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To assess the anthropogenic influence on the summer 2013 heat wave in Korea, this study employed a fraction of
attributable risk (FAR) approach to three Atmospheric General Circulation Models (AGCMs) with a large
ensemble simulation, participating in the C20Cþ Detection and Attribution Project. Monthly and daily temper-
atures were compared between two experiments. The real world (ALL) experiments were simulated under the
observed variations in sea surface temperature, sea ice, greenhouse gas, and aerosol concentrations, while the
counterfactual world (NAT) experiments were performed under adjusted boundary conditions by removing
anthropogenic warming and with preindustrial levels of greenhouse gases and aerosols. Results from the three
AGCMs consistently show that anthropogenic influences had an important role in the extreme heat event over
Korea, increasing the chance of the occurrence of extreme warming in summer mean temperature as observed in
2013 by at least 20 times, which supports results from the Coupled Model Intercomparison Project Phase 5
(CMIP5) coupled GCMs (CGCMs). A comparison of individual CMIP5 CGCMs suggests that inter-model difference
in FAR values is highly correlated with the amplitude of surface warming centered over Korea, which is also
supported by the three AGCMs. Further analysis of individual forcing experiments suggests that the inter-model
difference in the regional surface warming is closely linked to the model's response to the aerosol forcing, with
stronger influence than that of greenhouse gas forcing. Anthropogenic influences also result in a 5–6 times greater
likelihood of extreme daily heat events as observed in 2013, which supports a robust mean-extreme relation in the
attribution of extreme heat waves. Generally good agreement between AGCM and CGCM results increases the
robustness of the conclusion of anthropogenic influences on the summer 2013 Korean heat wave.
1. Introduction

East Asia (i.e., Korea, eastern China, and Japan) experienced a severe
heat wave in summer 2013, which had major impacts on society and the
economy. Previous studies compared general circulation model (GCM)
outputs simulated with and without human influences and consistently
argued that human activities were the main contribution to this extreme
event occurrence (Table 1). In South Korea, the summer mean daily
minimum temperature in 2013 broke the existing maximum record (Min
et al., 2014). To assess the possible impacts of anthropogenic influences
on the 2013 Korean heat extremes, Min et al. (2014) compared CMIP5
coupled GCM (CGCMs) with and without anthropogenic forcings using a
large-scale sea surface temperature (SST) based indicator that is closely
linked with Korean temperature. They found that the summer 2013 like
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extreme temperature in Korea became 10 times more probable due to
human-induced warming.

For eastern China, Zhou et al. (2014) and Ma et al. (2017) found that
the anthropogenic influence increased the chance of the 2013 heat wave
by 2–3 times based on CMIP5 CGCMs by comparing distributions of
anomaly temperatures from simulations performed with and without
human influences for a long-term period of 1900–2013 and 1955–2014,
respectively. Sun et al. (2014) estimated that human activity contributed
a greater than 60-times increase in the likelihood of the occurrence of the
2013 hottest summer over eastern China by constructing distributions
including future projections of CMIP5 CGCMs. For Japan, anthropogenic
influence was assessed to be the main cause with 7–20 times increase in
risk of the 2013 heat wave based on MIROC5 AGCM ensemble simula-
tions (Imada et al., 2014).
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Table 1
List of previous studies on the event attribution of the East Asia summer heat
wave in 2013.

Reference Focusing Area/
Season

Models and
experiments

FAR values and
increase in risk

Min et al.
(2014)

South Korea/JJA CMIP5
ALL Forcing: 31
models (105 runs)
historicalþRCP4.5
(1954–2013)
NAT Forcings1: 30
models (102 runs)
historical
(1860–1919)
NAT Forcings2: 7
models (27 runs)
historicalNat
(1953–2012)

FAR(NAT1)¼ 0.90
10 times

Zhou et al.
(2014)

Central eastern
China (24–33�N,
102.5–122.5�E)/
JA

CMIP5
ALL Forcing: 31
models
historicalþRCP4.5
(1900–2013)
NAT Forcing: 30
models piCTL
simulations

FAR¼ 0.58
2.12 times

Sun et al.
(2014)

Eastern China
(20–45�N,
105–125�E)/JJA

CMIP5
ALL Forcing: 26
models (125 runs)
historicalþRCP4.5
(1955–2072)
NAT Forcing: 41
models (308 chunks)
piCTL simulations

>60 times

Ma et al.
(2017)

Central eastern
China (25–36�N,
104–123�E)/JA

CMIP5
ALL Forcing: 17
models (36 runs)
historicalþRCP8.5
(1955–2014)
NAT Forcing: 17
models (36 runs)
historicalNAT
(1955–2005) and 17
models piCTL
simulation
C20Cþ AGCMs
CAM5.1 by 400 ALL
and NAT ensemble
members for 2013
MIROC5 by 110 ALL
and NAT ensemble
members for 2013

FAR (CMIP5)¼ 0.58
2–3 times
FAR(CAM5.1)¼ 0.94
17 times
FAR
(MIROC5)¼ 0.78
4 times

Imada
et al.
(2014)

Japan (30–37�N,
130–140�E)/JA

MIROC5 (AGCM) 100
ensemble members for
2013
ALL Forcing:
Prescribed to HadISST
NAT Forcing 1: SST
reduced based on
HadISST trend
NAT Forcing 2: SST
reduced based on
CMIP5 (ALL- NAT)

