} is a nontrivial characteristic subgroup of G, Aut G induces an automorphism action on G / G^{\prime} with the kernel, say N. Since N fixes $\langle a\rangle$ setwise, it induces an automorphism action on $\langle a\rangle$ with the kernel, say L. For any integer ℓ, define a map σ_{ℓ} on G by $\left(a^{i} b^{j}\right)^{\sigma_{\ell}}=a^{i}\left(b a^{\ell(r-1)}\right)^{j}$ for any $0 \leq i \leq d-1$ and $0 \leq j \leq m-1$. It is easy to see that $\sigma_{1} \in L$ and as a map we have $\sigma_{\ell}=\left(\sigma_{1}\right)^{\ell}$ for any integer ℓ. Since L consists of maps σ_{ℓ} for any integer $\ell, L=\left\langle\sigma_{1}\right\rangle$, a cyclic group. Since N / L is isomorphic to a subgroup of $\operatorname{Aut}\langle a\rangle$, it is abelian, and so N is solvable. Suppose $\operatorname{Aut}\left(G / G^{\prime}\right)$ is solvable. Since $(\operatorname{Aut} G) / N$ is isomorphic to a subgroup of $\operatorname{Aut}\left(G / G^{\prime}\right)$, it is also solvable, which forces that Aut G is solvable.
(2) Suppose that G / G^{\prime} is cyclic. Because both $(\operatorname{Aut} G) / N$ and N / L are abelian, $(\text { Aut } G)^{\prime} \leq N$ and $N^{\prime} \leq L$. Hence, $(\text { Aut } G)^{\prime \prime} \leq N^{\prime} \leq L$ and so (Aut $\left.G\right)^{\prime \prime}$ is cyclic. Take any section H / J of Aut G. Since $(H / J)^{\prime \prime}=H^{\prime \prime} J / J \cong H^{\prime \prime} /\left(H^{\prime \prime} \cap J\right)$ is cyclic and $S_{4}^{\prime \prime} \cong \mathbb{Z}_{2}^{2}$, we have $H / J \nsubseteq S_{4}$.

Under the assumption and notation of Theorem 1.1, we have the following lemma.
Lemma 3.3. Let A and K be as defined in the beginning of Section 3, with the covering projection $p: X \rightarrow K_{n}$. Then the group $C_{A}(K)$ cannot be contained in K under one of any following conditions:
(1) K is isomorphic to $\mathbb{Z}_{t_{1}} \times \mathbb{Z}_{t_{2}}$ for some positive integers t_{1} and t_{2}, and $n \geq 5$.
(2) K is nonabelian, K / K^{\prime} is cyclic, and $n=4$.
(3) K is nonabelian, K / K^{\prime} is either cyclic or isomorphic to \mathbb{Z}_{2}^{2}, and $n \geq 5$.

Proof. First note that A / K is one of 3 -transitive groups listed in Proposition 2.4. In particular, A / K is S_{4} if $n=4$, and it contains a nonabelian simple subgroup if $n \geq 5$. By way of contradiction, suppose that $C_{A}(K) \leq K$.

As the first case, let K be isomorphic to $\mathbb{Z}_{t_{1}} \times \mathbb{Z}_{t_{2}}$ for some positive integers t_{1} and t_{2}, and let $n \geq 5$. Since K is abelian, $C_{A}(K)=K$. Therefore, $A / C_{A}(K)$ is a 3-transitive group, and so it contains a nonabelian simple subgroup. This forces that Aut K contains a nonabelian simple subgroup, which contradicts Lemma 3.1.

Next, let K be nonabelian and K / K^{\prime} is as in case (2) or in case (3). By Lemma 3.2, Aut K is solvable, and it does not contain any section isomorphic to S_{4} in case (2). Since $A / C_{A}(K)$ is isomorphic to a subgroup of Aut K, the same holds for $A / C_{A}(K)$, that is, $A / C_{A}(K)$ is also solvable and it does not contain any section isomorphic to S_{4} in case (2). Now, the relation $A / K \cong\left(A / C_{A}(K)\right) /\left(K / C_{A}(K)\right)$ implies that A / K is solvable, which forces that case (3) cannot occur; and it does not contain any section isomorphic to S_{4} in case (2), which forces that case (2) cannot occur, too.

3.2. K is abelian

Throughout this subsection, we assume that K is abelian. The following lemma claims that K must be a 2 -group.

Lemma 3.4. Suppose that the covering transformation group K is abelian metacyclic. Then K is isomorphic to $\mathbb{Z}_{2}, \mathbb{Z}_{4}$, or $\mathbb{Z}_{s \cdot 2^{\ell}} \times \mathbb{Z}_{2^{\ell}}$, where $\ell \geq 1$ and $s \in\{1,2,4\}$. In particular, K is a 2-group.

Proof. Suppose that K is cyclic. Then $K \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{4} by Corollary 1.2. In what follows, suppose that K is an abelian group of rank 2, and set $K=\langle a, b\rangle$ where $|b|||a|$.

Let r be any prime divisor of $|K|$, and set $K_{1}=\left\langle a^{r}, b^{r}\right\rangle$. Then K_{1} is a characteristic subgroup of K, and either $K / K_{1} \cong \mathbb{Z}_{r}$ for $r \nmid|b|$; or $K / K_{1} \cong \mathbb{Z}_{r}^{2}$ for $r||b|$. Now by the group K_{1}, the projection $X \rightarrow K_{n}$ is factorized as $X \rightarrow Y \rightarrow K_{n}$, where $Y \rightarrow K_{n}$ is a cover with the covering transformation group either \mathbb{Z}_{r} or \mathbb{Z}_{r}^{2}. By Corollary 1.2, we know that the cover Y is isomorphic to $K_{n, n}-n K_{2}$ with the covering transformation group \mathbb{Z}_{2} or $A T_{D}(1+q, 4)$ with the covering transformation group \mathbb{Z}_{2}^{2}. Therefore, $r=2$. In other words, K should be a 2 -group.

Now, set $|a|=2^{\ell_{1}}$ and $|b|=2^{\ell_{2}}$, where $\ell_{1} \geq \ell_{2} \geq 1$. Suppose that $\ell_{1} \neq \ell_{2}$. Let $K_{2}=\left\langle a^{2^{\ell_{1}-\ell_{2}}}, b\right\rangle \cong \mathbb{Z}_{2^{\ell_{2}}} \times \mathbb{Z}_{2^{\ell_{2}}}$. Then K_{2} is a characteristic subgroup of K, and $K / K_{2} \cong$ $\mathbb{Z}_{2^{\ell_{1}-\ell_{2}}}$. Now by the group K_{2}, the projection $X \rightarrow K_{n}$ is factorized as $X \rightarrow Z \rightarrow K_{n}$, where Z is a cyclic cover of K_{n}. By Corollary 1.2, we know that $K / K_{2} \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{4}. Thus we prove the lemma by setting $s \in\{1,2,4\}, \ell_{2}=\ell$ and $2^{\ell_{1}}=s \cdot 2^{\ell} \geq 1$.

