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ABSTRACT In massive multiple-input multiple-output (MIMO) systems using a large number of antennas,
it would be difficult to connect high-resolution analog-to-digital converters (ADCs) to each antenna compo-
nent due to high cost and energy consumption problems. To resolve these issues, there has been much work
on implementing symbol detectors and channel estimators using low-resolution ADCs for massive MIMO
systems. Although it is intuitively true that using low-resolution ADCs makes it possible to save a large
amount of energy consumption in massive MIMO systems, the relationship between energy consumption
using low-resolution ADCs and detection performance has not been properly analyzed yet. In this paper,
the tradeoff between different detectors and total baseband energy consumption including flexible ADCs
is thoroughly analyzed taking the optimal fixed-point operations performed during the detection processes
into account. In order to minimize the energy consumption for the given channel condition, the proposed
scheme selects the best mode among various processing options while supporting the target frame error rate.
The numerous case studies reveal that the proposed work remarkably saves the energy consumption of the
massive MIMO processing compared with the existing schemes.

INDEX TERMS Massive MIMO, low-resolution ADCs, symbol detection, energy consumption.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) exploiting
a number of antennas at base stations (BSs) is considered
as one of the key ingredients of 5G and beyond wireless
communications [1]–[5]. It was shown that simple linear pro-
cessing, i.e., maximum-ratio combining (MRC) and matched
beamforming (MBF) become optimal with infinite number
of antennas [3] and that the transmission power can be scaled
down proportional to the number of antennas [6], [7]. Using
a large number of antennas, however, would experience prac-
tical issues, e.g., high power consumption due to numerous
power-hungry hardware components.

To cope with realization issues, many works [8], [9] have
shown that it is possible to use non-ideal hardware in massive
MIMO systems. Among many possible non-ideal hardware

components, using low-resolution ADCs at the BS is of great
interest. It is well known that the ADC power consumption
increases exponentially with the ADC resolution bits [10];
i.e., using current state-of-the-art ADC architectures that
exploit 12 to 16 bits resolutions would easily consume more
than 100 Watts in massive MIMO systems [11]. Therefore,
it is possible to save a large amount of power consumption
(and also realization cost) during uplink transmissions by
using low-resolution ADCs in massive MIMO systems.

Recently, there has been much work on designing sym-
bol detectors and channel estimators for massive MIMO
using low-resolution ADCs [12]–[19]. Near-optimal nonlin-
ear detector and channel estimator for massive MIMO using
one-bit ADCs were proposed in [12] while joint data detec-
tion and channel estimation with low-resolution ADCs were
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proposed in [13]. In [17], the linear minimum mean squared
error (LMMSE) channel estimator based on the Bussgang
decomposition [20] was proposed and achievable rates using
linear combiners were analyzed. It was shown that it is
also possible to use low-resolution ADCs in wideband mas-
sive MIMO systems [14], [16], [18]. Mixed use of high- and
low-resolution ADCs was analyzed in [15] and [19] where
it was shown that using a few number of high-resolution
ADCs on top of many low-resolution ADCs has negligible
performance degradation. For detailed discussions, we refer
to [21] that has well summarized and compared possible
channel estimation and symbol detection techniques using
low-resolution ADCs.

In spite of the attractive detection performance, however,
the algorithms associated with low-resolution ADCs are in
general expensive in terms of the hardware complexity and
the processing energy as they require numerous processing
iterations associated with non-linear components [12], [13].
If the baseband system targets the high data-rate of the 5G
specification, moreover, the previous performance-oriented
algorithms are no longer acceptable for the practical solution.
Therefore, the linear detection algorithms such as MRC,
zero-forcing (ZF), and MMSE are regarded as the realistic
candidates for the practical massive-MIMO baseband sys-
tem due to their simple and non-iterative matrix operations.
In addition, the energy-performance trade-offs can be utilized
to further reduce the processing costs for the given chan-
nel condition. Considering a number of processing options
from algorithm to circuit-design levels, for the first time,
we present in this paper an efficient multi-mode massive
MIMO baseband processing, which dynamically selects the
energy-optimized computing option while still they are satis-
fying the target frame error rate (FER) performance. Includ-
ing the conversion energy of flexible ADCs, experimental
results show that the proposed processing method can save
the energy consumption of the massive MIMO system by up
to 93.12% compared to the straightforward detection scheme
that only considers the baseband complexity.