FAR(NAT1)¼ 0.86
7 times
FAR(NAT2)¼ 0.96
20 times
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Most previous studies of event attribution were based on limited
number of CGCMs and the estimated changes in risk of the occurrence of
extreme events exhibited a large range from 2 to 60 times, depending on
the analysis domains, target variables, climate models, and sampling
methods for constructing temperature distributions for the real and
counterfactual worlds (Imada et al., 2014; Min et al., 2014; Sun et al.,
2014; Zhou et al., 2014; see Table 1). Moreover, many CMIP5 CGCMs
have a relatively coarse horizontal resolution (larger than 100 km), and
the robustness of the attribution results needs to be confirmed by com-
parison with those from other models with higher resolutions. In this
respect, the Climate of the 20th Century Plus Project (C20Cþ) Detection
and Attribution (D&A) subproject (http://portal.nersc.gov/c20c) has
34
produced a large pool of outputs from atmospheric GCMs (AGCMs) with
a relatively high spatial resolution to help understand changes in extreme
weather events in the context of past and current climate change (Stone
et al., 2018a). Recently, Ma et al. (2017) analyzed large ensembles of two
AGCMs, CAM5.1 and MIROC5, participating in this subproject. They
suggested that a hot summer over central eastern China such as the 2013
event was 17 times (CAM5.1) and 4 times (MIROC5) more probable due
to human influences, confirming the anthropogenic influences but also
indicating a strong model dependence of the attribution results.

The C20Cþ D&A project includes the generation and comparison of
two climate change scenarios, the observed boundary condition (ALL)
and a counterfactual “natural” world (NAT). A large ensemble of single
AGCMs has the advantage of generating many simulations to enable
robust sampling under different initial conditions. Moreover, model un-
certainty can be reduced based on the prescribed observed boundary
condition (Christidis and Stott, 2014). It should, however, be noted that a
lack of air–sea coupling can affect event attribution results (Dong et al.,
2017). Although attribution of large-scale surface air temperature (SAT)
changes was suggested to be relatively insensitive to the air–sea coupling
(Dong et al., 2017), the impact of air-sea interaction on local scale phe-
nomena such as Korean heat waves needs to be assessed. For this pur-
pose, a comparison of AGCM-based results with those from CGCMs
provides an important way of evaluating the robustness of the attribution
statements for the local temperature extreme events.

Hence, this study assessed the event attribution of the summer 2013
heat wave in Korea by comparing the C20Cþ D&A models with a CMIP5
multi-model ensemble (MME). The anthropogenic contribution to the
extreme event was quantified by comparing the probability of exceeding
the observed temperature between simulations with natural forcings
alone and simulations with both natural and anthropogenic forcings by
using a fraction of attributable risk (FAR) approach. Moreover, we con-
ducted sensitivity tests of the FAR values, focusing on the role of the
climate model sensitivity and the difference in the boundary conditions
in order to explore physical mechanisms for determining the uncertainty
in the event attribution results for the local temperature extremes.

2. Data and methods

For the observation data, we used daily mean/minimum temperature
data measured by 12 Korea Meteorological Administration weather sta-
tions from 1954 to 2013. In addition, we used monthly SAT data from
HadCRUT4 (Morice et al., 2012) to identify a large-scale indicator
associated with Korean summer temperature changes, using an upscaling
approach (Min et al., 2014, 2015a). This approach is suitable for
analyzing local climate changes, such as those on the Korean Peninsula,
because global climate models cannot well capture local-scale weather
and climate processes due to their relatively low spatial resolutions.

We used three AGCMs that participated in the C20Cþ D&A project:
CAM5.1 (Neale et al., 2012; Stone et al., 2018), MIROC5 (Shiogama
et al., 2013, 2014), and HadAM3P-N96 (Wolski et al., 2014), which were
run at resolutions of ~1�, ~1.4�, and ~1.8�, respectively. The three
AGCMs generated two different types of ensemble simulations with and
without the effect of anthropogenic influences. The simulations with
anthropogenic influences prescribed the observed boundary conditions
as greenhouse gases (GHGs), aerosols, SST, sea ice coverage, and land
use/cover, referred to as “ALL”. The simulation without anthropogenic
influences used a CMIP5 estimate of the change in SST, which was sub-
tracted from the observed boundary SST (with sea ice coverage data
modified accordingly), which is referred to as “NAT” (Stone and Pall,
2018). GHGs, aerosols, and ozone were set to pre-industrial levels for the
NAT simulation (Stone et al., 2018a; the data can be accessed at http://
portal.nersc.gov/c20c/data.html).

The CAM5.1 and HadAM3P-N96 used monthly SST and sea ice
coverage from the Hurrell et al. (2008) dataset. The MIROC5 prescribed
monthly SST and sea ice coverage which were taken from the HadISST
dataset (Rayner et al., 2003). MIROC5 used the prescribed aerosol
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precursor emissions (i.e., atmospheric chemistry interactions), while
CAM5.1 and HadAM3P-N96 used the prescribed aerosol burdens (i.e.,
black carbon, organic carbon, sulfate, and sea salt) without the chemistry
interaction; HadAM3P-N96 used climatological aerosol burdens that
were not altered for the NAT simulations.

For the event attribution assessment, we used the maximum number
of available simulations from each AGCM. The CAM5.1 and MIROC5
runs were trimmed to cover the 2007–2013 period with 100 ALL and
NAT ensemble members. The HadAM3P-N96 run was trimmed from
2007 to 2012, and consisted of 50 ALL and NAT members. To assess the
ability of the climate models to reproduce the observed long-term inter-
annual variability, we used the ALL simulation for 50 runs from CAM5.1,
10 runs from MIROC5, and 10 runs from HadAM3P-N96 over the
1961–2013 (2012) period. As Chen and Zhou (2017) showed, local and
remote SST variability can affect interannual variability of East Asian
heat waves. To examine possible influence of SST condition in 2013, we
have examined PDF and FAR results using data from the year 2013 for the
two AGCMs (CAM5.1 andMIROC5). Results remain unaffected, although
slight differences in the probability of occurrence exist (not shown). The
influence of SST variability on a given year should be very similar be-
tween the ALL and NAT simulations because same SST patterns were
prescribed with the only difference in means (delta-SST).