Lemma 3.5. If $C_{A}(K) / K$ is 3-transitive on $V\left(K_{n}\right)$, then $K \cong \mathbb{Z}_{2}$.
Proof. First note that every automorphism in $C_{A}(K) / K$ has a lifting which is contained in $C_{A}(K)$. Now, suppose that $C_{A}(K) / K$ is 3-transitive on $V\left(K_{n}\right)$. Then all the triangles
in K_{n} have the same voltage by Proposition 2.2. Moreover, the voltage assignment f is assumed to be T-reduced. Hence all the cotree arcs have the same voltage, say w. In particular, $w=f_{u, v}=f_{v, u}^{-1}=w^{-1}$ for any cotree edge $u v$. Since X is assumed to be connected, w generates K. Hence $K \cong \mathbb{Z}_{2}$.

The following lemma shows that if the covering transformation group K is any abelian metacyclic group, then the 2-arc-transitive covers exist if and only if $K \cong \mathbb{Z}_{2}, \mathbb{Z}_{4}$, or \mathbb{Z}_{2}^{2}.

Lemma 3.6. Suppose that the covering transformation group K is abelian metacyclic. Then the covering graph X is isomorphic to one of $K_{n, n}-n K_{2}$ with $K \cong \mathbb{Z}_{2}, A T_{Q}(1+q, 4)$ with $K \cong \mathbb{Z}_{4}$, or $A T_{D}(1+q, 4)$ with $K \cong \mathbb{Z}_{2}^{2}$, defined in Section 1 .

Proof. Suppose that the covering transformation group K is isomorphic to \mathbb{Z}_{d} or \mathbb{Z}_{p}^{2}, then by Corollary 1.2, we already know that the cover X is isomorphic to one of $K_{n, n}-n K_{2}$ with $K \cong \mathbb{Z}_{2}, A T_{Q}(1+q, 4)$ with $K \cong \mathbb{Z}_{4}$, or $A T_{D}(1+q, 4)$ with $K \cong \mathbb{Z}_{2}^{2}$. Therefore, in what follows let K be any abelian group of rank 2 but $K \nsubseteq \mathbb{Z}_{p}^{2}$. Moreover, by Lemma 3.4 we may set $K=\langle a\rangle \times\langle b\rangle$, where $|a|=s 2^{\ell},|b|=2^{\ell}$ and $s \in\{1,2,4\}$, and if $\ell=1$ then $s \neq 1$.

Let $K_{1}=\left\langle a^{2}, b^{2}\right\rangle$. Then K_{1} is a characteristic subgroup of K, and $K / K_{1} \cong \mathbb{Z}_{2}^{2}$. As before, by the group K_{1} the projection $X \rightarrow K_{n}$ is factorized as $X \rightarrow Y \rightarrow K_{n}$, where Y is a cover of K_{n} with the covering transformation group \mathbb{Z}_{2}^{2}.

Now, we prove the lemma following the three possibilities for $\bar{A}=A / K$, as one of the 3 -transitive permutation groups listed in Proposition 2.4.
(1) Assume $\bar{A}=S_{4}$ with the degree $n=4$. By Corollary 1.2 , we know that if $K / K_{1} \cong$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then $Y \cong A T_{D}(1+q, 4)$ and $n=q+1$, where $q \equiv 1(\bmod 4)$. This contradicts $n=4$. Hence this case is impossible: \bar{A} cannot be S_{4}.
(2) As the second possible case, let $\bar{A}=\mathbb{Z}_{2}^{m} \rtimes \mathrm{GL}(m, 2)$ with $m \geq 3$ or $\bar{A}=\mathbb{Z}_{2}^{4} \rtimes A_{7}$. By Lemmas 3.3 and 3.5, we know that $C_{A}(K) \neq K$, and $C_{A}(K) / K$ cannot be 3-transitive on $V\left(K_{n}\right)$. Since \bar{A} has the unique nontrivial normal subgroup \mathbb{Z}_{2}^{m}, we have $C_{A}(K) / K=\mathbb{Z}_{2}^{m}$. Hence, $\bar{A} /\left(C_{A}(K) / K\right)$ is isomorphic to $\operatorname{GL}(m, 2)$ or to A_{7}, which are both simple. On the other hand, $\bar{A} /\left(C_{A}(K) / K\right) \cong A / C_{A}(K)$, and $A / C_{A}(K)$ is isomorphic to a subgroup of Aut K. This forces that Aut K contains a nonabelian simple subgroup, which is also impossible by Lemma 3.1.
(3) Finally suppose that \bar{A} is an almost simple group. Then $C_{A}(K) / K$ contains the socle of \bar{A}. By Lemmas 3.3 and 3.5 again, we know that $C_{A}(K) \neq K$, and $C_{A}(K) / K$ cannot be 3-transitive on $V\left(K_{n}\right)$. Hence, the only possibility is that $\operatorname{soc} \bar{A}=\operatorname{PSL}(2, q)$ acting on the projective line $\operatorname{PG}(1, q)=\{\infty, 0,1, \ldots, q-1\}$ and $\operatorname{PSL}(2, q) \leq C_{A}(K) / K \leq$ $\mathrm{P} \Gamma \mathrm{L}(2, q)$. Hence every element of $\operatorname{PSL}(2, q)$ has a lifting in $C_{A}(K)$. Now, let $n=1+q$ and identify $V\left(K_{1+q}\right)$ with $\operatorname{PG}(1, q)$. Choose a star having the base vertex ∞ as a spanning tree T of K_{1+q}, and assume $f_{\infty, x}=1$ for any $x \in \mathrm{GF}(q)$, as a T-reduced
voltage assignment. Now, we discuss the two subcases related to the congruence class of q modulo 4 separately.
(3.1) Assume $q \equiv 3(\bmod 4)$. In this case, $\operatorname{PSL}(2, q)$ has two orbits acting on the ordered triples of $V\left(K_{1+q}\right)$. By Proposition 2.5, for any three distinct vertices x, y, z in $V\left(K_{1+q}\right)$, two ordered triples (x, y, z) and (x, z, y) belong to distinct orbits of $\operatorname{PSL}(2, q)$. Hence $\operatorname{PSL}(2, q)$ is transitive on the unordered triples of $V\left(K_{1+q}\right)$. By considering all the triangles W of the form (∞, i, j, ∞), one can see from Proposition 2.2 that $f_{W}=f_{i, j}=w$ or w^{-1} for any cotree arc (i, j) and a fixed $w \in K$. This forces that K is cyclic, contradicting our hypothesis.
(3.2) Assume that $q \equiv 1(\bmod 4)$. As in (3.1), $\operatorname{PSL}(2, q)$ has two orbits acting on the ordered triples of $V\left(K_{1+q}\right)$. But by Proposition 2.5, for any three distinct vertices x, y, z in $V\left(K_{1+q}\right)$, the triples (x, y, z) and (x, z, y) are in the same orbit of $\operatorname{PSL}(2, q)$. This forces that every voltage on cotree arcs is an involution and so $K \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{2}^{2}, contradicting our hypothesis, too.

