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Abstract

During meiosis, chromosomes undergo DNA double-strand breaks (DSBs), which can be

repaired using a homologous chromosome to produce crossovers. Meiotic recombination

frequency is variable along chromosomes and tends to concentrate in narrow hotspots. We

mapped crossover hotspots located in the Arabidopsis thaliana RAC1 and RPP13 disease

resistance genes, using varying haplotypic combinations. We observed a negative non-lin-

ear relationship between interhomolog divergence and crossover frequency within the hot-

spots, consistent with polymorphism locally suppressing crossover repair of DSBs. The

fancm, recq4a recq4b, figl1 and msh2 mutants, or lines with increased HEI10 dosage, are

known to show increased crossovers throughout the genome. Surprisingly, RAC1 cross-

overs were either unchanged or decreased in these genetic backgrounds, showing that

chromosome location and local chromatin environment are important for regulation of cross-

over activity. We employed deep sequencing of crossovers to examine recombination

topology within RAC1, in wild type, fancm, recq4a recq4b and fancm recq4a recq4b back-

grounds. The RAC1 recombination landscape was broadly conserved in the anti-crossover

mutants and showed a negative relationship with interhomolog divergence. However, cross-

overs at the RAC1 50-end were relatively suppressed in recq4a recq4b backgrounds, further

indicating that local context may influence recombination outcomes. Our results demon-

strate the importance of interhomolog divergence in shaping recombination within plant dis-

ease resistance genes and crossover hotspots.

Author summary

Sexually reproducing plants and animals produce gametes with half the number of chro-

mosomes, which can participate in fertilization. A specialized cell division called meiosis

generates gametes, where the chromosomes are copied once and segregated twice. A fur-

ther key feature of meiosis is that chromosomes physically pair and undergo reciprocal
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exchanges, called crossovers. Due to independent chromosome segregation and cross-

overs, meiosis creates gametes that are genetically diverse, which has a major effect on pat-

terns of sequence variation in populations. Interestingly, the frequency of crossover is also

highly variable along the lengths of chromosomes and tends to be concentrated in narrow

hotspots. Here we studied two crossover hotspots in detail that are located within disease

resistance genes, using the model plant Arabidopsis. We show that within these hotspots,

greater levels of genetic difference between the recombining chromosomes locally inhibits

crossover formation. We also show that hotspots within one of these resistance genes are

surprisingly resistant to genetic backgrounds that increase crossovers elsewhere in the

genome. This indicates that patterns of polymorphism and hotspot location along the

chromosome are both important for control of recombination activity.

Introduction

Meiosis is a specialized cell division that is central to sexual reproduction in eukaryotes [1,2].

It is characterized by a single round of DNA replication, followed by two successive rounds of

chromosome segregation, generating four haploid gametes from a single diploid mother cell

[1,2]. During prophase I, homologous chromosomes also pair and undergo reciprocal genetic

exchange, termed crossover [3]. Crossovers ensure accurate chromosome segregation, by cre-

ating a physical link between homologous chromosomes that, together with chromosome

cohesion, promote balanced segregation during the first meiotic division [1,2]. Importantly,

meiotic crossovers also create genetic diversity by recombining linked variation [1,2,4]. Mei-

otic recombination thus impacts upon genetic adaptation in sexual populations, by combining

independently arising mutations more rapidly than in asexual species [4].

Meiotic recombination initiates via DNA double-strand breaks (DSBs) generated by SPO11

topoisomerase VI-related transesterases [5–7]. In Arabidopsis ~100–200 meiotic DSBs form

per meiosis, estimated from immunostained RAD51, DMC1, RPA1 and γH2A.X foci that

occur along paired chromosomes at leptotene stage [8–10]. In budding yeast, endonuclease

and exonuclease activities (Mre11-Rad50-Xrs2, Sae2 and Exo1) act at DSB sites to generate 30-

overhanging single-strand DNA (ssDNA) [11–14], between 100s and 1000s of nucleotides in

length [15,16]. Resected ssDNA is bound first by RPA1 and then RAD51 and DMC1 proteins,

which together promote interhomolog invasion and formation of a displacement loop (D-

loop) [17,18]. Stabilization of the D-loop likely involves template-driven DNA synthesis from

the invading 30-end [3,19]. Strand invasion intermediates may then undergo second-end cap-

ture to form double Holliday junctions (dHJs), which can be resolved as a crossover or non-

crossover, or dissolved [20,21].

The conserved ZMM pathway acts to promote meiotic DSB repair via dHJs and crossovers

[2,3,22]. In Arabidopsis ~10 DSBs per meiosis are repaired as crossovers [23–26]. The majority

(~90%) of these crossovers are dependent on the ZMM pathway in Arabidopsis [2]. This path-

way includes ZIP4, the SHOC1 XPF endonuclease and its interacting partner PTD, the MER3

DNA helicase, the HEI10 E3 ligase, the MSH4/MSH5 MutS-related heterodimer and the

MLH1/MLH3 MutL-related heterodimer [2,22]. ZMM factors are thought to stabilise interho-

molog joint molecules, including dHJs, and promote crossover resolution [27]. ZMM-depen-

dent crossovers (also known as Class I) also show the phenomenon of interference, meaning

that they are more widely distributed than expected at random [2,22,28,29].

In plants and other eukaryotes a large excess of initiating meiotic DSBs proceed to resection

and strand invasion, but are repaired as non-crossovers (that may be detectable as gene
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conversions), or via inter-sister repair [2]. Disassociation of strand invasion events occurs via

partially redundant anti-crossover pathways in Arabidopsis that include, (i) the FANCM heli-

case and its cofactors MHF1 and MHF2 [30–32], (ii) the BTR complex: RECQ4A, RECQ4B,

TOPOISOMERASE3a and RECQ4-MEDIATED INSTABILITY1 (RMI1) [33–37], and (iii)

FIDGETIN-LIKE1 (FIGL1) and FLIP1 [38,39]. Plants mutated in these anti-crossover path-

ways show increased non-interfering crossovers, which are also known as Class II events [2].

This likely occurs as a consequence of reduced disassociation of interhomolog strand invasion

events, which are alternatively repaired by non-interfering crossover pathway(s) [30,34,38],

including via MUS81 [40,41]. Hence, alternative repair pathways act on SPO11-dependent

DSBs during meiosis to balance crossover and non-crossover outcomes.

Due to the formation of interhomolog joint molecules during meiotic recombination,

sequence polymorphisms between chromosomes can result in mismatched base pairs [42].

During the mitotic cell cycle DNA mismatches, or short insertion-deletions (indels), caused by

base mis-incorporation during replication, or exogenous DNA damage, can be detected by

MutS-related heterodimers [43]. MutS recognition of mismatches and the subsequent promo-

tion of repair plays a major anti-mutagenic role in vivo [43]. MutS complexes also play anti-

crossover roles during meiosis when heterozygosity leads to sequence mis-matches, following

interhomolog strand invasion [44–47]. Accumulating evidence also indicates that Class I and

II crossover repair pathways show differential sensitivity to levels of interhomolog polymor-

phism. For example, Arabidopsis fancm mutations show increased crossovers in inbred, but

not in hybrid contexts, whereas figl1 and recq4a recq4b mutations are effective at increasing

crossovers in both situations [34,38,48–51]. This implies that the non-interfering crossover

repair pathways acting in these backgrounds are influenced differently by interhomolog poly-

morphism. Genome-wide mapping of crossovers in anti-crossover mutants, or backgrounds

with additional copies of the ZMM gene HEI10, have further shown that the resulting recom-

bination increases are highly distalized towards the sub-telomeres, correlating with regions of

lowest interhomolog polymorphism [49–51]. At larger physical scales (e.g. kb to Mb) struc-

tural rearrangements, such as translocations and inversions, are potently associated with cross-

over suppression [52,53], and increased levels of divergence within the Arabidopsis 14a
hotspot correlated with reduced crossover frequency [54].