To investigate the dependence of the attribution results on the indi-
vidual model and/or experimental design, the monthly SATs from the
historical, historicalNat, historicalGHG, Representative Concentration
Pathway (RCP) 4.5, and preindustrial control (piCTL) experiments from
CMIP5 MME (Taylor et al., 2012) were analyzed (Table S1). The ALL
simulations were constructed by using data from the historical experi-
ment forced by natural (i.e., changes in solar and volcanic activities) and
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anthropogenic forcing (mainly changes in GHGs and aerosols) for
1961–2005 and extending them to 2012 using the RCP 4.5 scenario
simulations. The NAT simulations for 1961–2012were prepared from the
historicalNAT with natural forcing alone. Similarly, the GHG runs were
obtained from historicalGHG experiment integrated with only
well-mixed greenhouse gases. We selected 10 CMIP5 models (39 en-
sembles) that were available for both the ALL and NAT experiments. The
CMIP5 models were trimmed from 2007 to 2012 to carry out the event
attribution analysis of the summer 2013 extreme event in Korea.

To identify a large-scale SAT indicator of local temperature in Korea,
we obtained a correlation map between Korean summer mean daily
minimum temperature (Tmin) and East Asian SAT for 1961–2013 using
the observations, both of which were June, July, and August (JJA) av-
erages (Fig. 1a). Then, we chose a latitude–longitude box (30–45�N,
115–140�E) with a strong correlation (r> 0.6), hereinafter referred to as
NEA (northern East Asia), and calculated the NEA area-averaged SAT
anomalies from the observations, three AGCMs, and all CMIP5 simula-
tions (referred to as SAT anomaly). To generate an indicator of summer
heat in Korea we used Tmin instead of summer mean daily maximum
temperature (Tmax), because Tmin better represents the observed 2013
heat wave with strong intensity and larger spatial coverage than Tmax as
reported in Min et al. (2014). Results based on Tmax were found to be
similar to Tmin-based results with strong positive correlations with SAT
(not shown). The SAT anomalies were calculated relative to the
1971–2000 climatology. For models, climatology was defined as each
model's ensemble mean of ALL simulations for 1971–2000 using avail-
able runs (see Table S1).

To quantitatively assess the occurrence probability of the extreme
event under anthropogenic forcing, we calculated the fraction of
Fig. 1. (a) Spatial distribution of the corre-
lation coefficients between the Korean Tmin
and SAT calculated for 1961–2013 from the
observations. The large box (115–140�E,
30–45�N, NEA) indicates the area selected as
the indicator of summer heat in Korea. The
small box (125–130�E, 34–38�N) indicates
the area selected as South Korea. (b) Time
series of the JJA mean Korean Tmin (black
line) averaged from the 12 observation sta-
tions and the NEA SAT anomaly from Had-
CRUT4 (green line). Correlation coefficient
between two time series is provided. Time
series of NEA SAT anomalies from (c)
CAM5.1, (d) MIROC5, (e) HadAM3P-N96,
and (f) CMIP5 with the 5–95% ensemble
spread (green shading). Correlation co-
efficients between model ensemble means
and the observed SAT time series are pro-
vided. Anomalies are relative to the mean for
the 1971–2000 base period. (For interpreta-
tion of the references to color in this figure
legend, the reader is referred to the Web
version of this article.)
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attribution risk (FAR; Stone and Allen, 2005). The FAR approach com-
pares the probability of an extreme event occurring between a real world
(with human influence) and a counterfactual world (without human in-
fluence). The FAR is formulated as FAR¼ 1 – (PN/PA), where PN denotes
the probability of exceeding the observed event occurring under natural
unforced conditions (NAT) and PA represents the same probability esti-
mated under the anthropogenically forced conditions (ALL). The 5–95%
uncertainty range of the FAR was estimated from 1000 bootstrap
resampling as follows. For each AGCM or CMIP5 MME data, SAT
anomalies were first fitted to the kernel distribution (using Gaussian
kernel function). Random samples of SAT anomalies were then drawn
from the fitted distribution with the same sample size (e.g., 100 for
CAM5.1 ALL and NAT) and the corresponding risk ratio (RR¼ PA/PN)
was calculated. This process was repeated 1000 times, and 5th and 95th
percentiles of log (RR) were estimated from 1000 RR values. Here the
“basic bootstrap” method (Paciorek et al., 2018) was employed to esti-
mate the confidence interval of log (RR). In this method, the 5th and 95th
percentiles are reversed such that confidence interval is estimated as [pm
- (p95 - pm), pm - (p5 - pm)] where p5, p95, and pm are 5th percentile, 95th
percentile, and the original all-data estimate of log (RR), respectively.
This is to consider possible non-symmetric nature in the tail of the log
(RR) distribution although the log (RR) distribution is generally sym-
metric unlike the FAR distribution (Paciorek et al., 2018). Note that we
use this method only when less than 5% of 1000 samples have infinities
of log (RR). Finally, the 90% confidence interval of the FAR was obtained
by converting the log (RR) percentiles into FAR values.
36
3. Results

3.1. FAR analysis for the JJA mean temperature

The observed large-scale SAT pattern associated with the summer
mean Tmin in Korea was characterized by positive anomalies over the
NEA domain, with a maximum over the South Sea and the East Sea/Sea
of Japan (Fig. 1a). The time series of the observed NEA averaged SAT
anomaly exhibits strong correlation (r¼ 0.92) with the Korean Tmin
(Fig. 1b). The SAT anomaly in 2013 is the second highest after 1994 but
with similar amplitude. The three AGCMs and CMIP5 models effectively
reproduced the observed large-scale relation between the Korean Tmin
and NEA SAT anomalies with correlation coefficients of 0.6–0.98 (not
shown). This indicated that the NEA SAT anomaly explains most of the
fluctuations in Korean summer temperature in both the observations and
model simulations, and can be used as a good indicator of Korean sum-
mer temperature.