3.3. K is nonabelian

In this subsection, we assume that K is a nonabelian metacyclic group with a presentation

$$
K=\left\langle a, b \mid a^{d}=1, b^{m}=a^{t}, b^{-1} a b=a^{r}\right\rangle
$$

where $t(r-1) \equiv 0(\bmod d), r^{m} \equiv 1(\bmod d)$ and $r \not \equiv 1(\bmod d)$. Since K is nonabelian, we have $d \geqslant 3$.

Under the notation given in the beginning of Section 3, the next two lemmas state some properties of the covering transformation group K.

Lemma 3.7. Let the covering graph X be $A T_{Q}(1+q, 4)$ or $A T_{D}(1+q, 4)$ with the respective covering transformation group $K \cong \mathbb{Z}_{4}$ or \mathbb{Z}_{2}^{2} respectively. Then K contains at least one central involution of $\operatorname{Aut}(X)$.

Proof. Recall that the base graph K_{1+q} of the covering graph X has the vertex set which is identified with the projective line $\mathrm{PG}(1, q)$, and $\operatorname{Aut}(X) / K \cong \mathrm{P} \Gamma \mathrm{L}(2, q)$ is the automorphism group of $\mathrm{PG}(1, q)$, see Corollary 1.2. First, consider $X=A T_{Q}(1+q, 4)$ with the cyclic group $K \cong \mathbb{Z}_{4}$, say $K=\langle a\rangle$. Then a^{2} is a (unique) involution in K, and one can see that a^{2} belongs to the center of $\operatorname{Aut}(X)$ by noting $K \triangleleft \operatorname{Aut}(X)$.

Next, let $X=A T_{D}(1+q, 4)$ with $K \cong \mathbb{Z}_{2}^{2}$. Set $A_{1}=\operatorname{Aut}(X)$. Take a subgroup T of A_{1} such that $K \leq T \leq A_{1}$ and $T / K \cong \operatorname{PSL}(2, q)$. By Proposition 2.3, we get $\left(A_{1} / K\right) /\left(C_{A_{1}}(K) / K\right) \cong A_{1} / C_{A_{1}}(K) \lesssim \operatorname{Aut}(K) \cong S_{3}$. Since the symmetric group S_{3} is solvable, one may get $T / K \leq C_{A_{1}}(K) / K$, that is, $T \leq C_{A_{1}}(K)$. Let τ be the automorphism of $\operatorname{PSL}(2, q)$ induced by the field automorphism $j \mapsto j^{p}$ of order ℓ in $\operatorname{Aut}(\operatorname{GF}(q))$, where $q=p^{\ell}$, and let $z \in \operatorname{PGL}(2, q) \backslash \operatorname{PSL}(2, q)$ be any element. Then, by using the facts $\mathrm{P} \Gamma \mathrm{L}(2, q)=\operatorname{PGL}(2, q) \rtimes\langle\tau\rangle$ and $\operatorname{PGL}(2, q) / \operatorname{PSL}(2, q) \cong \mathbb{Z}_{2}$, one can see that
$A_{1} / T \cong\left(A_{1} / K\right) /(T / K)=\operatorname{P} \Gamma \mathrm{L}(2, q) / \operatorname{PSL}(2, q)=\langle z \operatorname{PSL}(2, q), \tau \operatorname{PSL}(2, q)\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{\ell}$.
Considering the conjugacy action of A_{1} on the set of three involutions of $K \cong \mathbb{Z}_{2}^{2}$, one can see that $A_{1} / C_{A_{1}}(K) \leq S_{3}$. On the other hand, $A_{1} / C_{A_{1}}(K) \cong\left(A_{1} / T\right) /\left(C_{A_{1}}(K) / T\right)$ is a quotient of an abelian group $\mathbb{Z}_{2} \times \mathbb{Z}_{\ell}$, and hence $A_{1} / C_{A_{1}}(K)$ is isomorphic to 1 , \mathbb{Z}_{2} or \mathbb{Z}_{3} with $3 \mid \ell$. By Lemma 3.5, we know that $C_{A_{1}}(K) / K$ cannot be 3-transitive on $V\left(K_{1+q}\right)$. Since $\langle T / K, z\rangle \cong \operatorname{PGL}(2, q)$ is 3-transitive on $V\left(K_{1+q}\right)$, every lift z^{\prime} of the automorphism z cannot be contained in $C_{A_{1}}(K)$, which implies that $\mathbb{Z}_{2} \cong\left\langle z^{\prime} C_{A_{1}}(K)\right\rangle \leq A_{1} / C_{A_{1}}(K)$, and thus $A_{1} / C_{A_{1}}(K) \cong \mathbb{Z}_{2}$. Therefore, A_{1} should fix an involution, which is then a central involution of $A_{1}=\operatorname{Aut}\left(A T_{D}(1+q, 4)\right)$.

Lemma 3.8. If K is nonabelian, then one of the following two cases occurs:
(1) K contains a cyclic subgroup N of index 2 such that $N \triangleleft A$;
(2) $K=\left\langle a, b \mid a^{d}=b^{4}=1, a^{b}=a^{r}\right\rangle$, where d is odd, $r^{4} \equiv 1(\bmod d), r^{2} \not \equiv 1(\bmod d)$ and $(d, r-1)=1$.

Proof. Note that $K^{\prime}=\left\langle a^{r-1}\right\rangle$ is a nontrivial characteristic subgroup of K and so it is normal in A. Define a quotient graph Z of X induced by K^{\prime} such that $V(Z)$ is the set of K^{\prime}-orbits on $V(X)$, and two K^{\prime}-orbits are adjacent if there exist some edges between these two K^{\prime}-orbits in X. Then Z is a connected cover of the complete graph K_{n}, whose covering transformation group is an abelian metacyclic group K / K^{\prime}, and one of whose fibre-preserving automorphism subgroup A / K^{\prime} acts 2 -arc-transitively. By Lemma 3.6, we know that K / K^{\prime} is isomorphic to one of $\mathbb{Z}_{2}, \mathbb{Z}_{4}$ or \mathbb{Z}_{2}^{2}. If $K / K^{\prime} \cong \mathbb{Z}_{2}$, then we get case (1) of the lemma by taking $N=K^{\prime}$. Hence, in what follows, we deal with other two cases.

Case i: $K / K^{\prime} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Suppose $K / K^{\prime} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then $K^{\prime}=\left\langle a^{r-1}\right\rangle=\left\langle a^{2}\right\rangle$, which implies that $(d, r-1)=2$ and $m=2$. Since $r^{2} \equiv 1(\bmod d)$ and $t(r-1) \equiv 0(\bmod d)$, one may get $r+1 \equiv$ $0(\bmod d / 2)$, and t is either 0 or $d / 2$, which forces that $|b|=2$ or 4 . In what follows, we divide our proof into two subcases according to whether $d>4$ or $d=4$.
(a) $d>4$: Let $a^{i} b^{j}$ be an arbitrary element in $K \backslash\langle a\rangle$, where $0 \leq i \leq d-1$ and $j \in\{1,3\}$. Since $(r+1) \mid\left(r^{j}+1\right)$, we have $d \mid 2\left(r^{j}+1\right)$ and then $\left(a^{i} b^{j}\right)^{4}=a^{2\left(r^{j}+1\right) i}=1$, which means $\left|a^{i} b^{j}\right| \leq 4$. Therefore, $\langle a\rangle$ is the unique cyclic subgroup of order d, noting $d>4$, which should be characteristic in K and so normal in A. Hence we get case (1) of the lemma.
(b) $d=4$: Noting that in this case, $r+1 \equiv 0(\bmod 2)$, and K is nonabelian, we get that $r=-1$, from which either $K \cong D_{8}$, a dihedral group, or Q_{8}, the quaternion group. The conclusion is clearly true for $K \cong D_{8}$.