The rest of this paper is organized as follows. Section II
presents the backgrounds of massive MIMO systems.
Section III describes the proposed unified symbol detec-
tor with the optimized computing resolutions. Includ-
ing the conversion energy of flexible ADCs, in Section IV,
the multi-mode computing solution is introduced to select
the energy-optimized mode. Using the proposed method,
a number of case studies are compared to the previous works
in Section V. Finally, the conclusions are made in Section VI.

II. BACKGROUNDS OF MASSIVE MIMO SYSTEMS
We first describe the system model of massive MIMO using
low-resolution ADCs. Then we explain two linear symbol
detectors for massive MIMO, i.e., MRC and ZF detectors.
With a large number of antennas and perfect channel state
information (CSI), it is well known that these linear detectors
become near optimal with perfect ADCs [3]. We assume
the BS has perfect CSI in this paper as accurate channel

estimation is possible even with low-resolution ADCs in
massive MIMO [12], [13], [16], [17], [21].

A. MASSIVE MIMO USING LOW-RESOLUTION ADCS
We consider a single-cell uplink system with K single-
antenna users where the BS is equipped with M receive
antennas withM � K . Assuming a transmit power constraint
of ρ for each user, the received signal y = [y1 . . . yM ]T is

y =
√
ρHx+ n

y =
√
ρ

K∑
k=1

hkxk + n (1)

where H ∈ CM×K is the channel matrix between the BS
and the K users. The k-th column of the channel matrix
hk = [h1k . . . hMk ]T is the channel vector between the BS
and the k-th user where hmk denotes the channel coefficient
between the m-th antenna at the BS and the k-th user. The
data vector x ∈ CK is the concatenated data symbols of
the K users, i.e., x = [x1 . . . xK ]T . To obey the power con-
straint of ρ, the data symbol of the k-th user denoted as xk
satisfies E [xk ] = 0 and [E

[
|xk |2

]
= 1. The noise vector

n ∈ CM is the additive white Gaussian noise (AWGN),
i.e., n ∼ CN (O, IM ), where O is M × 1 zero vector and IM
isM ×M identity matrix, respectively. Therefore, the signal-
to-noise ratio (SNR) is ρ.

To reduce the power consumption, the BS uses B-bit low-
resolution ADCs for both the in-phase and the quadrature
components of y elementwise, which gives the total number
of low-resolution ADCs equipped at the BS as 2M . The
quantized output of the m-th receive antenna after the use of
low-resolution ADCs is given by

ŷm = Q (Re (ym))+ jQ (Im (ym)) (2)

where the function Q (·) : R→
{
r̂i
}2E
i=1 is the B-bit quantizer

with the i-th quantization level r̂i ∈ R associated with its
quantization region Ri ∈ R. Note that functions Re (·) and
Im (·) return the real and imaginary parts of the given signal,
respectively. The quantized value of r ∈ R is given by

r̂i = Q (r) if r ∈ Ri. (3)

The quantized received signal is then given by

ŷ =
[
ŷ1 · · · ŷM

]T
. (4)

Note that a conceptual diagram of the system described until
now is illustrated in Fig. 1.

B. MRC DETECTOR
For MRC detector, the BS processes its received signal by
multiplying the channel matrix H

x̂MRC = HHy

x̂MRC =
√
ρHHHx+HHn (5)

where x̂MRC is the MRC estimate of x, and HH is the con-
jugate transpose matrix of H. In general, MRC detectors
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FIGURE 1. An overview of uplink system with M receive antennas and K
single-antenna users. The received signal ym is quantized by two ADCs
for its real and imaginary values.

attempt to maximize the SNR of user k without consid-
ering inter-user interference. Hence, MRC detectors suffer
from significant performance degradation due to inter-user
interference. However, it is reported that the MRC detector
becomes optimal with infinite number of antennas and perfect
CSI at the BS [3].