Fig. 1c–f represents the time series of the modeled SAT anomalies
averaged over the NEA from the three AGCMs and CMIP5. The ensemble
mean of the SAT anomaly was significantly correlated with the observed
SAT anomaly, with a correlation coefficient of 0.92 for CAM5.1, 0.90 for
MIROC5, and 0.89 for HadAM3P-N96. The interannual variabilities of
the SAT anomaly were reproduced well by the three AGCMs, but with
some under-estimations when compared with the station observations.
The standard deviation (SD) of the NEA averaged detrended SAT
anomaly was 0.51 �C, which can be larger, partly due to the use of a
Fig. 2. Histograms and kernel density distributions of the JJA
mean SAT anomalies for (a) CAM5.1, (b) MIROC5, (c)
HadAM3P-N96, and (d) CMIP5 from ALL (green bars and
curves) and NAT (blue bars and curves) simulations. CAM5.1
and MIROC5 results were constructed by ensemble simulation
data for 2007–2013 and HadAM3P-N96 and CMIP5 were
constructed by those for 2007–2012. The vertical solid and
dashed lines indicate the observed 2013 SAT anomaly
(1.20 �C) and þ1SD (0.51 �C), respectively. See text for more
details. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this
article.)
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relatively small number of point measurements, possibly inflating the
variance. The ensemble mean of the SD of the detrended SAT anomaly
from CAM5.1 was 0.43 �C with a 5th to 95th percentile range of
0.37–0.49 �C. Similar results were obtained from MIROC5 and
HadAM3P-N96, which were 0.42 �C (0.34–0.49 �C) and 0.44 �C
(0.40–0.51 �C), respectively. In CMIP5, the correlation coefficient
(r¼ 0.49) between the observed SAT anomaly andmulti-model ensemble
mean (MME) SAT anomaly was less than those of the three AGCMs,
representing freely driven SST fluctuations in CGCMs. However, the
CMIP5 inter-model spread of the SAT anomaly SD (0.40–0.62 �C) is
larger than those from AGCM, well covering the observed value, since it
includes additional oceanic variability.

To conduct the attribution analysis of the 2013 heat event, we
Table 2
Probability of the occurrence exceeding the observed JJA SAT anomaly and TNx,
and the corresponding FAR values obtained from CAM5.1, MIROC5, HadAM3P-
N96, and CMIP5MME. The FAR values in square brackets indicate the 90% range
calculated from 1000 bootstrap resampling.

JJA SAT anomaly (1.2 �C) TNx for Korea (1.7 �C)

ALL NAT FAR ALL NAT FAR

CAM5.1 4.86% 0.00% 1 2.86% 0.58% 0.80
[0.27–0.91]

MIROC5 1.47% 0.08% 0.95 1.29% 0.00% 1
HadAM3P-N96 3.23% 0.00% 1 9.59% 1.77% 0.82

[0.47–0.90]
CMIP5 13.83% 2.68% 0.81
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compared the probability of the occurrence of the event under the ALL
and NAT simulations. Fig. 2 shows the histograms and kernel curves of
the NEA SAT anomalies for the three AGCMs and CMIP5. As described
above, the histograms and curves for CAM5.1 and MIROC5 were esti-
mated from 7 years (2007–2013)� 100 ensemble members but those for
HadAM3P-N96 were estimated from 6 years (2007–2012)� 50 ensemble
members. CMIP5 was constructed from 6 years (2007–2012)� 39
ensemble members (10 models). In CAM5.1 and HadAM3P-N96, the
probabilities of the occurrence of SAT anomalies warmer than the
observed 2013 event were 4.86% and 3.23% in the ALL simulations,
respectively, while the event did not occur under the NAT simulations
(Fig. 2a and c and Table 2). Correspondingly, the contribution of
anthropogenic forcing to the observed 2013 event became 100%
(FAR¼ 1, Table 2), representing a negligible influence of natural forcing.
For MIROC5, the probabilities of the occurrence of an event hotter than
the 2013 observations in the ALL and NAT simulations were 1.47% and
0.08%, respectively (Fig. 2b and Table 2). The resulting FAR value was
0.95, indicating that anthropogenic influences have increased the risk of
heat waves, such as the 2013 event in Korea, by 20 times.