Despite the suppressive effects of interhomolog polymorphism on recombination, at the

chromosome scale wild type crossovers in Arabidopsis show a weak positive relationship with

interhomolog diversity, i.e. heterozygosity [49,50]. Linkage disequilibrium (LD) based histori-

cal crossover estimates are also positively correlated with population diversity in Arabidopsis

[48,55,56]. Furthermore, juxtaposition of megabase scale heterozygous and homozygous

regions in Arabidopsis associates with increased crossover frequency in the heterozygous

regions, which is dependent on the Class I repair pathway [48]. Therefore, the relationship

between interhomolog polymorphism and meiotic crossover frequency is complex, with both

negative and positive relationships, depending on the scale and region analysed.

In this work we explore the influence of interhomolog polymorphism on meiotic recom-

bination at the scale of crossover hotspots in Arabidopsis thaliana. Specifically, we map

crossovers across the RAC1 and RPP13 disease resistance genes, which encode proteins

that recognise effector proteins from the oomycete pathogens Albugo laibachii and Hylao-
peronospora parasitica, respectively [57,58]. We observe a non-linear negative relationship

between interhomolog polymorphism and crossover frequency within both RAC1 and

RPP13, supporting a local inhibitory effect of mismatches on crossover formation. This rela-

tionship was observed using different RAC1 haplotypic combinations, which vary in the

density and pattern of polymorphism. Despite recombination rates increasing genome-wide

in anti-crossover mutants and HEI10 transgenic lines, RAC1 crossover frequency was stable

Interhomolog polymorphism shapes crossover hotspot topology in Arabidopsis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007843 December 13, 2018 3 / 28

https://doi.org/10.1371/journal.pgen.1007843


or significantly decreased in these backgrounds. The resistance of RAC1 to genome-wide

crossover increases may relate to the high level of interhomolog polymorphism at this locus,

the pericentromeric location or local chromatin environment. Using deep sequencing of

RAC1 crossover molecules we show that the negative relationship between crossovers and

interhomolog divergence is maintained in the fancm, recq4a recq4b and fancm recq4a recq4b
anti-crossover mutants. However, crossover frequency at the 50 end of RAC1 was relatively

decreased in recq4a recq4b mutant backgrounds, indicating an influence of local context on

recombination outcomes.

Results

Meiotic recombination and chromatin at the RAC1 and RPP13 disease

resistance genes

We previously identified the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) Arabidopsis

disease resistance gene region as containing crossover hotspots, using both historical linkage

disequilibrium (LD) based estimates and experimental pollen-typing in Col×Ler F1 hybrids

[59,60]. RAC1 encodes a TIR-NBS-LRR domain resistance protein, which recognises effectors

from the oomycete pathogens Albugo candida and Hylaoperonospora parasitica [57,61,62].

RAC1 exists as a singleton TIR-NBS-LRR gene in most accessions and shows high levels of

population genetic diversity (e.g. θ = 0.012–0.013; π = 0.043–0.054) [55,56,59,60]. We com-

pared the RAC1 locus to a recombination map of 3,320 crossovers mapped by genotyping-by-

sequencing (GBS) of 437 Col×Ler F2 individuals (mean crossover resolution = 970 bp) (Fig

1A) [50,60]. We also assessed levels of interhomolog polymorphism by measuring the density

of Col/Ler SNPs per 100 kb [63], in addition to levels of DNA methylation as an indication of

heterochromatin (Fig 1A) [64]. Together this showed that RAC1 is located on the edge of peri-

centromeric heterochromatin, in a region of higher than average crossover frequency and

interhomolog polymorphism (Fig 1A).

Using historical recombination maps generated by analysing the 1,001 Genomes Project

SNP data, we identified RPP13 as a further NBS-LRR gene with higher than average historical

crossover frequency (10.56–10.57 cM/Mb), and high levels of population SNP diversity (θ =

0.011–0.013, π = 0.044–0.045) [55,56,59,60]. These levels of diversity and recombination were

comparable to those observed at RAC1. RPP13 recognizes the Hylaoperonospora parasitica
effector ATR13 to mediate disease resistance, and which together display co-evolutionary

dynamics [58,65]. Similar to RAC1, RPP13 is a singleton NBS-LRR gene located on the edge of

pericentromeric heterochromatin, in a region of higher than average crossover frequency and

interhomolog polymorphism (Fig 1A).

We examined the RAC1 and RPP13 regions using genome-wide maps of chromatin and

meiotic recombination [60,64,66]. Nucleosome occupancy was assessed using MNase-seq

data, which showed enrichment within the gene exons and was depleted within the promoter,

intron and terminator regions (Fig 1B). Arabidopsis SPO11-1-oligonucleotides mark meiotic

DSB sites and show an inverse pattern to nucleosome occupancy [66]. Consistently, at RAC1
and RPP13 we observed higher levels of SPO11-1-oligonucleotides in the nucleosome-depleted

intergenic regions (Fig 1B). H3K4me3 ChIP-seq showed enrichment at the 50-end of the

genes, consistent with active transcription [67], and we observed RAC1 and RPP13 transcrip-

tion using RNA-seq data from stage 9 flowers (Fig 1B) [60,66]. Both RAC1 and RPP13 show

low levels of DNA methylation, in contrast to the ATENSPM3 EnSpm/CACTA (AT1TE36570)

element located adjacent to RAC1, which is heavily methylated, nucleosome-dense and sup-

pressed for SPO11-1-oligos (Fig 1B). The RAC1 promoter intergenic region contains short

fragments of several transposable elements, including HELITRONY3 and ATREP15 Helitrons
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(Fig 1B). Transposable elements in these families have relatively low DNA methylation, are

nucleosome-depleted and show higher levels of SPO11-1-oligos, compared with other repeat

families in Arabidopsis (Fig 1B) [66]. Therefore, despite the location of RAC1 and RPP13 on

the edge of pericentromeric heterochromatin, these genes display euchromatic chromatin and

recombination features (Fig 1A and 1B) [64,66].

Fig 1. Chromatin and recombination landscapes around the RAC1 and RPP13 NBS-LRR disease resistance genes. (A) Crossover frequency (crossovers/100 kb

mapped by genotyping-by-sequencing of Col×Ler F2) [50,60], interhomolog divergence (Col/Ler SNPs/100 kb) [63], and % DNA methylation (CG red, CHG blue,

CHH green) [64], along chromosomes 1 and 3. Vertical dotted lines indicate the centromeres. Mean values are indicated by horizontal dotted lines. NBS-LRR gene

positions are indicated by ticks on the x-axis. The position of RAC1 and RPP13 are indicated by the solid vertical lines. (B) Histograms for the RAC1 and RPP13
regions showing library size normalized coverage values for SPO11-1-oligonucleotides (blue), nucleosome occupancy (purple, MNase-seq), H3K4me3 (pink, ChIP-

seq), RNA-seq (red) and % DNA methylation (BSseq) in CG (blue), CHG (green) and CHH (red) sequence contexts [64,66]. Gene (blue) and transposon (red)

annotations are highlighted, and the positions of RAC1 and RPP13 are indicated by grey shading.

https://doi.org/10.1371/journal.pgen.1007843.g001
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Crossover hotspots within the RAC1 and RPP13 disease resistance genes

In order to experimentally measure crossovers within RAC1 and RPP13 we used pollen-typing

[68,69]. This method uses allele-specific PCR amplification from F1 hybrid genomic DNA

extracted from gametes, in order to quantify and sequence crossover molecules (Fig 2A and S1

Fig) [68,69]. This method is directly analogous to mammalian sperm-typing methods [70–73].