Now suppose that $K \cong Q_{8}$. Then let us consider the quotient graph Z induced by K^{\prime} defined above. Then Z is a connected cover of K_{n}, with the covering transformation group $K / K^{\prime} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and one of whose fibre-preserving automorphism subgroup A / K^{\prime} acts 2-arc-transitively. Therefore, by Corollary $1.2, Z \cong A T_{D}(1+q, 4)$. By Lemma 3.7, K / K^{\prime} contains a central involution of A / K^{\prime}, in other words, K contains a cyclic subgroup N of order 4 such that $N \triangleleft A$, that is case (1) of the lemma.

Case ii: $K / K^{\prime} \cong \mathbb{Z}_{4}$.
In this case, we have that either $K^{\prime}=\left\langle a^{2}\right\rangle$ or $K^{\prime}=\langle a\rangle$.
(a) $K^{\prime}=\left\langle a^{2}\right\rangle$: It is easy to get that

$$
(d, r-1)=2, \quad t=d / 2 \text { or } 0 .
$$

As $K / K^{\prime}=\left\langle a K^{\prime}, b K^{\prime}\right\rangle \cong \mathbb{Z}_{4}$, it should be that $b^{2} K^{\prime}=a K^{\prime}$, which forces that $m=2, t$ is odd, and then $t=d / 2$ is odd, while $d>4$. From $r^{2} \equiv 1(\bmod d)$ and $(d, r-1)=2$, we get that $r=-1$, that is, $a^{b}=a^{-1}$. It is easy to see that the order of any element in $K \backslash\langle a\rangle$ is 4 . Hence, $\langle a\rangle$ is the unique cyclic subgroup of order d, which is normal in A, again.
(b) $K^{\prime}=\langle a\rangle$: It is easy to get that $K^{\prime}=\langle a\rangle$, and

$$
m=4, \quad(d, r-1)=(d, r)=1, \quad t=0, \quad d \mid(r+1)\left(r^{2}+1\right)
$$

Hence, $K=\left\langle a, b \mid a^{d}=b^{4}=1, a^{b}=a^{r}\right\rangle$, where $|K|=4 d$ and d is odd.
If $r^{2} \equiv 1(\bmod d)$, then $\left\langle a b^{2}\right\rangle$ is the unique subgroup of order $2 d$, which is normal in A again.

Suppose that $r^{2} \not \equiv 1(\bmod d)$. Then $\left(d, r^{2}+1\right) \neq 1$. Now for $j=1,3$ and $0 \leq i \leq d-1$, we have

$$
\left(a^{i} b^{j}\right)^{4}=a^{i \frac{r^{-4 j}-1}{r-j-1}}=1, \quad\left(a^{i} b^{2}\right)^{2}=a^{i\left(1+r^{2}\right)}
$$

Then $\left|a^{i} b^{j}\right| \leq 4$ for $j=1,3$, and $\left|a^{i} b^{2}\right|<2 d$, in other words, there exists no cyclic subgroup N of K of index 2 . Now we are exactly in case (2) of the lemma.

By Lemma 3.8, we divide the proof into two subsections.

3.3.1. Case (1) of Lemma 3.8

Lemma 3.9. Suppose that there exists a cyclic subgroup N of K of index 2 such that $N \triangleleft A$. Then X is the cyclic regular cover of $K_{n, n}-n K_{2}$ with the covering transformation group N, whose fibre (N-orbits) preserving automorphism group acts 2 -arc-transitively.

Proof. Suppose that there exists a cyclic subgroup N of K of index 2 such that $N \triangleleft A$. Then $\mathbb{Z}_{2} \cong K / N \triangleleft A / N$, and the quotient graph induced by N is a regular cover of K_{n}, with the covering transformation group $K / N \cong \mathbb{Z}_{2}$. By Corollary 1.2, we get $X \cong K_{n, n}-n K_{2}$, and X is a regular cover of $K_{n, n}-n K_{2}$, with the cyclic covering transformation group N. Clearly, as a cover of $K_{n, n}-n K_{2}$, the fibre (N-orbits) preserving automorphism group of X acts 2 -arc-transitively.

In [22], all cyclic regular covers of $K_{n, n}-n K_{2}$ have been classified when the fibrepreserving automorphism groups act 2-arc-transitively. The main result of [22] is the following:

Proposition 3.10. Let X be a connected regular cover of $K_{n, n}-n K_{2}(n \geq 4)$ with a nontrivial cyclic covering transformation group \mathbb{Z}_{d} whose fibre-preserving automorphism group acts 2-arc-transitively. Then one of the following holds:
(1) $n=4$ and X is isomorphic to the unique \mathbb{Z}_{d}-cover, where $d=2,3,6$;
(2) $n=5$ and X is isomorphic to the unique \mathbb{Z}_{3}-cover;
(3) $n=q+1 \geq 5$ and $X \cong K_{1+q}^{2 d}$, defined just below.

Definition 3.11. Graphs $K_{1+q}^{2 d}$: For $q=p^{\ell}$ where p is an odd prime, let $\operatorname{GF}(q)^{*}=\langle\theta\rangle$. Let $Y=K_{1+q, 1+q}-(1+q) K_{2}$, whose vertex set is two copies of the projective line $\operatorname{PG}(1, q)$, where the missing matching consists of all pairs $\left[i, i^{\prime}\right], i \in \operatorname{PG}(1, q)$. For any $d \mid q-1$ and $d \geq 2$, define a voltage graph $K_{1+q}^{2 d}=Y \times_{f} N$, where $N=\langle a\rangle \cong \mathbb{Z}_{d}$ and

$$
f_{\infty^{\prime}, i}=f_{\infty, j^{\prime}}=1 \quad \text { for } i, j \neq \infty ; \quad f_{i, j^{\prime}}=a^{h} \quad \text { if } j-i=\theta^{h} \text { for } i, j \neq \infty .
$$

Actually, the graph $K_{1+q}^{2 d}$ was first defined in [4], which gave a classification of 2-arctransitive Cayley graphs on dihedral groups.

In what follows, we continue our proof according to $n=4, n=5$ and $n \geqslant 5$. We already know the voltage assignment of X as a cover of $K_{n, n}-n K_{2}$, and now all we should do is to find the voltage assignment of X as a cover of K_{n}. Suppose that $n=4$ and $d=2$. Then K is an abelian group of order 4 and thus $X \cong A T_{Q}(4,4)$, as discussed in the abelian Section 3.2. Hence, here we just let $d=3$ or 6 when $n=4$, and $d=3$ when $n=5$.