To analyze the effect of deploying unlimited number of
antennas at the BS, we rewrite (5) as

x̂MRC,k =
√
ρ ‖hk‖2 xk +

√
ρ

K∑
k ′ 6=k

hHk hk ′xk ′ + hHk n (6)

where x̂MRC,k is the k-th element of x̂MRC. As M → ∞,
the effective channel coefficients ‖hk‖2 and hHk hk ′ in (6) are
deterministic in probability, i.e., [3]

1
M
‖hk‖2

p
−→ 1 (7)

1
M

hHk hk ′
p
−→ 0,

1
M

hHk n
p
−→ 0 (8)

where (7) and (8) follows from the law of large num-
bers (LLN). The implication of (7) and (8) is that for unlim-
ited number of antennas with perfect CSI, the MRC detector
perfectly eliminates inter-user interference, maximizing the
SNR of desired signal.

C. ZF DETECTOR
The analysis of MRC detectors reveals the fact that as the
number of antennas grows without limit, inter-user inter-
ference is removed and the performance of MRC detectors
approaches that of an optimal detector. However, a draw-
back of this argument is that the assumption of unlimited
antennas cannot be applied to more realistic situations where
the number of BS antennas per user is limited to a finite
value. In [7], under practical situations whereM →∞while
the ratio K /M is kept fixed, it was shown that the MMSE
detectors are superior to the MRC detectors by comparing

the required degrees of freedom (DoF) per user to achieve
the same performance.

Now, consider an uplink system employing the ZF detector.
The ZF estimate of x is obtained by multiplying the pseudo
inverse of the channel matrix H to the received signal,

x̂ZF = H†y

x̂ZF =
√
ρH†Hx+H†n (9)

where H† denotes the pseudo inverse matrix of H. Note that
the ZF detectors are equivalent to the MMSE detector at
high SNR regime [22]; hence, the ZF detector would outper-
form the MRC detector using similar arguments made in [7].
Moreover, as discussed in [23], it is easy to show that the ZF
detector is possible to perform perfect detection even using
one-bit ADCs as the number of antennas at the BS goes
to infinity. Using the algebraic formula of pseudo inverse
matrix H†, ZF estimate can be expressed as,

x̂ZF = H†y

=

(
HHH

)−1
HHy

=

(
HHH

)−1
x̂MRC (10)

Using (10), as a result, we can exploit the MRC estimate
of x to calculate the ZF estimate by multiplying (HHH)−1

to x̂MRC.

III. COMPUTING MODULES FOR MIMO PROCESSING
A. PROPOSED UNIFIED DETECTOR ARCHITECTURE
To support the efficient massive MIMO baseband processing,
in general, it is important to develop the optimized hardware
architectures for matrix operations, i.e., matrix additions,
multiplications, and inversions [24], [25]. In order to provide
the energy-performance tradeoffs, in this work, the proposed
symbol detector supports two different detection algorithms,
i.e., the MRC detector shown in (5) and the ZF detector
derived in (9). With the practical number of antennas, in gen-
eral, the ZF detector provides better FER performance while
requiring more energy associated with the matrix inversion
process. On the other hand, theMRC scheme uses onlymatrix
multiplication once, which becomes more energy-efficient by
sacrificing the FER performance [26]. As the results of the
MRC algorithm can be reused for the processing of the ZF
method, as depicted in (10), we introduce in this work the
unified detector architecture.

Fig. 2 shows the conceptual diagram of the proposed
unified symbol detector. Note that the number of receive
antennas, denoted as M , is determined during the design
time, whereas the number of single-antenna users, denoted
as K , in this work is fixed to 8 to show a concrete example
of the proposed detector. To support the ADC speed in this
work, i.e., 40M sample/s, the unified detector is designed
to operate at the speed of 160MHz in 65nm CMOS tech-
nology, and thus accepts M input samples in every 4 cycles
from the 2M ADCs. For the different detection algorithms,
as shown in Fig. 2, the proposed detector introduces three

6652 VOLUME 7, 2019



S. Moon et al.: Massive MIMO Systems With Low-Resolution ADCs

FIGURE 2. Conceptual diagram of the proposed unified symbol detector.