Genomic DNA is extracted from pollen (male gametophytes) collected from individuals that

are heterozygous over a known crossover hotspot (Fig 2A). Allele-specific primers annealing

to polymorphic sites flanking the region of interest are used to PCR amplify single crossover

or parental molecules, using diluted DNA samples (Fig 2A). Titration is used to estimate the

concentrations of amplifiable crossover and parental molecules, which are used to calculate

genetic distance (cM = (crossovers/(crossovers+parentals))×100) (Fig 2A). Sanger sequencing

of PCR products amplified from single crossover molecules is performed to identify internal

recombination points, to the resolution of individual polymorphisms (Fig 2A). Together

this information describes the recombination rate (cM/Mb) topology throughout the

PCR amplified region [68,69]. It is also possible to mass amplify crossover molecules, which

may be pooled and sequenced using paired-end reads to identify crossover locations (Fig 2A)

[68].

To investigate whether RPP13 was associated with crossover hotspots we designed and opti-

mised Col/Ler allele-specific oligonucleotides (ASOs) flanking this resistance gene (S1A Fig).

The RPP13 ASO primers specifically amplified crossovers from pollen, and not leaf DNA,

extracted from the same Col/Ler F1 plants (S1B Fig). We performed DNA titrations to quantify

crossover and parental molecules across RPP13 and observed a genetic distance of 0.055 cM,

equivalent to 9.78 cM/Mb across the 5,626 bp amplicon (S1 Table). When analysing crossovers

we plot their frequency against panmolecules, where we include all bases from both accessions

(S2 Fig and S2–S5 Tables). For example, the RPP13 amplicon is 5,431 bp in Col, 5,526 bp in

Ler and 5,626 bp in the Col/Ler panmolecule, with 195 inserted bases from Ler and 100 from

Col (S2 Fig and S5 Table). We sequenced 44 single crossover molecules and observed cluster-

ing of recombination events at the 50-end of RPP13, overlapping regions encoding the coiled-

coil and NB-ARC domains (Fig 2C). RPP13 shows a peak crossover rate of 125 cM/Mb (S6

Table), compared to the genome average of 4.82 cM/Mb for male Col/Ler F1 hybrids [74].

Crossovers were also observed in the adjacent gene At3g46540 (Fig 2C). A single crossover

was observed in a 5 bp interval within At3g46540, which results in a high recombination esti-

mate (250 cM/Mb) (S6 Table). However, as a single crossover event is responsible for this

recombination measurement, this may reflect sampling, rather than the presence of a high

activity hotspot. The region of highest crossover activity within RPP13 overlaps with nucleo-

some-occupied, H3K4me3-modified exon sequences (Fig 2D). In contrast, highest SPO11-

1-oligos occur in flanking nucleosome-depleted intergenic regions (Fig 2D).

The RAC1 gene is located within a 9,482 bp (Col/Ler) pollen-typing PCR amplicon (Fig 3).

We previously reported analysis of 181 single crossover molecules within the RAC1 amplicon

[60], which we combined with an additional 59 events here to give a total of 240 crossovers (S7

and S8 Tables). We observed a peak recombination rate of 61.7 cM/Mb within RAC1 (Fig 3A

and S8 Table). An adjacent gene contained within the amplicon, At1g31550 (GDSL), also

showed intragenic crossovers (Fig 3A) [60]. Similar to RPP13, elevated crossover frequency

within RAC1 overlapped nucleosome-occupied and H3K4me3-enriched exon sequences (Fig

3B) [66]. Highest crossover frequency occurred within the RAC1 50 exons encoding the

NB-ARC and TIR domains (Fig 3A). A further similarity with RPP13, is that highest levels of

SPO11-1-oligos are observed in the nucleosome-depleted intergenic regions flanking RAC1, in

addition to the largest intron (Figs 2 and 3). Hence, both RPP13 and RAC1 have highest
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crossover frequency within transcribed gene 50 regions, despite higher levels of initiating

SPO11-1 dependent DSBs occurring in the adjacent intergenic regions.

Interhomolog divergence suppresses crossovers within RAC1 and RPP13
RAC1 and RPP13 show high levels of interhomolog polymorphism between Col and Ler, with

27.4 and 34.5 SNPs/kb, respectively (compared to the genome average of 3.85 SNPs/kb) [63].

This is also reflected in high levels of population genetic diversity at RAC1 and RPP13
[55,56,59,60]. Therefore, we repeated RAC1 pollen-typing with crosses using different parental

accessions, where the pattern of interhomolog divergence varied, in order to investigate its

influence on crossover frequency (Fig 3A). Pollen-typing relies on allele-specific primers that

anneal at SNPs or indels [68,75]. Therefore, we used the 1,001 Genomes Project data to iden-

tify accessions sharing the Col/Ler allele-specific primer polymorphisms, but differing with

respect to internal polymorphisms within the RAC1 amplicon (Fig 3A and S2 Fig). This identi-

fied Mh-0 (Mühlen, Poland) and Wl (Wildbad, Germany) as meeting these criteria. Col×Wl

and Col×Mh have 33.0 and 21.1 SNPs/kb within the RAC1 amplicon, respectively. Therefore,

we extracted pollen genomic DNA from Col×Wl and Col×Mh F1 hybrids and amplified and

sequenced 92 and 124 crossover molecules, respectively (Fig 3A and S9 and S10 Tables). For

Col×Ler and Col×Mh we performed DNA titration experiments and did not observe a signifi-

cant difference in crossover frequency (P = 0.309) (S7 Table).

Crossover topology within the RAC1 amplicon was conserved between the three haplotype

combinations tested (Fig 3A and S8–S10 Tables). For instance, by comparing crossovers in

adjacent 500 bp windows (counted against the Col reference sequence) we observed significant

positive correlations between the recombination maps (Spearman’s Col×Ler vs Col×Wl

r = 0.595 P = 9.14×10−3; Col×Ler vs Col×Mh r = 0.612 P = 6.91×10−3; Col×Wl vs Col×Mh

r = 0.723 P = 6.96×10−4). For each cross, highest crossover frequency was observed within the

RAC1 and GDSL transcribed regions (Fig 3A and S8–S10 Tables). In each case, we calculated

the number of crossovers and polymorphisms in adjacent 500 bp windows (Fig 4 and S11

Table), where SNPs were counted as one and indels were counted according to their length in

base pairs. In all cases, a significant negative relationship was observed between crossovers and

polymorphisms (all RAC1 windows, Spearman’s r = -0.685 P = 1.11×10−8) (Fig 4 and S11

Table). This was also observed when analysing the RPP13 Col×Ler data in the same manner

(Spearman’s r = -0.890, P = 2.43×10−4) (Fig 4E and S12 Table). We fitted a non-linear model

to the data using the formula y = log(a)+b×x^(-c), where y is the number of crossovers, x is

polymorphisms, a is the intercept and b and c are scale parameters. Together this shows a

strong, negative non-linear relationship between interhomolog polymorphisms and crossover

frequency within RAC1 and RPP13. We previously found that at the RAC1 50-end there is a

strong CTT motif, which have been associated with high crossover frequency in Arabidopsis

[23,59,60,76]. Ler and Wl share a SNP in this motif but this does not obviously associate with

Fig 2. Crossover hotspots within the RPP13 disease resistance gene. (A) Schematic of the pollen-typing method

using allele-specific PCR to quantify and sequence crossover molecules. (B) Inset are representative ethidium bromide

stained gels showing crossover and parental molecule RAC1 PCR amplification products from diluted pollen F1 Col/

Ler genomic DNA. (C) Crossover frequency (cM/Mb) within the region of the disease resistance gene RPP13
measured using titration and sequencing of individual crossover molecules from Col×Ler pollen F1 genomic DNA.