Lemma 3.12. Suppose that $n=4$. Then X is isomorphic to $A T_{D}(4,6)$ or $A T_{Q}(4,12)$.
Proof. By Lemma 3.9, X is a regular cover of $K_{n, n},-n K_{2}$, with the covering transformation group $N \cong \mathbb{Z}_{d}$, and the fibre preserving automorphism group A acts 2-arctransitively. Suppose that $n=4$. Then by Proposition 3.10, the regular cyclic cover of $K_{4,4}-4 K_{2}$ is isomorphic to the unique \mathbb{Z}_{d}-cover, where $d=2,3,6$. As mentioned above, we only need to consider $d=3$ and $d=6$, separately. Equivalently, $|K|=6$ and
$|K|=12$. Since there exists a unique \mathbb{Z}_{d}-cover of $K_{4,4}-4 K_{2}$ satisfying our condition with $d=3$ or 6 , it suffices to define a $2 d$-fold cover of K_{4} directly, which also satisfies our condition and is a \mathbb{Z}_{d}-cover of $K_{4,4}-4 K_{2}$.

Case 1: $|K|=6$.

Let $N=\langle a\rangle \cong \mathbb{Z}_{3}$ and $K=\langle a, b\rangle \cong D_{6}$. Let $A=K \rtimes S_{4}$, where

$$
\left[A_{4}, K\right]=1, \quad\left[S_{4}, b\right]=1, \quad a^{s}=a^{-1}
$$

for any $s \in S_{4} \backslash A_{4}$. Moreover, in S_{4} set

$$
d_{1}=(12)(34), \quad d_{2}=(14)(23), \quad d_{3}=(13)(24)
$$

Set $H=\langle(123) a,(12)\rangle \cong S_{3}$ and $D=H d_{1} b H$. We shall prove that the coset graph $X^{\prime}:=X(A ; H, D)$ is a connected regular cover of K_{4} with the covering transformation group K, whose fibre preserving automorphism group A acts 2 -arc-transitively. With this conclusion, X^{\prime} is clearly a connected regular cover of $K_{4,4}-4 K_{2}$ with the covering transformation group $N \cong \mathbb{Z}_{3}$, whose fibre preserving automorphism group A acts 2-arc-transitively.

In fact, as $\left(d_{1} b\right)^{2}=1$, we get $D^{-1}=D$, that is, X^{\prime} is undirected. Since $\left(H d_{1} b\right) t=$ $H d_{1} b$, it follows that the length of the orbit of H containing the vertex $H d_{1} b$ is 3 , which means that X^{\prime} is of valency 3 . To show that X^{\prime} is connected, we need to prove $A=\langle D\rangle$.

Now $\langle D\rangle=\left\langle H, d_{1} b\right\rangle=\left\langle(123) a,(12), d_{1} b\right\rangle$. From $\left(d_{1} b\right)^{(123) a}=d_{2} b a^{-1} \in\langle D\rangle$ and $\left(d_{2} b a^{-1}\right)^{(123) a}=d_{3} b a \in\langle D\rangle$, we get $\left(d_{1} b\right)\left(d_{2} b a^{-1}\right)=d_{3} a^{-1} \in\langle D\rangle$, which implies that $\left(d_{3} a^{-1}\right)\left(d_{3} b a\right)=a b \in\langle D\rangle$, and then $\left(d_{1} b\right)(a b)=d_{1} a^{-1} \in\langle D\rangle$. From $((123) a)^{d_{1} b}=$ $(142) a^{-1} \in\langle D\rangle$ and $((123) a)^{d_{1} a^{-1}}=(142) a \in\langle D\rangle$, we get $(142) a^{-1}(142) a=(124) \in$ $\langle D\rangle$, which in turn implies $a \in\langle D\rangle$, and then (123) $\in\langle D\rangle$. Now, we have $S_{4}=$ $\langle(124),(123),(12)\rangle \leq\langle D\rangle$, and then $b \in\langle D\rangle$. Finally, we get $A=\langle D\rangle$, as desired.

Since the normal subgroup K of A has four orbits on $V\left(X^{\prime}\right)$, that is, $\{H x k \mid k \in K\}$, where $x \in\left\{1, d_{1}, d_{2}, d_{3}\right\}$ and the quotient graph is K_{4}, the graph X^{\prime} is a cover of K_{4}. Since $A / K \cong S_{4}, A$ acts 2-arc-transitively on X^{\prime}. In what follows, we show that $X^{\prime} \cong$ $A T_{D}(4,6)$.

Since the neighbor of H corresponds to the double coset $D=H d_{1} b H$, we know that H is adjacent to the following three points

$$
\left\{H d_{1} b, H d_{1} b(123) a, H d_{1} b(132) a^{-1}\right\}=\left\{H d_{1} b, H d_{2} b a^{-1}, H d_{3} b a\right\}
$$

Hence, $H d_{1}$ is adjacent to

$$
\left\{H d_{1} b d_{1}, H d_{2} b a^{-1} d_{1}, H d_{3} b a d_{1}\right\}=\left\{H b, H d_{3} b a^{-1}, H d_{2} b a\right\}
$$

$H d_{2}$ is adjacent to

$$
\left\{H d_{1} b d_{2}, H d_{2} b a^{-1} d_{2}, H d_{3} b a d_{2}\right\}=\left\{H d_{3} b, H b a^{-1}, H d_{1} b a\right\} ;
$$

$H d_{3}$ is adjacent to

$$
\left\{H d_{1} b d_{3}, H d_{2} b a^{-1} d_{3}, H d_{3} b a d_{3}\right\}=\left\{H d_{2} b, H d_{1} b a^{-1}, H b a\right\} .
$$

Define $\tau: V\left(X^{\prime}\right) \rightarrow V\left(A T_{D}(4,6)\right)$ by the rule

$$
\begin{array}{ll}
\tau(H k)=(1, k), & \tau\left(H d_{1} k\right)=(2, k), \\
\tau\left(H d_{2} k\right)=(4, k), & \tau\left(H d_{3} k\right)=(3, k),
\end{array}
$$

for $k \in K$. It follows from the definition of the two graphs that τ is an isomorphism from the graph X^{\prime} to $A T_{D}(4,6)$.

Case 2: $|K|=12$.

Let $N=\langle a\rangle \cong \mathbb{Z}_{6}$ and $K=\langle a, b\rangle \cong Q_{12}$. In GL(2,3), set

$$
x=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad y=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad c=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad e=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

Let $A=K \operatorname{GL}(2,3)=K(\mathrm{SL}(2,3) \rtimes\langle c\rangle)$, where

$$
K \cap \mathrm{GL}(2,3)=e, \quad[\mathrm{SL}(2,3), K]=1, \quad c^{b}=c e, \quad a^{c}=a^{-1}
$$

Set $H=\left\langle x a^{2}, c\right\rangle \cong S_{3}$ and $D=H y b H$. In what follows, we shall prove that the coset graph $X^{\prime}:=X(A ; H, D)$ is a connected regular cover of K_{4} with the covering transformation group K, whose fibre preserving group A acts 2 -arc-transitively.