primitive computing modules, i.e., two types of inner-product
modules (IP1 and IP2), and the matrix inversion unit (INV).
Basically, IP1 and IP2 have the same architecture except
for that IP1 calculates the inner product with vectors having
the length of M , where IP2 targets vectors whose length is
fixed to K . In fact, it is quite straightforward to realize the
MRC scheme in (5), i.e., only 2 parallel IP1 units followed
by the vector synchronizer are utilized for calculating x̂MRC
as depicted in Fig. 2. In order to increase the operating
frequency up to 160MHz, as depicted in Fig. 3, the internal
operations of an IP1 module is pipelined into 4 processing
cycles. In the first cycle, more precisely, M element-wise
multiplications are performed simultaneously and M /4 two-
level binary adder trees are followed to partially accumulate
the multiplication results. These results are temporally stored
by using M /4 pipeline registers, and then remained accumu-
lation is performed through the following 3-stage pipelined
binary adder tree as shown in Fig. 3. Note that the vector
synchronizer is necessary to collect the serially computed
elements from IP1 units, finally constructing the MRC result
as shown in Fig. 2.

In contrast to the simple MRC detection, it is much
more complex to support the ZF scheme in (10) as the
algorithm necessitates multiple matrix multiplications fol-
lowed by the matrix inversion. In order to support ZF
operation, as shown in Fig. 2, the proposed unified detec-
tor first calculates HHH from the input channel matrix H,
requiring numerous IP1 modules in parallel. To reduce the
number of inner products, the unified detector utilizes the
fact that HHH is a Hermitian matrix, where the conjugate
transpose result is identical to itself. Using this property,
we can compute only the upper (or the lower) triangular
parts of HHH, reducing the number of inner products from
64 to 36. In order to accept the new input symbols in every
4 cycles, we utilize 9 parallel IP1 modules by considering

FIGURE 3. Detailed architecture of IP1 module.

their pipelined processing. Similar to the MRC detecting,
the matrix synchronizer rearranges the results of IP1 units
to constructHHH, and A−1 approximation module generates
the proper inputs to the matrix inversion in (10). The pro-
posed INV unit is based on Neumann series approximation,
eliminating the impractical matrix division operations with
the series of multiplications [27]. There exist many ways to
perform matrix inversion [28]–[30], we implemented INV
unit using Neumann series approximation as it has relatively

VOLUME 7, 2019 6653



S. Moon et al.: Massive MIMO Systems With Low-Resolution ADCs

FIGURE 4. SER performance of ZF detector with exact matrix inversion
(Exact) and Neumann series approximation using one iteration (P = 1).

small computation complexity when iteration number is
small. According to Neumann series, the inverse of the input
matrix Z can be approximated as follows.

Z−1 ≈

(
P−1∏
n=0

(
I+
(
I−A−1Z

)2n))
A−1 (11)

where P stands for the number of iterations of Neumann
series and A represents the initial approximation of Z. It is
well known that the inverse Z−1 converges to the correct
result when P is large enough [31]. Moreover, setting the
initial approximation Aplays a critical role to determine the
speed of convergence. In the massive MIMO processing
using the large number of antennas, fortunately, the target
matrix Z = HHH tends to be diagonally dominant, so we
can easily choose the initial approximation A with diagonal
elements of HHH as shown in Fig. 2. As depicted in Fig. 4,
simulation results show that the proposed initial guess is
acceptable as the inversion process with only one iteration
already approaches the accurate result with the negligible
errors. In this work, therefore, we set P to be 1 for the cost-
effective solution. Then, our Neumann series approximation
becomes;

Z−1 ≈
(
2I− A−1Z

)
A−1. (12)