Gene TSS and TTS are indicated by vertical dotted blue lines. Horizontal lines indicate exon (black) positions, in

addition to protein domains (coiled coil (green), NB-ARC (red) and LRR (blue)) for RPP13. Col/Ler SNPs (red) and

indels (black) are indicated on the x-axis. Data is plotted against the Col/Ler panmolecule, which includes all insertions

and deletions. The horizontal dotted line indicates the genome-average recombination rate for male Col×Ler crosses

[74]. (D) Histograms for the RPP13 region showing library size normalized values for SPO11-1-oligonucleotides

(blue), nucleosome occupancy (purple, MNase-seq), H3K4me3 (pink, ChIP-seq) and RNA-seq (red) [60,66].

https://doi.org/10.1371/journal.pgen.1007843.g002
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differences in recombination rate [Col/Mh: CTTCGTCATCTTCTTCT; Ler/Wl: CTTCTTCA

TCTTCTTCT].

RAC1 crossover frequency is resistant to changes in meiotic recombination

pathways

Previous work has revealed an influence of interhomolog polymorphism on meiotic recombina-

tion pathways in Arabidopsis [38,46,48–50]. Therefore, we sought to investigate RAC1 crossover

frequency in backgrounds with altered recombination pathways. Specifically we tested, (i)

mutations in the anti-crossover genes recq4a recq4b, fancm and figl1 [30,33,34,38,49], (ii) muta-

tions in the msh2 MutS homolog [46], and (iii) transgenic lines with additional HEI10 copies

[51]. Each of these genotypes was available in Col and Ler backgrounds, which could be crossed

together to generate Col/Ler F1 hybrids used for RAC1 pollen-typing. We measured RAC1
crossover frequency via DNA titration experiments (Fig 5 and S13–S16 Tables). The mean

number of crossovers and parental molecules per μl were used to test for significant differences,

by constructing 2×2 contingency tables and performing Chi-square tests. We compared three

biological replicates of wild type Col/Ler F1 hybrids using this method, which did not show sig-

nificant differences (Fig 5A–5C and S13–S16 Tables). Previous findings have demonstrated

genome-wide crossover increases in hybrid recq4a recq4b and figl1 mutants [34,49,50], whereas

fancm increases strongly in inbred, but not in hybrid backgrounds [38,48]. Despite the cross-

over increases in these backgrounds, we observed that RAC1 genetic distance significantly

decreased in the recq4a recq4b, fancm, figl1, msh2, recq4a recq4b fancm and figl1 fancm mutants

(Fig 5A–5C and S13–S16 Tables). Furthermore, when we compared wild type with lines con-

taining additional HEI10 copies we did not observe a significant difference in RAC1 crossover

frequency (Fig 5D and S13–S16 Tables). Therefore, in backgrounds with either increased Class

I (HEI10) or Class II (fancm, figl1, recq4a recq4b) crossover repair, the RAC1 hotspot is unex-

pectedly resistant to increasing recombination frequency.

RAC1 crossover topology in fancm and recq4a recq4b anti-crossover

mutants

To analyse RAC1 crossover distributions in wild type versus fancm, recq4a recq4b and recq4a
recq4b fancm anti-crossover mutants, we mass amplified crossovers and performed pollen-

sequencing [60,68]. In this approach, allele-specific PCR amplification is performed using

multiple independent reactions seeded with an estimated ~1–3 crossover molecules per reac-

tion (Fig 2A). Crossover concentrations are first estimated using titration experiments (Fig 5

and S13 Table). Mass amplified allele-specific PCR products are then pooled, sonicated and

used for sequencing library construction (S3 Fig) [60,68]. These libraries were subjected to

paired-end 2×75 bp read sequencing (S17 Table).

The Col and Ler RAC1 haplotypes from our laboratory strains were Sanger sequenced, in

order to generate templates for aligning sequence data to. Read pairs were split and aligned to

Fig 3. RAC1 crossover hotspots in Col×Ler, Col×Wl and Col×Mh hybrids. (A) Crossover frequency (cM/Mb)

within the region of the RAC1 disease resistance gene measured using titration and sequencing of single crossover

molecules from Col×Ler (0.074 cM), Col×Wl (0.074 cM) and Col×Mh (0.064 cM) pollen F1 genomic DNA.

Recombination is plotted against the panmolecules, which include all bases from both parental accessions. Gene TSS/

TTS are indicated by vertical dotted lines and exons by horizontal black lines. The position of RAC1 TIR (green),

NB-ARC (red) and LRR (blue) domain-encoding sequences are indicated by the colored horizontal lines. SNPs (red)

and indels (black) are indicated by the ticks on the x-axis. The horizontal dotted line indicates the genome-average

recombination rate from male Col×Ler crosses [74]. (B) Histograms for the RAC1 region showing library size

normalized values for SPO11-1-oligonucleotides (blue), nucleosome occupancy (purple, MNase-seq), H3K4me3 (pink,

ChIP-seq) and RNA-seq (red) [60,64,66]. The positions of RAC1 and GDSL (At1g31550) are indicated by grey shading.

https://doi.org/10.1371/journal.pgen.1007843.g003
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Col and Ler haplotypes separately using Bowtie allowing no mismatches (-v 0), such that BAM

files were obtained for the reads aligned to either Col or Ler [77]. We then filtered for read

pairs where one member mapped distally to Col and the other member mapped proximally to

Ler, on opposite strands. This mapping configuration was expected due to the allele-specific

primer orientation used during pollen-typing amplification. Consistent with these read pairs

representing crossover molecules, their width distributions are similar to that of the sonicated

PCR amplification products, prior to adapter ligation (S3 Fig). The crossover reads were then

matched to the Col/Ler panmolecule, and counts were added to intervening sequences. These

values were then normalized by the total number of crossover read pairs per library. Finally,

the profiles were weighted by RAC1 genetic distance (cM), measured previously via DNA titra-

tion (S13 Table). For wild type, fancm, recq4a recq4b and fancm recq4a recq4b we generated

two biologically independent libraries for each genotype, sampling either ~300 or ~1,000

crossovers and the recombination profiles were found to be similar (Figs 6A and S4). There-

fore, for subsequent analysis the reads from the 300 and 1,000 crossover libraries were pooled

for each genotype. The wild type 1,000 crossover dataset was previously reported [60].

Overall recombination topology was similar between wild type, fancm, recq4a recq4b, and

recq4a recq4b fancm mutants (Spearman’s wild type vs fancm r = 0.923<2.2×10−16; wild type

vs recq4a recq4b r = 0.902<2.2×10−16; recq4a recq4b fancm r = 0.925 <2.2×10−16) (Fig 6A, S4

and S5 Figs and S14 Table). Crossovers occurred predominantly within the gene transcribed

regions and were reduced in the highly polymorphic intergenic regions, in all genotypes (Fig

6A and S4 and S5 Figs). In wild type, highest crossover frequency was observed at the RAC1
5’-end, with distinct peaks associated with the first and second exons, in addition to elevated

crossovers occurring within the last three LRR domain-encoding exons (Fig 6A and S4 Fig).