As $(y b)^{2}=1$, we get $D^{-1}=D$, and then X^{\prime} is undirected. Since

$$
H y b c=H y c^{b} b=H y c e b=H c^{y^{-1}} e y b=H c y b=H y b
$$

it follows that the length of the orbit of H containing the vertex $H y b$ is 3 , which means that X^{\prime} is of valency 3 . To show that X^{\prime} is connected, we need to prove $A=\langle D\rangle$.

As $\langle D\rangle=\langle H, y b\rangle=\left\langle x a^{2}, c, y b\right\rangle$, by computation we have

$$
\left(x a^{2}\right)^{y b}\left(x a^{2}\right)^{2}\left(x a^{2}\right)^{y b}=x e \in\langle D\rangle, \quad x a^{2}(x e)^{-1}=a^{-1} \in\langle D\rangle .
$$

Thus, $a, x, e \in\langle D\rangle$, and then $x^{y b}=x^{y} \in\langle D\rangle$. Now $\operatorname{SL}(2,3)=\left\langle x, x^{y}\right\rangle \leq\langle D\rangle$, which implies $b \in\langle D\rangle$. Hence $A=\langle D\rangle$, as desired.

Similarly as in Case 1, the graph X^{\prime} is a cover of K_{4} and A acts 2-arc-transitively on X^{\prime}. In what follows, we show that $X^{\prime} \cong A T_{Q}(4,12)$.

Since the neighbor of H corresponds to the double coset $D=H y b H$, we have that H is adjacent to

$$
\left\{H y b, H y x b a^{2}, H y x^{2} b a^{4}\right\} .
$$

Hence, the neighbors of $H y, H y x$ and $H y x^{2}$ are respectively

$$
\left\{H b e, H y x^{2} b a^{3}, H y x b\right\}, \quad\left\{H b a^{-1}, H y b a^{3}, H y x^{2} b\right\}, \quad\left\{H b a, H y x b a^{3}, H y b\right\} .
$$

Define $\eta: V\left(X^{\prime}\right) \rightarrow V\left(A T_{Q}(4,12)\right)$ by the rule

$$
\begin{array}{ll}
\eta(H k)=(1, k), & \eta(H y k)=(2, k), \\
\eta(H y x k)=(3, k), & \eta\left(H y x^{2} k\right)=(4, k),
\end{array}
$$

for $k \in K$. It follows from the definition of the two graphs that η is an isomorphism from the graph X^{\prime} to $A T_{Q}(4,12)$.

Lemma 3.13. Suppose that $n=5$. Then X is isomorphic to $A T_{D}(5,6)$.

Proof. Similarly as in Lemma 3.12, we define a 6 -fold cover of K_{5} directly, which satisfies our condition and is a \mathbb{Z}_{3}-cover of $K_{5,5}-5 K_{2}$.

Let $K=\langle a, b\rangle \cong D_{6}$, where $a^{3}=b^{2}=1, a^{b}=a^{-1}$. Let $A=K \times A_{5}$. Moreover, in A_{5} set

$$
d_{1}=(12)(34), \quad d_{2}=(13)(24), \quad d_{3}=(15)(24), \quad d_{4}=(234)
$$

Suppose that $H=\left\langle d_{1}, d_{2}\right\rangle \rtimes\left\langle d_{4} a\right\rangle$ and $D=H d_{3} b H$. Next, we shall prove that the coset graph $X^{\prime}:=X(A ; H, D)$ is a connected regular cover of K_{5} with the covering transformation group K, whose fibre preserving group A acts 2 -arc-transitively.

Since $\left(d_{3} b\right)^{2}=1$, we get $D^{-1}=D$, which means that X^{\prime} is undirected. Furthermore, we have

$$
H d_{3} b d_{4} a=H d_{3} b d_{4} a\left(d_{3} b\right)^{-1} d_{3} b=H b a b d_{4}^{d_{3}} d_{3} b=H a^{-1} d_{4}^{-1} d_{3} b=H d_{3} b
$$

that is, the length of the orbit containing the vertex $H d_{3} b$ is 4 . Thus, X^{\prime} is of valency 4 . Now, we show that X^{\prime} is connected, which is equivalent to show $A=\langle D\rangle$.

As $\langle D\rangle=\left\langle H, d_{3} b\right\rangle=\left\langle d_{1}, d_{2}, d_{4} a, d_{3} b\right\rangle$, by computation, we have the following equations:

$$
\begin{gathered}
d_{3} b\left(d_{4} a\right)^{d_{1} d_{2}}=(15324) b a, \quad((15324) b a)^{2}=(13452), \quad\left(d_{3} b\right)^{(13452)}=(15)(23) b, \\
d_{3} b(15)(23) b=(243), \quad(243) d_{4} a=a, \quad d_{1}^{d_{3} b}=(23)(45) .
\end{gathered}
$$

Since $A_{5}=\langle(23)(45),(12)(34),(234)\rangle$, it follows that $A_{5} \leq\langle D\rangle$, and thus $K \leq\langle D\rangle$. Hence $A=\langle D\rangle$, as desired.

Since the normal subgroup K of A has five orbits on $V\left(X^{\prime}\right)$, that is, $\{H x k \mid k \in K\}$, where $x \in\left\{1, d_{3}, d_{3} d_{1}, d_{3} d_{2}, d_{3} d_{1} d_{2}\right\}$, and the quotient graph is K_{5}, the graph X^{\prime} is a cover of K_{5}. Since $A / K \cong A_{5}, A$ acts 2 -arc-transitively on X^{\prime}. In what follows, we show that $X^{\prime} \cong A T_{D}(5,6)$.

Since the neighbor of H corresponds to the double coset $D=H d_{3} b H$, we know that H is adjacent to the following four points

$$
\left\{H d_{3} b, H d_{3} d_{1} b, H d_{3} d_{2} b, H d_{3} d_{1} d_{2} b\right\}
$$

Hence, $H d_{3}$ is adjacent to

$$
\left\{H b, H d_{3} d_{1} a b, H d_{3} d_{2} b, H d_{3} d_{1} d_{2} b a\right\} ;
$$

$H d_{3} d_{1}$ is adjacent to

$$
\left\{H b, H d_{3} a b, H d_{3} d_{2} b a, H d_{3} d_{1} d_{2} b\right\}
$$

$H d_{3} d_{2}$ is adjacent to

$$
\left\{H b, H d_{3} b, H d_{3} d_{1} b a, H d_{3} d_{1} d_{2} a b\right\} ;
$$

$H d_{3} d_{1} d_{2}$ is adjacent to

$$
\left\{H b, H d_{3} b a, H d_{3} d_{1} b, H d_{3} d_{2} a b\right\} .
$$

Define $\zeta: V\left(X^{\prime}\right) \rightarrow V\left(A T_{D}(5,6)\right)$ by the rule

$$
\begin{array}{ll}
\tau(H k)=(5, k), & \tau\left(H d_{3} k\right)=(1, k), \\
\tau\left(H d_{3} d_{1} k\right)=(2, k), & \tau\left(H d_{3} d_{2} k\right)=(3, k), \\
\tau\left(H d_{3} d_{1} d_{2} k\right)=(4, k), &
\end{array}
$$

for $k \in K$. It follows from the definition of the two graphs that ζ is an isomorphism from the graph X^{\prime} to $A T_{D}(5,6)$.