The difference in the FAR among three AGCMs can be influenced by
the difference in the SAT anomaly over the NEA between the ensemble
mean of ALL and NAT realizations (hereinafter referred to as “delta-
SAT”). When the delta-SAT increases, the chance of exceeding the
observed strength in the NAT simulation would decrease, assuming that
the spread of the distribution remains the same. Indeed, MIROC5 had a
small delta-SAT (0.29 �C) compared with those of CAM5.1 (0.47 �C) and
HadAM3P-N96 (0.91 �C). Considering that prescribed SST was almost
Fig. 3. Histograms and kernel densities of the JJA mean SAT
anomalies for four selected CMIP5 models of (a) CanESM2, (b)
CSIRO-Mk3-6-0, (c) GISS-E2-R, and (d) IPSL-CM5A-LR from
ALL (green curve) and NAT (blue curve) simulations during
2007–2012. The solid lines represent the original CMIP5 dis-
tribution from 39 ensemble members and the dashed lines are
the adjusted CMIP5 based on the mean and SD of the indi-
vidual models. The vertical solid lines and dashed lines indi-
cate the observed 2013 SAT anomaly (1.20 �C) and 1SD
(0.51 �C), respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web
version of this article.)
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identical for all three models, the SAT differences should be particularly
large over land. Indeed, MIROC5 shows a negative delta-SAT over the
land area whereas HadAM3P-N96 exhibits larger positive SAT (not
shown). Because MIROC5 simulated the aerosol distribution from pre-
scribed aerosol emissions, hot extremes of the ALL simulations from
MIROC5 could be more strongly influenced by aerosol cooling feedback
(Ang�elil et al., 2017; Ma et al., 2017). Also, since HadAM3P-N96 retained
ALL aerosols in its NAT simulations, the larger positive delta-SAT in
HadAM3P-N96 supports the importance of aerosols. Further, Ma et al.
(2017) suggested that the difference in the FAR could be explained by the
difference in climate sensitivity. The CAM5.1 (2.3 �C) and
HadAM3P-N96 (2.0 �C) models have a higher transient climate response
(global and annual mean temperature response at the doubling of CO2
concentration, estimated from 1% per year CO2 increase experiment; see
below) than MIROC5 (1.5 �C). The three AGCMs are, however, not
enough to assess the link between FAR and model's climate sensitivity, so
we further examined relations between FAR and delta-SAT, climate
sensitivity, and the spread of the distribution using CMIP5 CGCMs below
(section 3.2).

We also conducted the attribution analysis for the 2013 heat wave in
Fig. 4. Scatter plots between the FAR (y-axis) and sensitivity factors (x-axis): (a) delt
the individual CMIP5 models, and colored circles indicate three AGCMs (purple: CA
values were estimated from NAT for AGCMs and from piCTL for CMIP5 models. Th
models combined, except for HadGEM2-ES which has negative delta-SAT and FAR. T
models. (For interpretation of the references to color in this figure legend, the reade
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Korea using the CMIP5 MME (Fig. 2d) using the same method as done for
the AGCMs. The probability experiencing SAT anomalies stronger than
the observed 2013 event was 13.83% in the ALL simulation and 2.68% in
the NAT simulation (Table 2). As a result, the FAR value was 0.81,
indicative of a 5-times increase in risk due to human influences. Given a
delta-SAT of CMIP5 MME (0.66 �C) within the range of three AGCMs
(0.29–0.91 �C), the smaller FAR in CMIP5 MME than in AGCMs seems to
be in part due to its larger multi-model spread (see below).

The FAR for CMIP5 was a bit smaller than that determined by Min
et al. (2014), who found FAR¼ 0.9, representing a 10-times increase in
risk due to anthropogenic influences from the CMIP5 MME using a
large-scale SST indicator. However, it is difficult to directly compare the
results from Min et al. (2014) to those in this study due to the different
CMIP5 model samples, analysis period, and upscaling variable and
domain selected (Table 1). When the same CMIP5 model samples were
used as in Min et al. (2014), i.e., ALL (31 models – 105 ensemble
members) and NAT (8 models – 38 runs), the FAR was slightly reduced to
0.71. When using the same long-term period to construct the distribution
as in Min et al. (2014), the FAR decreased to 0.41 due to the reduction in
delta-SAT. Finally, when the upscaling area was extended toward the
a-SAT, (b) SD, (c) delta-SAT divided by SD, and (d) TCR. The black dots indicate
M5.1, blue: MIROC5, and orange: HadAM3P-N96) and CMIP5 MME (green). SD
e correlation coefficients were calculated using three AGCMs and nine CMIP5
he correlation coefficients in parentheses were calculated using only nine CMIP5
r is referred to the Web version of this article.)
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East Asia domain, a hot summer, such as the 2013 event, could not occur
under NAT forcing, and the FAR increased to 1.0. Therefore, the
upscaling domain seems to be one of the major factors for the differences
in our results with those of Min et al. (2014).
3.2. Sensitivity test

We assessed the sensitivity of FAR for the summer 2013 heat wave
event in Korea focusing on the roles of delta-SAT, the spread of distri-
bution, and the models’ climate sensitivity. For the individual CMIP5
model, relatively small ensemble size for ALL and NAT runs (Table S1)
makes it difficult to calculate the FAR for the individual model. There-
fore, assuming that the CMIP5 individual models and CMIP5 MME have
the same shape of the SAT anomaly distributions, we calculated the FAR
of the CMIP5 individual model after adjusting the CMIP5 MME distri-
bution to the mean and spread of the individual models. First, for each
model, means are obtained from the ALL and NAT simulations during the
2007–2012 period and SD is estimated from the piCTL experiment after
removing climate drift for the available whole period. Next, CMIP5 MME
distribution is normalized for ALL and NAT simulations respectively, by
removing its mean and dividing it with its SD. Finally, we multiply the
normalized CMIP5 distributions by the SD of the individual model and
add the corresponding means for ALL and NAT from the model.