Note that A−1 is the diagonal matrix collecting the recip-
rocals of diagonal elements of Z. Note that this A−1 esti-
mation is performed in parallel to the matrix synchronizer
in Fig. 2. Considering the simplified matrix inversion process
in (12), as a result, the proposed INV unit contains twomatrix
multiplier modules (MUL) and one matrix subtractor mod-
ule (SUB). Handling the input 8×8matrices in a fully parallel
manner, the INV unit necessitates 4 processing cycles to com-
plete its operation. After calculating (HHH)−1, as depicted
in Fig. 2, the unified detector reutilizes the buffered results

of the MRC scheme, x̂MRC, finally obtaining the ZF esti-
mate, x̂ZF. This last step is operated with the IP2 modules as
shown Fig. 2. Similar to the IP1 architecture, we adopt 4-stage
multiplication process for realizing the IP2 architecture hav-
ing the different vector size. As each major computing step
equally takes 4 processing cycles, as a result, the proposed
unified symbol detector can accept the new input symbols
in every 4 cycles for both algorithms. Fig. 5 illustrates the
processing sequence of the proposed unified detector. Note
that the processing sequence of the n-th detection process,
denoted as #N , is serially allocated to the pipelined pro-
cessing units without causing the unwanted waiting periods.
Hence, the proposed unified detector successfully supports a
seamless detection scenario, as depicted in Fig. 5, which is
necessary to the high-speed massive MIMO processing.

FIGURE 5. Data flow in MRC and ZF detectors.

B. OPTIMIZED COMPUTING RESOLUTIONS
For the practical realization of the unified symbol detector,
all the computations should be operated with the fixed-point
numbers, and it is important to precisely determine the proper
computing resolution of each processing unit [28]. In order
to minimize the energy consumption, in general, we need to
reduce the computing resolution as low as possible. Based on
the numerous simulations associated with different MIMO
configurations and fading channel conditions, in this work,
we optimize the computing resolutions of IP1, IP2, and INV
operators. Table 1 summarizes the optimized computing res-
olution of each unit depending on the different number of the
received antennas. Compared to the 32b floating-point values,
note that all the computing resolutions are carefully selected
not to degrade the FER performance.

TABLE 1. Internal bit-widths of computing modules.

There are two interesting observations on the computing
resolution in Table 1. The first is that we need more bits for
integer parts when the number of antennas increases. This is
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a natural observation that more antennas lead to the enlarged
vector size on IP1 unit, and the internal peak values during
inner products become bigger. The second point is related
to the different resolutions between IP1 and other processing
units. Starting from the INVoperation, more precisely, we use
much more bits on fractional parts as shown in Table 1.
As the IP1 module only performs multiply and accumulate
operations, in fact, an IP1 unit does not need such a high level
of accuracy in fractional parts. However, the INV performs
the inverse operation of the input Hermitian matrix depicted
in (10). As the value of each diagonal element in Hermi-
tian matrix HHH is driven by accumulating M elements
of H, the outputs of inversion process consequently contain
extremely small values, requiring more resolutions on frac-
tional parts. Based on the optimized computing resolutions,
therefore, the proposed unified symbol detector minimizes
the hardware costs for both MRC and ZF algorithms, still
providing the acceptable FER performances.

IV. ENERGY-OPTIMIZED MULTI-MODE COMPUTING
SCHEME FOR MASSIVE MIMO PROCESSING
In this section, the multi-mode massive MIMO processing
algorithm is newly introduced for minimizing the symbol
detection energy. Based on the proposed unified detector
architecture, we first have two different detecting options for
the detection strategy, i.e., MRC and ZF algorithms. In order
to provide more processing modes, in addition, we adopt the
flexible ADC architecture that can control its quantization
dynamically. Note that changing the detecting mode directly
affects to the overall energy consumption as well as the FER
performance. Hence, it is important to find a way to select
the optimal MIMO mode, consuming the minimum amount
of energy while providing the acceptable FER performance.

In our selection algorithm, depending on the channel con-
dition, we first construct the candidate set to choose the
optimal processing configuration. By examining the FER of
each mode, the candidate set only includes the configurations
achieving the target FER for the given SNR. For the sake of
simplicity, in this work, we use the target FER of 10−1, which
is widely accepted for the practical applications [32], [33].
To calculate the FER, after the MIMO processing, we adopt
1024b, 0.5-rate polar codes for 5G specification [34], [35].
Note that we also assume the M × 8 massive MIMO system
where the number of receive antennas and the modulation
scheme are pre-determined during the system-design level.
After constructing the candidate set, we estimate the overall
energy consumption of each mode to find the optimal one
in terms of energy consumption. This seems to be obvious,
but estimating the energy consumed by two major processing
units, i.e., the ADC and the symbol detection, requires more
intensive circuit-level studies as follows.