Crossovers were also evident at the 50 and 30 ends of the adjacent gene (GDSL), although at a

lower level to those observed in RAC1 (Fig 6A and S4 Fig). In fancm the crossover profile was

similar, except for in the first RAC1 exon where crossover frequency was reduced compared to

wild type (Fig 6A). In the recq4a recq4b and fancm recq4a recq4b mutants we observed that the

RAC1 50 crossover peaks in exons 1 and 2 were relatively reduced (Fig 6A). The RAC1 LRR

crossover peaks in recq4a recq4b and fancm recq4a recq4b backgrounds were also less broad

and became focused towards the end of exon 5 (Fig 6A). The 50-end of GDSL was reduced in

the recq4a recq4b and fancm recq4a recq4b mutants (Fig 6A). The local changes to crossover

frequency in these recombination mutant backgrounds may reflect differential interactions

with interhomolog polymorphism or chromatin within the analysed region.

To investigate the relationship between crossovers and polymorphisms, we calculated

recombination (crossover read pairs/cM) and polymorphism values in adjacent 250 bp win-

dows, against the RAC1 Col/Ler panmolecule. Consistent with our previous observations, all

genotypes showed a significant negative correlation between crossovers and polymorphisms

(Spearman’s: WT r = -0.64, fancm r = -0.58, recq4a recq4b r = -0.57, fancm recq4a reqc4b r =

-0.57) (S18 Table). As described above, a non-linear model fitted the data using the formula

Fig 4. Interhomolog divergence suppresses crossovers within RAC1 and RPP13. (A) Col×Ler crossovers and

polymorphisms were calculated in adjacent 500 bp windows throughout the RAC1 region, where SNPs are counted as

one and indels by their length, using panmolecule coordinates. The blue horizontal dotted lines indicate the value of

crossovers per window if they were evenly distributed. The grey line represents a non-linear model fitted to the data

using the formula; y = log(a)+b×x^(-c), where y is the number of crossovers, x is polymorphisms, a is the intercept and

b and c are scale parameters. On the right the same data are plotted as histograms of crossover (black) and

polymorphisms (red) per 500 bp window. (B) As for (A), but analysing Col×Wl. (C) As for (A), but analysing Col×Mh.

(D) As for (A), but analysing all windows from Col×Ler (red), Col×Wl (green) and Col×Mh (purple). Due to total

crossovers analysed varying between hybrids, crossovers were first calculated as a % for each window. (E) As for (A),

but analysing the RPP13 amplicon from a Col×Ler hybrid.

https://doi.org/10.1371/journal.pgen.1007843.g004
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y = log(a)+b×x^(-c), where y is the crossovers, x is polymorphisms, a is the intercept and b

and c are scale parameters (Fig 6B). Hence, the suppressive effect of polymorphisms was

observed within RAC1 in both wild type and anti-crossover mutants.

Discussion

The concentration of meiotic DSBs and crossovers in narrow hotspots is widespread among

eukaryotes, which has important implications for genetic diversity and adaptation [78–80].

Fig 5. RAC1 genetic distance in backgrounds with altered meiotic recombination pathways. (A) Barplots showing RAC1 genetic distance (cM) measured

in wild type, recq4a recq4b, fancm and recq4a recq4b fancm using single crossover and parental molecule titration. Error bars represent measurement standard

deviation (square root of the variance). To test for differences the mean number of crossovers and parental molecules per μl were used to construct 2×2

contingency tables and Chi-square tests performed. The significance indicators �� and ��� report a P-value of between 0.01–0.0001 and<0.0001, respectively.

(B). As for (A), but showing data for wild type, figl1 and figl1 fancm. (C) As for (A), but showing data for wild type and msh2. (D) As for (A), but showing data

for wild type and HEI10.

https://doi.org/10.1371/journal.pgen.1007843.g005
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Fig 6. Crossover frequency across RAC1 in wild type and fancm, recq4a recq4b and fancm recq4a recq4b mutants. (A) The coverage of crossover reads

aligned against the Col×Ler panmolecule was calculated and normalized by the total number of reads analysed, and also normalized by RAC1 genetic distance

(cM) measured previously by titration. Col×Ler polymorphisms are indicated by black ticks on the x-axis. Gene TSS and TTS are indicated by vertical blue

lines, and exons by horizontal black lines. In each plot wild type (black) is plotted alongside mutant backgrounds (red), which are either fancm, recq4a recq4b or

recq4a recq4b fancm. (B) 250 base pair adjacent windows were used to calculate the values of crossover reads/cM and polymorphisms (SNPs = one,

indels = length) and plotted. The fitted line (red) was generated using the the non-linear model y = log(a) + b×x^(-c). y is reads/cM, x is polymorphisms, a is the

intercept and b and c are scale parameters. The dotted horizontal line indicates the mean level of crossover reads/cM within the analysed region.

https://doi.org/10.1371/journal.pgen.1007843.g006
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For example, sequencing of SPO11-oligonucleotides has revealed meiotic DSB hotspots in

fungi, animals and plants [66,81–83]. Varying genetic and epigenetic factors control DSB hot-

spot location in these species. SPO11-oligo hotspots in budding yeast and plants are highest in

nucleosome-free regions associated with genes and transposons [66,81,84,85], which demon-

strates the importance of chromatin for initiation of meiotic recombination. Variation in

nucleosome occupancy and SPO11-1-oligos in plants correlates with AT-sequence richness

[66], which is known to exclude nucleosomes [86]. In fission yeast SPO11-oligo hotspots are

broader, located intergenically and do not show a clear association with nucleosome occu-

pancy [83]. Mammalian meiotic DSB hotspots are directed to specific DNA sequences by

binding of the PRDM9 KRAB-zinc finger protein [80,82,87]. PRDM9 possesses a histone

methyltransferase SET domain which directs H3K4me3 and H3K36me3 histone modifications

to nucleosomes flanking the bound DNA target sites [82,88–90]. Hence, depending on the spe-

cies, chromatin and DNA sequence make varying contributions to the fine-scale distributions

of meiotic DSBs.

In many species, including budding yeast and plants, there is a positive correlation between

meiotic DSB levels and crossover frequency at the chromosome scale [66,81]. However, exten-

sive variation in the ratio of DSBs to crossovers is observed along chromosomes [66,81–83].

Equally, at the fine-scale there is a weak correlation between crossovers and DSB frequency

within Arabidopsis hotspot regions [66], as observed at RAC1 and RPP13. An extreme example

of similar variation occurs in fission yeast, where an inverse relationship is observed, with DSB

hotspots occurring in regions of lowest crossover formation [83,91]. Variation in crossover:

non-crossover ratios has also been observed between mammalian hotspots [71,72,78,92]. For

example, crossover:non-crossover variation occurs at heterochiasmic mouse hotspots, where

DSBs occur in both male and female meiosis, but crossovers only form in male meiosis [93].

Furthermore, data in budding yeast indicate that interhomolog joint molecules may be mobile

[94], and repeated rounds of strand invasion and dissolution may occur during repair [95,96],

which could cause local differences in the locations of the initiating DSB and final crossover

resolution. Hence, the levels of initiating DBSs are important for crossover levels, but they are

not the sole determinant of recombination outcomes.