Fig. 3 shows the histogram and kernel density distributions for the
four models obtained by adjusting the CMIP5 MME distribution as
described above. The difference in the mean SAT between ALL (0.58 �C)
and NAT (�0.08 �C) from CMIP5 MME was 0.66 �C, and the SDs during
2007–2012 were 0.53 �C (ALL) and 0.59 �C (NAT), respectively. For the
FAR sensitivity test, we used one SD (0.51 �C, vertical dashed line in
Fig. 3) of the observed SAT anomaly as a threshold for FAR calculations
because, in several CMIP5 models, extremes corresponding to the 2013
Fig. 5. Scatter plot of (a) delta-SAT and SAT response to AER, (b) delta-SAT and SAT r
and FAR using ten CMIP5 models. The inter-model correlation coefficients are calcul
on the ten CMIP5 models, including HadGEM2-ES.
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SAT anomaly (1.20 �C, vertical solid line in Fig. 3) did not occur in NAT
runs, making it hard to assess inter-model FAR differences (Fig. S1). The
FAR of the CMIP5 MME for one SD of the observed SAT anomaly was
0.71. As an example, for CanESM2, the delta-SAT (1.24 �C) was larger
than that of the CMIP5 MME and the spread (SD¼ 0.37 �C) estimated
from piCTL was smaller than that of the CMIP5 MME. After adjusting
CMIP5 MMEwith the CanESM2 delta-SAT and spread, the FAR increased
to 0.96. In contrast, the CSIRO-Mk3-6-0 model had a smaller delta-SAT
than that of the CMIP5 MME and a similar spread to the CMIP5 MME,
resulting in a decrease in FAR (0.37). When using GISS-E2-R with a
similar delta-SAT to CMIP5 MME, the FAR of the adjusted CMIP5 MME
was 0.82. The IPSL-CM5A-LR had the largest delta-SAT (1.71 �C), and the
SD was similar to that of the CMIP5MME; the FAR was estimated as 0.99.
These examples suggest important role of delta-SAT in determining FAR.

To further check the delta-SAT and FAR relationship, a scatter plot is
drawn using the CMIP5 individual models which were obtained from
adjusting CMIP5 MME distributions as explained above (Fig. 4a, black
dots), and the three AGCMs (color dots). Green dots represent CMIP5
MME. Delta-SAT values (ALL minus NAT runs) are all positive. One
exception is HadGEM2-ES model which has a colder surface condition in
ALL than in NAT, which is likely due to too strong response to the aerosol
forcing (see below). The FAR values of the three AGCMs (color dots) fell
on the CMIP5 relationship line, indicating that the differences in the FAR
from three AGCMs can be explained by the delta-SAT. Indeed, the FAR
and delta-SAT values were significantly correlated across all CGCM and
AGCMmodels (r¼ 0.86) at the 5% significance level, which remains very
similar when using CGCM models only (r¼ 0.85).

We examined the influence of the spread of the distribution, which
was defined by the SD estimated from the large-ensemble NAT simula-
tions during 2007–2012 (2013) for individual AGCMs. The SD was
estimated from piCTL runs for individual CMIP5 models. The linear
esponse to GHG, (c) SAT response to AER and FAR, and (d) SAT response to GHG
ated, except for HadGEM2-ES. The correlation coefficients in brackets are based



Fig. 6. Time series of TNx from (a) CAM5.1, (b) MIROC5, and (c) HadAM3P-
N96 averaged over Korea (125–130�E, 34–38�N, see Fig. 1a) with the
ensemble mean (green line) and the 90% ensemble spread (light green shading).
The anomalies are relative to the mean for the 1971–2000 base period. The
black lines denote TNx observations from the 12 stations. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web
version of this article.)
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relationship between FAR and the spread of the distribution was found
insignificant, indicating that internal variability did not affect FAR much
across models (Fig. 4b). However, this is not inconsistent with Bellprat
and Doblas-Reyes (2016) who suggested the importance of the spread in
FAR estimation. The influence of the spread on FAR is difficult to identify
in our multi-model setting where delta-SAT also varies across models.

To further analyze the relative contributions of delta-SAT (signal) and
the spread of the distribution (noise) to FAR, we determined the rela-
tionship between the signal-to-noise ratio (SNR) and FAR (Fig. 4c). The
FAR and SNR showed a strong positive correlation (r¼ 0.88) similar to
that for the delta-SAT, suggesting the dominant influence of delta-SAT on
the attribution statements for Korean heat wave. The FAR of the model,
in which the signal was relatively larger than noise, became near 1
despite the low observed strength (i.e., one SD). Also, difference between
CMIP5 MME and AGCMs was reduced in the SNR-FAR relation scatter,
indicating that the larger inter-model noise in CMIP5 MME indeed made
its FAR smaller as discussed above (Fig. 2).

Further, we evaluated the impact of TCR to the FAR, as discussed in
Ma et al. (2017). TCR is a useful metric for assessing the climate sensi-
tivity of a GCM, which is defined as the global and annual mean tem-
perature change at the timing of CO2 doubling following a linear increase
in CO2 concentration (1% per year) over a period of 70 years (Collins
et al., 2013). The TCR for the individual CMIP5 model, CAM5.1 and
MIROC5 was obtained from Flato et al. (2013; Table 9.5) and the TCR for
HadAM3P-N96 was assumed to be same as that for HadCM3 (Randall
et al., 2007, Table 8.2). Fig. 4d shows the relationship between the TCR
and FAR for the CMIP5 individual model and three AGCMs. The rela-
tionship is generally positive, meaning that models with higher TCR tend
to have larger FAR, which can be seen also from three AGCMs. However,
the FAR-TCR relationship is not statistically significant.

Overall, the analysis results of inter-model relation suggest that delta-
SAT had a more significant role in determining the FAR for the summer
heat wave event in Korea than model's TCR to the greenhouse gas forcing
or the spread of distribution.We also tested the sensitivity to the different
event thresholds such as 0.5 SD, 1.5 SD, and 2 SD. For example, 2SD
(1.02 �C) is very close to the previous event occurred in 2010 (1.13 �C,
see Fig. 1b). Results were very similar to Fig. 4 based on 1 SD threshold
(not shown), indicating the robust relationship between FAR and delta-
SAT, delta-SAT/SD and TCR.

The next question would be then what determines delta-SAT in this
region. For simplicity, we assume that delta-SAT can be approximated to
be a combined response to GHG forcing and aerosol forcing. To investi-
gate which forcing component affected delta-SAT more importantly,
inter-model relationship was examined between delta-SAT and SAT
response to GHG and aerosol forcings using CMIP5models. Regional SAT
response to GHG was estimated from GHG results during 2007–2012
while regional SAT responses to aerosol forcing (AER) was estimated
from a residual by subtracting the responses to GHG and NAT results
from ALL results during the same period. We note that this estimation of
AER as a proxy may not be representative of actual aerosol influence on
temperature due to possible influences of other forcing factors such as
land use change and ozone forcing (Forster et al., 2013; Shindell et al.,
2015).