Lemma 3.14. Suppose that $n \geqslant 5$. Then X is isomorphic to $A T_{Q}(1+q, 2 d)$ or $A T_{D}(1+$ $q, 2 d$), where $d \geq 3$.

Proof. By Lemma 3.9, X is a regular cover of $K_{n, n}$, $n K_{2}$ with the covering transformation group $N \cong \mathbb{Z}_{d}$, and $X \cong K_{1+q}^{2 d}$, defined in Definition 3.11. It has been proved in [22, Theorem 2.9] that for this cover, $\mathrm{P} \Gamma \mathrm{L}(2, q) \times\langle\sigma\rangle$ lifts, where σ is an involution exchanging i and i^{\prime} for any $i \in \operatorname{PG}(1, q)$. It is shown in [22] that all the covers such
that one of the minimal 3-transitive subgroups of $\mathrm{P} \Gamma \mathrm{L}(2, q) \times\langle\sigma\rangle$ lifts is all isomorphic to $K_{1+q}^{2 d}$. Therefore, we may pick up a fibre-preserving subgroup A which is a lift of $\operatorname{PGL}(2, q) \times\langle\sigma\rangle$.

Let L be a lift of $\operatorname{PSL}(2, q)$. According to the proof in [22, Subsection 3.2], we need to deal with the following two cases:

$$
\begin{aligned}
& L \cap N=\mathbb{Z}_{2}, \text { where } d \mid q-1 \text { and } d \nmid \frac{q-1}{2} ; \text { and } \\
& L \cap N=1 \text {, where } d \left\lvert\, \frac{q-1}{2}\right. \text { and } d \geq 2 .
\end{aligned}
$$

(i) $L \cap N=\mathbb{Z}_{2}$, where $d \mid q-1$ and $d \nmid \frac{q-1}{2}$:

In this case, $L \cong \operatorname{SL}(2, q)$ and we shall identify L with $\operatorname{SL}(2, q)$. In $\operatorname{GL}(2, q)$, set

$$
\begin{gathered}
e=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad t_{i}=\left(\begin{array}{cc}
1 & i \\
0 & 1
\end{array}\right), \quad x=\left(\begin{array}{ll}
\theta & 0 \\
0 & 1
\end{array}\right), \\
c=\left(\begin{array}{cc}
\theta & 0 \\
0 & \theta^{-1}
\end{array}\right), \quad y=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),
\end{gathered}
$$

where $q=r^{l}$ and $i \in \operatorname{GF}(q)$. Let $Q=\left\langle t_{i} \mid i \in \mathrm{GF}(q)\right\rangle \cong \mathbb{Z}_{r}^{\ell} \leq L$. Let $N=\langle a\rangle \cong \mathbb{Z}_{d}$.
Define the group

$$
A=((L N)\langle z\rangle)\langle b\rangle
$$

with defining relations:

$$
\begin{gathered}
|a|=d, \quad[t, a]=1, \quad z^{2}=c a, \quad t^{z}=t^{x}, \quad a^{z}=a, \\
b^{2}=e, \quad t^{b}=t, \quad a^{b}=a^{-1}, \quad z^{b}=z^{-1} c,
\end{gathered}
$$

for any $t \in L$. Set $K=\langle a, b\rangle$. Then $Q_{2 d} \cong K \triangleleft A$. Set $H=Q \rtimes\langle z\rangle$ and $D=H y b H$. Then we get that the coset graph $X:=X(A ; H, D) \cong K_{1+q}^{2 d}$ has the vertex set

$$
\{H k \mid k \in K\} \cup\left\{H y t_{i} k \mid i \in \mathrm{GF}(q), k \in K\right\}
$$

and the edge-set

$$
\begin{aligned}
& \{ \\
& \left.\left\{H k, H y t_{i} b k\right\} \mid k \in K, i \in \mathrm{GF}(q)\right\} \\
& \\
& \quad \cup\left\{\left\{H y t_{i} k, H y t_{j} b a^{h} k\right\} \mid i, j \in \mathrm{GF}(q), j-i=\theta^{h}, k \in K\right\} .
\end{aligned}
$$

Define a map $\eta: V(X) \rightarrow V\left(A T_{Q}(1+q, 2 d)\right)$ by the rule

$$
H k \rightarrow(\infty, k), \quad H y t_{i} k \rightarrow(i, k),
$$

for any $k \in K$. Then η gives an isomorphism from X to $A T_{Q}(1+q, 2 d)$.
(ii) $L \cap N=1$, where $d \left\lvert\, \frac{q-1}{2}\right.$ and $d \geq 2$:

In this case, we shall identify L with $\operatorname{PSL}(2, q)$. In $\operatorname{PGL}(2, q)$, set

$$
t_{i}=\overline{\left(\begin{array}{cc}
1 & i \\
0 & 1
\end{array}\right)}, \quad x=\overline{\left(\begin{array}{cc}
0 & \theta \\
-1 & 0
\end{array}\right)}, \quad y=\overline{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)}
$$

where $i \in \mathrm{GF}(q)$.
Let $\bar{Q}=\left\langle t_{i} \mid i \in \mathbb{F}_{q}\right\rangle \cong \mathbb{Z}_{r}^{l}$ and $Q \leq T$ be the lift of \bar{Q}. Acting on $\operatorname{PG}(1, q)$, we have $\operatorname{PGL}(2, q)_{\infty}=\bar{Q} \rtimes\langle y x\rangle$, and the other points $i \in \operatorname{PG}(1, q) \backslash\{\infty\}$ correspond to the coset $\operatorname{PGL}(2, q)_{\infty} y t_{i}$. Let $N=\langle a\rangle \cong \mathbb{Z}_{d}$. Then define the group

$$
A=(L \times N)\langle z, b\rangle=(\operatorname{PSL}(2, q) \rtimes\langle z\rangle)\langle b\rangle,
$$

with defining relations:

$$
\begin{gathered}
|a|=d, \quad[a, t]=1, \quad z^{2}=a, \quad t^{z}=t^{x}, \quad b^{2}=1, \\
t^{b}=t, \quad a^{b}=a^{-1}, \quad z^{b}=z^{-1}
\end{gathered}
$$

for any $t \in L$. Set $K=\langle a, b\rangle$. Then $D_{2 d} \cong K \triangleleft A$. Set $H=Q \rtimes\left\langle y z^{-1}\right\rangle$ and $D=$ $H y b H$. Then with exactly the same arguments as in (i), we get that the coset graph $X=X(A ; H, D)$ is isomorphic to $A T_{D}(1+q, 2 d)$.