In plants, somatic homologous recombination has been analysed using ‘split GUS’ reporter

systems [97]. Recombination between repeated GUS sequences located on the same or differ-

ent reporter T-DNAs restores β-glucuronidase activity [97]. Increasing levels of polymorphism

in the recombining GUS repeats was found to inhibit homologous recombination [98,99]. For

example, 1.9% sequence divergence between the GUS repeats caused a 10-fold reduction in

somatic recombination [98]. In a related study, a single mismatch in a 618 bp GUS repeat

caused a 3-fold suppression of recombination, although addition of further SNPs had less

effect, suggesting ‘divergence saturation’ in this system [99]. These data are consistent with

genetic analysis in budding yeast where mitotic and meiotic recombination are inhibited by

polymorphism, with similar kinetics [47,100]. For example, progressive addition of SNPs at

the URA3 hotspot reduced meiotic crossovers, with a simultaneous increase in non-crossover

repair [101]. Consistent with these previous studies, at RAC1 and RPP13 we observe a non-lin-

ear, negative relationship between interhomolog polymorphism and meiotic crossover

formation.

A likely mechanism for the suppressive effects of polymorphism on crossover repair during

meiosis is via MutS related heterodimers, including MSH2, which are capable of recognising

mismatches and promoting disassociation of strand invasion events [44,45,102]. Indeed, evi-

dence exists in Arabidopsis for MSH2 acting as a hybrid-specific anti-crossover factor at the

megabase scale [46]. However, this relationship appears complex, as we observe a significantly

decreased RAC1 crossover frequency in the msh2 mutant. Our observations may suggest
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regional changes in crossover distributions in msh2, rather than a global increase. The inhibi-

tory effect of interhomolog polymorphism on crossover formation may also account for dis-

crepancies observed between SPO11-1-oligos and crossovers at the fine-scale [66]. It is

possible that mismatches in interhomolog joint molecules could alter their mobility and fur-

ther influence the location of crossover resolution. The phenomenon of crossover interference,

which reduces the likelihood of adjacent DSBs being repaired as crossovers in the same meio-

sis, is also important to consider [29].

In addition to interhomolog polymorphism, chromatin marks may differentially influence

meiotic recombination pathways and locally alter crossover:noncrossover ratios. For example,

we observe that H3K4me3 is elevated at the 50-ends of RAC1, GDSL and RPP13, which corre-

lates with regions of high crossover activity. Although it is also notable that substantial 30-

crossovers occur in these genes, where H3K4me3 occurs at lower levels. Although H3K4me3

levels do not strongly correlate with SPO11-oligo levels in animals, fungi or plants [66,81,82,

103], this mark is spatially associated with recombination hotspots in multiple species [23,59,

76,87,104]. In budding yeast the Spp1 subunit of the COMPASS methylase complex simulta-

neously interacts with H3K4me3 and the Mer2 meiotic chromosome axis component

[105,106], providing direct support for the tethered-loop/axis model for recombination [107].

Analogous interactions are observed between mouse COMPASS CXXC1, PRDM9 and the

IHO1 axis protein [108]. Hence, the presence of H3K4me3 at the 50-ends of RPP13 and RAC1
may promote crossover formation via similar mechanisms, downstream of DSB formation.

Heterochromatic modifications also show specific interactions with the meiotic recombination

pathways. For example, in Arabidopsis loss of CG context DNA methylation via the met1
mutation, or loss of non-CG DNA methylation/H3K9me2 via cmt3 or kyp/suvh4 suvh5 suvh6,

both cause an increase in SPO11-1-oligos in pericentromeric heterochromatin [66,109]. How-

ever, the CG and non-CG mutants show increased and decreased pericentromeric crossovers,

respectively [66,109]. This indicates that despite these heterochromatic mutants showing

greater SPO11-1 DSB activity close to the centromeres, other chromatin features likely modify

downstream repair choices.

In this study we measured RAC1 crossover frequency in backgrounds with, (i) elevated

HEI10 dosage and thereby increased Class I activity [51], (ii) increased Class II crossovers via

loss of function fancm, figl1 and recq4a recq4b anti-crossover mutations [30,33,34,38,49], and

(iii) loss of function mutants in the mismatch repair factor msh2 [46]. Despite these back-

grounds showing elevations in crossover frequency elsewhere in the genome, RAC1 remained

resistant to recombination increases or showed small but significant decreases. In this respect

it is notable that genome-wide maps of crossovers in HEI10, figl1, fancm and recq4a recq4b
backgrounds have shown that recombination increases are highly distalized towards the sub-

telomeres, which are chromosome regions of lower interhomolog polymorphism [49–51].

Therefore, the location of RAC1 on the edge of the chromosome 1 pericentromere may make

this locus relatively insensitive to distalized crossover increases. It is also possible that high

polymorphism levels within RAC1, in addition to the surrounding regions of heterochromatin,

may contribute to maintenance of stable crossover frequency between wild type and the high

recombination backgrounds tested.

The local inhibitory relationship between polymorphism and crossovers that we observe

has implications for the evolution of plant hotspots. Data from several species are consistent

with meiotic recombination being mutagenic [110–112]. For example, this may occur as a

result of DNA polymerase base misincorporation during DSB-repair associated DNA synthe-

sis [110–112], or mis-alignment during strand invasion causing insertions and deletions via

unequal crossover [113]. Therefore, high levels of recombination over many generations may

cause higher levels of heterozygosity at hotspots, which may then suppress further
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recombination in specific crosses. Crossover inhibition is likely to be particularly potent when

unequal crossover generates large insertion-deletion polymorphisms, which are commonly

observed at plant disease resistance loci and can contribute to functional diversity in pathogen

recognition [60,113–115].

Despite the negative relationship that we observe between interhomolog polymorphism

and crossovers at RAC1 and RPP13, at the chromosome scale wild type crossovers in Arabi-

dopsis show a weak positive relationship with interhomolog diversity [49,50]. Similarly, LD-

based historical estimates are positively correlated with population diversity in Arabidopsis

[48,55,56]. These population-scale relationships are likely to be partly explained by hitchhik-

ing/background selection, causing more extensive reductions in diversity in regions of low

recombination that are under selection [4]. However, other effects may also contribute. For

example, in Arabidopsis juxtaposition of megabase scale heterozygous and homozygous

regions increases crossover frequency in the heterozygous region, at the expense of the homo-

zygous region [48]. This heterozygosity juxtaposition effect is dependent on the Class I inter-

fering repair pathway [48]. Therefore, both positive and negative interactions are observed

between polymorphism and recombination depending on whether hotspot versus chromo-

some scales are analysed, with significant additional effects caused by chromosome position

and chromatin context.

Material and methods

Plant material

Arabidopsis lines used in this study were the HEI10 line ‘C2’ [51], recq4a-4 (Col, N419423)

recq4b-2 (Col, N511130) [36], recq4a (Ler W387�) [34], fancm-1 (Col, ‘roco1’) [30], fancm
(Ler, ml20), figl1-1 (Col, ‘roco5’) [38], figl1 (Ler, ml80) and msh2-1 (Col, SALK_002708) [116].

Genotyping of Col recq4a-4, Col recq4b-2, Ler recq4a and HEI10 T-DNA was performed as

described previously [50]. Col and Ler wild type or mutant backgrounds were crossed to

obtain F1 hybrids, on which pollen-typing was performed. The msh2-1 allele was introduced

into Ler-0 background by six successive backcrosses. Genotyping of msh2-1 was performed by

PCR amplification using msh2-F (5’-AGCGCAATTTGGGCATGTCT-3’) and msh2-R (5’-

CCTCCCATGTTAGGCCCTGTT-3’) oligonucleotides for the wild type allele, and msh2-F

and msh2-T-DNA (5’-ATTTTGCCGATTTCGGAAC-3’) oligonucleotides for the msh2-1
allele.