Results show that GHG and AER exhibited a consistent warming and
cooling effect, respectively (Fig. 5). Interestingly, delta-SAT were highly
correlated with the mean SAT anomaly response to the aerosol forcing,
with correlation coefficients of 0.90. This indicates that models having
stronger aerosol cooling responses near South Korea have cooler surface
temperature responses in ALL, and hence less difference from NAT re-
sults. A strong positive correlation was also found between FAR and
aerosol response (r¼ 0.81, Fig. 5c). Further, we examined the relation-
ship between delta-SAT and SAT response to aerosol forcing using
anthropogenic aerosol (AA) only forcing runs available from five CMIP5
models (CanESM2, CSIRO-Mk3-6-0, GISS-E2-H, GISS-E2-R, NorESM1-M)
for 2007–2012. Results show positive inter-model correlations between
delta-SAT and SAT response to AA forcing and between FAR and SAT
40
response to AA forcing (Fig. S2). Although statistically insignificant, this
supports the important role of aerosol forcing in determining FAR spread
amongmodels. The weaker correlation from AA runs seems to be due to a
small number of models and also possible influences of other anthropo-
genic forcings on local SAT as discussed above, which warrants further
investigation.

Overall, our results suggest that inter-model difference in delta-SAT
and FAR over this region is largely determined by model's response to
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aerosol forcing. This is generally consistent with the previous findings for
the global mean and Northern Hemispheric surface temperature trends
(Shindell et al., 2015). In contrast, delta-SAT and FAR was not sensitive
to GHG response (Fig. 5b and d), indicating a weak link between the
spread in model-derived FAR estimates and the models' TCRs. Although
AER contribution to delta-SAT in the three AGCMs is not available,
MIROC5 model seems to have a stronger response to the aerosol forcing,
as Ma et al. (2017) discussed. The role of aerosol forcing in determining
inter-model differences at regional to local scale climate changes requires
further investigation using relevant model experiments (e.g., Detection
and Attribution Model Intercomparison Project/CMIP6, Gillett et al.,
2016).
3.3. FAR analysis for the JJA maximum daily temperature

In terms of impact of extremes, seasonal maxima of daily temperature
can be more relevant than their seasonal means due to its stronger in-
tensity. During the 2013 summer, Korea experienced a record-breaking
summer maximum of daily minimum temperature (TNx). Fig. 6 shows
Fig. 7. Histogram and kernel densities of TNx (left panels) and scatter plots between
N96. The vertical and horizontal solid lines represent the 2013 observed values. Th
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the time series of TNx based on 12 station observations and the three
AGCMs. The TNx for the climate model was calculated as the average for
the TNx over the Korea area (34–38�N, 125–130�E, see small box in
Fig. 1a). The correlation coefficient between the Korean TNx and TNx
simulated from CAM5.1 was 0.72, indicating that the model effectively
explained observed fluctuations in the summer extreme temperature in
Korea. For example, the TNx simulated from CAM5.1 showed a record
high in 2013. The amplitude of the interannual variability of TNx was
also reproduced well by CAM5.1. The ensemble mean of the SDs of the
detrended TNx simulated from CAM5.1 was 0.62 with a 5th to 95th
percentile range of 0.54–0.74, covering the observed value (0.7 �C).
MIROC5 reasonably simulated the interannual variability in TNx, with a
correlation coefficient of 0.60, whereas the ensemble spread of TNx was
smaller with 90% range of 0.45–0.58 �C. HadAM3P-N96 had a larger
fluctuation of TNx interannual variability, with a 5th to 95th percentile
range of 0.74–1.03, due to a positive-skewed distribution (see below).

The distributions of TNx simulated from the three AGCMs of the ALL
(2007–2012) and NAT (2007–2012) runs were compared with the
observed 2013 TNx (Fig. 7). In CAM5.1, events with TNx values stronger
SAT anomaly and TNx (right panels) for (a) CAM5.1, (b) MIROC5, (c) HadAM3P-
e vertical dashed line indicates one SD.
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than the observed 2013 value were extremely rare in the NAT runs
(0.58%). The chance of a 2013-like extreme event increased to 2.86% in
the ALL runs. The corresponding FAR value was 0.80 (90% range:
0.27–0.91), indicating a 5-times increase in likelihood due to human
influences (Table 2). In MIROC5, the probability of exceeding the
observed 2013 TNx from the ALL and NAT runs was 1.29% and 0%,
respectively, indicating that extreme temperatures such as those
observed in the 2013 event have never occurred in the absence of
anthropogenic climate change. The probability simulated from
HadAM3P-N96 for years more extreme than 2013 in the ALL and NAT
runs was 9.59% and 1.77% (Fig. 7c), corresponding to a FAR of 0.82
(90% range: 0.47–0.90). These results based on daily temperatures
indicate that anthropogenic influences have increased the risk of extreme
daily heat events, such as that in 2013, in Korea by 5–6 times (Table 2),
generally consistent with the results for the summer mean temperature.
As shown in the scatter plot in Fig. 7, the summer mean temperature (x-
axis) was correlated with extreme daily minimum temperature (y-axis) in
both the ALL and NAT simulations, with ANT distributions being shifted
from NAT distributions to the upper right direction, indicating warming
of both seasonal mean and seasonal extreme temperatures during
summer.