Remark 3.15. Note that for the case $n=4$ we have $K \cong \mathbb{Z}_{4}$, and $X \cong A T_{Q}(4,4)$ belongs to case (i) of Lemma 3.14, that is, $d=2$.

3.3.2. Case (2) of Lemma 3.8

Lemma 3.16. Case (2) of Lemma 3.8 cannot occur.
Proof. Suppose that

$$
K=\left\langle a, b \mid a^{d}=b^{4}=1, a^{b}=a^{r}\right\rangle,
$$

where d is odd, $r^{4} \equiv 1(\bmod d), r^{2} \not \equiv 1(\bmod d)$ and $(d, r-1)=1$. Then it is easy to check that $Z(K)=1$.

Let T be a lift of $\operatorname{PSL}(2, q)$, that is, $T / K \cong \operatorname{PSL}(2, q)$. By Proposition 2.3, $T / C_{T}(K)$ is isomorphic to a subgroup of $\operatorname{Aut}(K)$, which is solvable by Lemma 3.2. It follows that $C_{T}(K) \neq 1$. Since $Z(K)=1$, we have $C_{T}(K) \cap K=1$. Then $1 \neq C_{T}(K) \cong$ $C_{T}(K) K / K \triangleleft T / K$, a nonabelian simple group, that is, $T=C_{T}(K) \times K$. Therefore,

$$
\begin{equation*}
T / K^{\prime}=\left(C_{T}(K) K^{\prime} / K^{\prime}\right) \times\left(K / K^{\prime}\right) \cong \operatorname{PSL}(2, q) \times \mathbb{Z}_{4} \tag{1}
\end{equation*}
$$

As in Lemma 3.8, let Z be the quotient graph of X induced by K^{\prime}. Then Z is the regular \mathbb{Z}_{4}-cover of K_{n}, with the covering transformation group $K / K^{\prime} \cong \mathbb{Z}_{4}$ such that A / K^{\prime} lifts. In particular, $\left(T / K^{\prime}\right) /\left(K / K^{\prime}\right) \cong \operatorname{PSL}(2, q)$ lifts. All such covers have been determined: these are $A T_{Q}(1+q, 4)$, where $q \equiv 3(\bmod 4)$. From the proof of Lemma 3.14 and Remark 3.15 (for the case $n=4$) we know that $\operatorname{PGL}(2, q)$ is lifted to

$$
(\mathrm{SL}(2, q)\langle z\rangle)\langle b\rangle, \quad \text { where } K / K^{\prime}=\langle b\rangle,
$$

with the following defining relations

$$
\begin{gathered}
|a|=d, \quad[t, a]=1, \quad z^{2}=c a, \quad t^{z}=t^{x}, \quad a^{z}=a, \quad \tau_{2}^{2}=e \\
t^{b}=t, \quad a^{b}=a^{-1}, \quad z^{b}=z^{-1} c
\end{gathered}
$$

In particular, $\operatorname{PSL}(2, q)$ is lifted to $\mathrm{SL}(2, q)\langle b\rangle$, that is,

$$
\begin{equation*}
T / K^{\prime}=\mathrm{SL}(2, q)\langle b\rangle \cong \mathrm{SL}(2, q) \mathbb{Z}_{4} \tag{2}
\end{equation*}
$$

The contradiction between Eq. (1) and Eq. (2) shows that case (ii) of Lemma 3.8 is impossible.

Combining Lemmas 3.6, 3.12, 3.13, 3.14 and 3.16, we complete a proof of Theorem 1.1.

Acknowledgments

The authors thank the referee for the helpful comments and suggestions. The first two authors are partially supported by the National Natural Science Foundation of China (11271267) and the Natural Science Foundation of Beijing (1132005) and the National Research Foundation for the Doctoral Program of Higher Education of China (20121108110005); the second and fourth authors are partially supported by the National Natural Science Foundation of China (11371259); and the third author is partially supported by the National Research Foundation of Korea (2012007478).

References

[1] P.J. Cameron, Finite permutation groups and finite simple groups, Bull. Lond. Math. Soc. 13 (1981) 1-22.
[2] P.J. Cameron, W.M. Kantor, 2-transitive and antiflag transitive collineation groups of finite projective spaces, J. Algebra 60 (1979) 384-422.
[3] S.F. Du, J.H. Kwak, M.Y. Xu, On 2-arc-transitive covers of complete graphs with covering transformation group \mathbb{Z}_{p}^{3}, J. Combin. Theory Ser. B 93 (2005) 73-93.
[4] S.F. Du, A. Malnic, D. Marusic, Classification of 2-arc-transitive dihedrants, J. Combin. Theory Ser. B 98 (2008) 1349-1372.
[5] S.F. Du, D. Marušič, A.O. Waller, On 2-arc-transitive covers of complete graphs, J. Combin. Theory Ser. B 74 (1998) 276-290.
[6] X.G. Fang, G. Havas, C.E. Praeger, On the automorphism groups of quasiprimitive almost simple graphs, J. Algebra 222 (1999) 271-283.
[7] X.G. Fang, C.E. Praeger, Finite two-arc-transitive graphs admitting a Suzuki simple group, Comm. Algebra 27 (1999) 3727-3754.
[8] X.G. Fang, C.E. Praeger, Finite two-arc-transitive graphs admitting a Ree simple group, Comm. Algebra 27 (1999) 3755-3769.
[9] A. Gardiner, C.E. Praeger, Topological covers of complete graphs, Math. Proc. Cambridge Philos. Soc. 123 (1998) 549-559.
[10] C.D. Godsil, A.D. Hensel, Distance regular covers of the complete graph, J. Combin. Theory Ser. B 56 (1992) 205-238.
[11] C.D. Godsil, R.A. Liebler, C.E. Praeger, Antiposal distance transitive covers of complete graphs, European J. Combin. 19 (1992) 455-478.
[12] J.L. Gross, T.W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977) 273-283.
[13] J.L. Gross, T.W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
[14] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[15] A.A. Ivanov, C.E. Praeger, On finite affine 2-arc-transitive graphs, European J. Combin. 14 (1993) 421-444.
[16] C.H. Li, On finite s-transitive graphs of odd order, J. Combin. Theory Ser. B 81 (2001) 307-317.
[17] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \geq 4$, Trans. Amer. Math. Soc. 353 (2001) 3511-3529.
[18] A. Malnič, Group actions, coverings and lifts of automorphisms, Discrete Math. 182 (1998) 203-218.
[19] D. Marušič, On 2-arc-transitivity of Cayley graphs, J. Combin. Theory Ser. B 87 (2003) 162-196.
[20] C.E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. Lond. Math. Soc. 47 (1993) 227-239.
[21] C.E. Praeger, On a reduction theorem for finite, bipartite, 2 -arc-transitive graphs, Australas. J. Combin. 7 (1993) 21-36.
[22] W.Q. Xu, S.F. Du, 2-arc-transitive cyclic covers of $K_{n, n}-n K_{2}$, J. Algebraic Combin. 39 (2014) 883-902.