RPP13 and RAC1 pollen-typing and Sanger sequencing

Pollen-typing was performed as described [68]. Genomic DNA was extracted from hybrid F1

pollen (Col×Ler, Col×Wl or Col×Mh), and used for nested PCR amplifications using parental

or crossover configurations of allele-specific oligonucleotide (ASO) primers (S19 and S20

Tables). For each genotype replicate, ~140 plants were grown and used for pollen collection.

The relative concentrations of parental (non-recombinant) and crossover (recombinant) mol-

ecules were estimated by titration [68–70]. Recombination rate was calculated using the for-

mula cM = (crossovers/(parentals+crossovers))×100. Amplified single crossover molecules

were treated with exonuclease I (NEB, M0293) and shrimp alkaline phosphatase (Amersham,

E70092), and then Sanger sequenced to identify recombination sites to the resolution of indi-

vidual polymorphisms. For analysis we PCR amplified and sequenced the target regions from

Col, Ler, Wl and Mh accessions, and used these data to generate Col×Ler, Col×Wl or Col×Mh

panmolecules, which include all bases from both accessions (S2 Fig). To analyse the relation-

ship between crossovers and polymorphisms we used adjacent 500 bp windows along the pan-

molecules and assigned crossover and polymorphism counts, where SNPs were counted as 1,
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and indels as their length in base pairs. When crossover events were detected in SNP intervals

that overlapped window divisions the crossover number was divided by the proportional dis-

tance in each window. For example, if two crossovers were detected in a 150 bp interval, of

which 50 bp were in window A and 100 bp in window B, we counted 2×(50/150) = 0.67 cross-

over in window A, and 2×(100/150) = 1.33 crossover in window B. A non-linear model was fit-

ted to the data using the formula; y = log(a)+b×x^(-c), where y is the number of crossovers, x

is polymorphisms, a is the intercept and b and c are scale parameters.

RAC1 crossover sequencing

Multiple independent RAC1 crossover PCR amplifications were performed, where each reac-

tion was estimated to contain between 1–3 crossover molecules, based on previous titration

experiments. RAC1 crossover amplification products were then pooled, concentrated by iso-

propanol precipitation and gel purified. 1–2 μg of DNA in 100 μl of TE was sonicated for each

sample using a Bioruptor (Diagenode) (high setting, 30 seconds ON, 30 seconds OFF for 15

minutes), and fragments of 300–400 bp were gel purified, end-repaired and used to generate

sequencing libraries (Tru-Seq, Illumina). The libraries were sequenced on an NextSeq instru-

ment (Illumina) using paired-end 75 bp reads. Reads were aligned to the parental sequences

(Col and Ler) using Bowtie, allowing only exact matches [77]. Reads were filtered for those

that aligned to one parental sequence only. To identify crossover read pairs, we filtered for

read pairs having a centromere-proximal match to Col and a centromere-distal match to Ler,

on opposite strands, which is consistent with RAC1 pollen-typing amplification. Read pair

coordinates were then converted into pancoordinates using the Col/Ler key table (S2 Table). A

value of 1 was assigned to all panmolecule coordinates between each crossover read pair. This

process is repeated for all read pairs and values normalized by the total number of crossover

read pairs, and finally weighted by genetic distance (cM).

Data access

The fastq files associated with RAC1 crossover sequencing have been uploaded to ArrayEx-

press accession E-MTAB-6333 “Meiotic crossover landscape within the RAC1 disease resis-

tance gene”.

Supporting information

S1 Fig. RPP13 allele specific oligonucleotide PCR amplification. (A) Representative ethid-

ium bromide-stained agarose gels showing optimisation of allele-specific amplification of

RPP13. The indicated allele-specific oligonucleotides (ASOs) were used with universal primers

(UF and UR) on either Col or Ler genomic DNA templates. A range of annealing temperatures

were used, which are printed above the gel in green. (B) RPP13 crossover molecule amplifica-

tion was performed from leaf or pollen DNA extracted from Col/Ler F1 plants. PCR bands of

crossover molecules were detected strongly in pollen ampiflications, but not using leaf DNA

(upper). A control PCR amplification for input DNA amount is shown by amplifying with

Col-ASO forward and reverse primers (lower), which amplifies parental molecules.

(TIF)

S2 Fig. RAC1 and RPP13 panmolecules. Plots representing panmolecules for RAC1 from

Col×Ler, Col×Mh and Col×Wl crossoes and RPP13 from a Col×Ler cross. The panmolecule

coordinates are shown along the x-axis and start relative to the cognate position in the TAIR10

Col reference sequence. The position of single nucleotide polymorphisms (SNPs) are indicated

by red dots along the plot. Indels are indicated by deviation of the plot line either above (Col)
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or below (Ler, Mh or Wl) the axis, with indel length indicated by the length of the deviation.

(TIF)

S3 Fig. Analysis of crossover sequencing libraries and read-pairs. (A) Ethidium bromide

stained agarose gel showing the size of final crossover libraries. The library is shown before

adapter ligation (‘-‘) and after adapter ligation, PCR amplification and size selection (‘+’). The

shift on the gel corresponds to the ligation of adapters (2×60 bp = 120 bp). Libraries con-

structed using ~300 or ~1,000 independent crossover molecules are indicated. (B) Histograms

showing the size distribution of the distance between filtered crossover reads, according to

genotype and crossover library. Libraries were constructed using either ~300 or ~1,000 inde-

pendent crossover molecules and analysed separately. The red dotted lines represent the mean

crossover read distances for each library.

(TIF)

S4 Fig. Crossover frequency across RAC1 in wild type and fancm, recq4a recq4b and fancm
recq4a recq4b mutants analysing ~300 or ~1,000 crossovers. The coverage of crossover reads

aligned against the Col×Ler panmolecule was calculated and normalized by the total number

of reads analysed, and also by RAC1 genetic distance (cM), measured previously by titration.

For each genotype two biological replicate libraries were analysed, constructed with amplifica-

tions from an estimated ~300 (purple) or ~1,000 (black) independent crossover molecules.

Col×Ler polymorphisms are indicated by black ticks on the x-axis. Gene TSS and TTS are indi-

cated by vertical blue lines, and exons by horizontal black lines.

(TIF)

S5 Fig. Comparison of Sanger and NGS-derived crossover maps within the RAC1 amplicon

in wild type, fancm, recq4a recq4b and fancm recq4a recq4b. Crossover frequency (cM/Mb)

within the region of the RAC1 disease resistance gene measured using titration and Sanger

sequencing of single crossover molecules from Col×Ler wild type (0.095 cM), recq4a recq4b
(0.059 cM), fancm (0.083 cM) and recq4a recq4b fancm (0.55 cM) pollen F1 genomic DNA.

Recombination is plotted against the panmolecules, which include all bases from both parental

accessions. Gene TSS/TTS are indicated by vertical dotted lines and exons by horizontal black

lines. The position of RAC1 TIR (green), NB-ARC (red) and LRR (blue) domain-encoding

sequences are indicated by the horizontal lines. SNPs (red) and indels (black) are indicated by

the ticks on the x-axis. On the right, the Sanger data are overlaid with the coverage of crossover

reads normalized by the total number of reads analysed and also normalized by RAC1 genetic

distance (cM) (red). Col×Ler polymorphisms are indicated by black ticks on the x-axis.

(TIF)

S1 Table. Recombination rate calculated via pollen-typing across the RPP13 disease resis-

tance gene in Col×Ler. The panmolecule physical distance between the inner pollen-typing

ASOs is 5,626 bp.