When computing the FAR corresponding to one SD (0.7 �C) for the
observed TNx, the FAR for three AGCMs was 0.68 (CAM5.1), 0.76
(MIROC5), and 0.79 (HadAM3P-N96), respectively. We found above that
the delta-SAT had an important role in determining the FAR for JJAmean
temperature based on the nine CMIP5 models (Fig. 4). Based on the three
AGCMs, the FAR values for the summer maxima of daily minimum
temperature also seem to be related to delta-SAT such that HadAM3P-
N96 with the larger delta-SAT (1.17 �C) has larger FAR. Considering
that response of daily temperatures will be more uncertain, more affected
by other local factors like synoptic conditions, further investigation of the
associated physical mechanisms is needed in the future work (Min et al.
2015b).
3.4. FAR sensitivity to the threshold

It is useful to check FAR values to different temperature thresholds
that can occur in the future (e.g., Christidis et al., 2015). For this purpose,
here we calculated FAR values for hypothetical temperature anomalies
from�3 �C toþ3 �C in 0.1 �C intervals for the JJAmean temperature and
TNx. Fig. 8 displays the resulting FAR curves for each AGCM. The slopes
of the FAR curve for the three AGCMs were similar, but HadAM3P-N96
showed the fastest saturation of FAR values to 1 at SAT anomalies
around þ0.5 �C (Fig. 8a). The FAR values of CAM5.1 and MIROC5 were
Fig. 8. FAR curves for (a) JJA SAT anomalies and (b) TNx from CAM5.1 (purple), MI
observed anomalies. (For interpretation of the references to color in this figure lege
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saturated to 1 at higher SAT anomalies of þ1.0 �C and þ1.3 �C, respec-
tively. The faster increase of FAR in HadAM3P-N96 seems to be because
its NAT simulations retain anthropogenic levels of aerosols. The satura-
tion time seems to be related to delta-SAT. The delta-SAT for
HadAM3P-N96 was the largest among the three AGCMs (Fig. 2c). The
FAR curves of the three AGCMs became saturated to 1 by the time JJA
mean SAT anomalies increased to 1.3 �C (Fig. 8a), indicating that any
SAT anomaly larger than 1.3 �C could not occur without anthropogenic
influences. The FAR curve of the CMIP5 increased at a slower rate than
those of the three AGCMs, which is likely due to the wider spread of the
CMIP5 MME distributions by including additional endogenous variabil-
ities in ocean temperatures, as discussed above (Fig. 2).

For TNx, the occurrence time of the risk was the fastest in HadAM3P-
N96, similar to the JJA mean SAT anomaly (Fig. 8b). The FAR curve of
MIROC5 reached 1 fastest, whereas that of HadAM3P-N96 reached 1 last.
This trend seems to be partly related to the distribution shape. The dis-
tributions of TNx for both the ALL and NAT runs from HadAM3P-N96
exhibited positive skews with longer tails (Fig. 7c), which is consistent
with the larger year-to-year variability (Fig. 6c). In contrast, the distri-
butions of TNx from MIROC5 showed smaller differences in the mean
and spread than the other AGCMs, which induces a stronger slope of FAR
increase and the faster saturation. CAM5.1 is in between the other two
models.

4. Summary and conclusions

This study conducted the event attribution analysis of the 2013
summer heat wave in Korea by using a large ensemble of three AGCMs
(CAM5.1, MIROC5, and HadAM3P-N96) that were included in the
C20Cþ D&A project in comparison with CMIP5 MME. Based on the FAR
approach, the probability of the occurrence of an extreme event was
compared between simulations with natural forcings alone and simula-
tions with both anthropogenic and natural forcings. The comparison
revealed that the unusual heat wave in Korea could not be explained
without the inclusion of anthropogenic influences, with a 20-times in-
crease in likelihood estimated from MIROC5. Anthropogenic influences
were found to account for 100% as estimated from CAM5.1 and
HadAM3P-N96. These largely supported the CMIP5 MME based results
showing 5-times increase in probability. Similar results between AGCMs
and CGCMs further indicate that the attribution conclusion for local-scale
heat waves like the 2013 hot summer in Korea is not affected much by
air-sea interaction, supporting Dong et al. (2017) who suggested relative
insensitiveness of the large-scale SAT attribution to the air–sea coupling.

When examining the CMIP5 individual models, the inter-model
ROC5 (blue), and HadAM3P-N96 (orange). The vertical lines represent the 2013
nd, the reader is referred to the Web version of this article.)
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uncertainty in the FAR for the heat event was found to be more sensitive
to inter-model difference in the delta-SAT than those in the climate
sensitivity to GHG forcing and the spread of distribution. The three
AGCMs also followed the CMIP5 inter-model relation between FAR and
delta-SAT. We further explored possible link of aerosol forcing with the
inter-model spread in delta-SAT over Korea. Results suggested that inter-
model spread in delta-SAT (and hence FAR) was largely explained by the
model's response to the aerosol forcing, with more importance than the
model's response to the greenhouse gas forcing over this region. It should
be noted that the estimation of the cooling response to the aerosol forcing
was computed as a residual of non-GHG anthropogenic forcing from
available model simulations (ALL – NAT – GHG). Results using anthro-
pogenic aerosol forcing only runs from limited number of models largely
support our conclusions, but the high sensitivity of aerosol influences on
FAR warrants further investigation.

Using the three AGCMs, this study also performed an attribution
assessment for the summer maximum daily minimum temperature (TNx)
over South Korea, which broke the record for warmest value in Korea in
2013. The results showed that anthropogenic influences resulted in a
5–6-times more likely occurrence of daily extreme temperature, consis-
tent with the results based on the JJA mean temperature. In conclusion,
the results of this study support previous findings that the 2013 extreme
heat event in Korea is attributable to the anthropogenic forcing, but the
model's response to aerosol forcing may impact the significance of the
attribution results.
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