(DOCX)

S2 Table. RAC1 Col/Ler pangenome key. See separate file ‘S2_Table_Col_Ler_RAC1_key.

csv’. The file lists panmolecule coordinates with the cognate position in the Col and Ler tem-

plates. The ‘SNP’ column indicates SNP positions by ‘1’ values. The ‘LER insertion’ column

indicates the position of additional bases in Ler compared to Col, which are indicated by ‘1’

values, whereas the ‘COL insertion’ column indicates the position of Col inserted bases com-

pared to Ler by ‘2’ values.

(CSV)

Interhomolog polymorphism shapes crossover hotspot topology in Arabidopsis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007843 December 13, 2018 19 / 28

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007843.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007843.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007843.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007843.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007843.s007
https://doi.org/10.1371/journal.pgen.1007843


S3 Table. RAC1 Col/Wl pangenome key. See separate file ‘S3_Table_Col_Wl_RAC1_key.csv’.

The file lists panmolecule coordinates with the cognate position in the Col and Wl templates.

The ‘SNP’ column indicates SNP positions by ‘1’ values. The ‘Wl insertion’ column indicates

the position of additional bases in Wl compared to Col, which are indicated by ‘1’ values,

whereas the ‘COL insertion’ column indicates the position of Col inserted bases compared to

Wl by ‘2’ values.

(CSV)

S4 Table. RAC1 Col/Mh pangenome key. See separate file ‘S4_Table_Col_Mh_RAC1_key.

csv’. The file lists panmolecule coordinates with the cognate position in the Col and Mh tem-

plates. The ‘SNP’ column indicates SNP positions by ‘1’ values. The ‘MH insertion’ column

indicates the position of additional bases in Mh compared to Col, which are indicated by ‘1’

values, whereas the ‘COL insertion’ column indicates the position of Col inserted bases com-

pared to Mh by ‘2’ values.

(CSV)

S5 Table. RPP13 Col/Ler pangenome key. See separate file ‘S2_Table_Col_Ler_RPP13_key.

csv’. The file lists panmolecule coordinates with the cognate position in the Col and Ler tem-

plates. The ‘LER insertion’ column indicates the position of additional bases in Ler compared

to Col, which are indicated by ‘1’ values, whereas the ‘COL insertion’ column indicates the

position of Col inserted bases compared to Ler by ‘2’ values.

(CSV)

S6 Table. Crossover distributions within the RPP13 amplicon from Col×Ler F1 analysed

via pollen-typing. Interval lengths are calculated according to the panmolecule, and these dis-

tances are used to calculate cM/Mb.

(DOCX)

S7 Table. Recombination rate calculated via pollen-typing across the RAC1 disease resis-

tance gene in Col×Ler and Col×Mh. Recombination rate (cM/Mb) was calculated by dividing

genetic distance (cM) by panmolecule physical length. A chi-square test using a 2×2 contin-

gency table was used to test for a significant difference between the genotypes.

(DOCX)

S8 Table. Crossover distributions across the RAC1 amplicon from Col×Ler F1 analysed via

pollen-typing. We have combined 181 crossovers reported previously with an additional 59,

to give a new set of 240 crossovers. Crossover frequency (cM/Mb) was calculated using Col×-
Ler F1 titration data genetic distance (0.074 cM). Interval lengths are calculated according to

the panmolecule, and these distances are used to calculate cM/Mb.

(DOCX)

S9 Table. Crossover distributions across the RAC1 R gene hotspot in Col×Wl F1 analysed

via pollen-typing. Crossover frequency (cM/Mb) was calculated using Col×Ler F1 titration

data genetic distance (0.074 cM), and interval lengths according to the panmolecule.

(DOCX)

S10 Table. Crossover distributions within the RAC1 amplicon from Col×Mh F1 analysed

via pollen-typing. Crossover frequency (cM/Mb) was calculated using Col×Mh F1 titration

data genetic distance (0.064 cM), and interval lengths according to the panmolecule.

(DOCX)

S11 Table. Adjacent window analysis of polymorphisms versus crossovers within the

RAC1 pollen-typing amplicon. The window size used was 500 bp, within which crossovers
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(CO) were counted, and the number of polymorphisms (Polys.), where SNPs were counted as

one and indels by their length in bp. Analysis was performed against the pancoordinates. The

row highlighted in grey is the final window which has a different size in each cross due to vari-

able panmolecule lengths. This window was not included in the analysis plotted in Fig 4.

(DOCX)

S12 Table. Adjacent window analysis of SNPs vs crossovers within the RPP13 pollen-typ-

ing amplicon. The window size used was 500 bp, within which crossovers were counted, and

the number of polymorphisms, where SNPs were counted as one and indels by their length in

bp. Analysis was performed against the pancoordinates. The row highlighted in grey is the

final window which has a different size in each cross due to variable panmolecule lengths. This

window was not included in the analysis plotted in Fig 4.

(DOCX)

S13 Table. Genetic distance within the RAC1 amplicon in wild type and genetic back-

grounds with altered meiotic recombination. Recombination rate was calculated using the

Col×Ler panmolecule distance between the pollen-typing inner ASOs (9,482 bp).

(DOCX)

S14 Table. Crossover distributions across the RAC1 R gene hotspot in Col×Ler F1 analysed

via pollen-typing in wild type, recq4a recq4b, fancm and recq4a recq4b fancm. Crossover

events were identified using Sanger sequencing of amplifications from single molecules. Inter-

val lengths are calculated according to the Col×Ler panmolecule, and these distances are used

to calculate cM/Mb.

(DOCX)

S15 Table. Genetic distance of the RAC1 amplicon in wild type and msh2 mutant in Col×-
Ler. Recombination rate was calculated using the Col×Ler panmolecule distance between the

pollen-typing inner ASOs (9,482 bp).

(DOCX)

S16 Table. Significance testing of genetic distance of the RAC1 amplicon in wild type and

mutant backgrounds. We used the mean crossovers and parentals from wild type and

mutants to construct 2×2 contingeny tables and perform Chi-square tests.

(DOCX)

S17 Table. Mapping reads and filtering during RAC1 pollen-seq in wild type and fancm,

recq4a recq4b and fancm recq4a recq4b mutants. The ‘Total’ column lists the numbers of

read pairs obtained. The number of read pairs surviving sequential analysis filters are listed in

order to identify RAC1 crossover read pairs. Paired end reads (end1 and end2) were separated

and aligned to the Col or Ler RAC1 parental template sequences, allowing only exact matches

(Mapped). Read pair ends that mapped uniquely to either Col or Ler were kept (Unique). Read

pair ends (1 and 2) that mapped to Col and Ler were identified (Matched), where the Ler map-

ping read had a lower coordinate than the Col mapping read (Orientate), and that were on

opposite strands (Strand). Table (A) shows the reads obtained from libraries generated from

~300 crossovers from wild type, fancm, recq4a recq4b and fancm recq4a recq4b, while

Table (B) shows those obtained from ~1,000 crossover libraries for the same genotypes.

(DOCX)

S18 Table. Correlation between polymorphisms and crossover reads in pollen-sequencing

data. Using adjacent windows of the indicated size, correlations (Spearman’s) were performed

against crossover reads pairs and polymorphism density calculated against the Col×Ler
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panmolecule. P values are printed below the correlation coefficient in parentheses.

(DOCX)

S19 Table. Pollen-typing allele specific primers for RAC1 and RPP13. Red highlighting indi-

cates the position of a Col/Ler SNP. If the oligo sequence is entirely red, it hybridizes to a

sequence only present in one accession (indel).

(DOCX)

S20 Table. RAC1 and RPP13 pollen typing PCR parameters. Primer combinations are listed

for use in RAC1 and RPP13 pollen typing amplifications, together with the PCR parameters

used.

(DOCX)
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