A. ENERGY IN THE UNIFIED SYMBOL DETECTOR
To calculate the energy consumption precisely, the unified
symbol detector hardware dedicated for the different massive
MIMO configurations are designed and fabricated in 65nm

CMOS technology. Note that all the detector designs are
operating at the speed of 160MHz by adapting the bal-
anced pipelined architecture. By detecting 8 symbols in every
4 cycles, as described in the previous section, the unified
detector in this work can support the high-speed ADC whose
conversion rate is up to 40Msample/s, which can be happily
adopted to the next-generation wireless communications [1].
In order to realize the energy-optimized detector for different
MIMO configurations, all the internal processing units of
each design are realized to follow the optimal computing
resolutions depicted in Table 1.

TABLE 2. Energy consumption of the proposed symbol detector using
64QAM modulation.

Table 2 summarizes the energy consumption for handling
a set of M received samples in the unified symbol detectors
targeting the differentMIMO configurations. By adopting the
ZF algorithm, which is basically more complex algorithm
than MRC, the energy consumption of symbol detection
process is naturally increased compared to the simple MRC
algorithm. For the case of the 256×8 massive MIMO system
with 64QAM modulation, for example, the proposed unified
symbol detector consumes only 6.28nJ for processing the
MRC algorithm where the ZF scheme requires 6.36 times
more energy for detecting the received symbols. In the pre-
vious researches, therefore, the MRC algorithm would have
a higher priority than the ZF algorithm when two algo-
rithms both provide acceptable detecting performance for
the given SNR due to low energy consumption of MRC
algorithm [30]. As the proposed work provides precise trade-
offs between the FER performance and the energy consump-
tion by adopting the flexible ADCs, however, the previous
simple selection rule for the detection algorithm should be
reconsidered by checking the energy consumed by multiple
ADCs. In other words, the MRC scheme associated with
high-resolution ADCs and the ZF algorithm followed by the
low-resolution ADCs are fairly compared in this work to find
more energy-optimized baseband operation.

B. ENERGY CONSUMPTION IN THE FLEXIBLE ADCS
In RF-analog systems, in general, the ADC is the most
critical circuit component that often determines the system
performance. As ADCs have a wide variety of performance
characteristics, it is necessary to quantify the performance of
ADC into a single metric to understand the effect of it on
the overall system. To do this, the figure of merit (FoM) can
be obtained by the trade-off among the power consumption,
resolution and bandwidth. In general, there are Walden FoM

VOLUME 7, 2019 6655



S. Moon et al.: Massive MIMO Systems With Low-Resolution ADCs

(FoMW) [10] and Schreier FoM (FoMS) [36]

FoMW =
Power

fs_nyq × 2ENOB
(13)

FoMS = SNDR+ 10log
fs_nyq/2
Power

(14)

where fs_nyq is the Nyquist frequency, SNDR is a signal to
noise and distortion ratio, and ENOB is the effective number
of bits, related to the ADC resolutions. It is well known that
ENOB is calculated from SNDR as [10]

ENOB = (SNDR− 1.76) /6.02 (15)

FIGURE 6. Energy consumption of state-of-the-art ADC designs.

Note that FoMW shows that 2× power is needed to increase
1b resolution, while FoMS shows 4×more power is required
due to thermal noise limit. For this reason, state-of-the-art
ADCs to date tend to follow the FoMW up to the 8b resolution,
and the FoMS for higher ENOBs, where the thermal noise of
capacitor limits the performance [37]. From the ADC surveys
in [37], this work selects the results of the target Nyquist
frequency (40∼80MHz) and the 65nm process design only,
and calculates the average FoM value of them, FoMW =

352fJ/c/s and 158dB FoMS, as shown in the Fig. 6. Note that
this ADC survey only includes the state-of-the art designs,
and generally does not include the result of the power-hungry
ADC input buffer or reference drivers. In addition, the flex-
ible ADCs can be easily implemented with the minimal
overheads by using various circuit techniques depending on
the type of ADCs like power gating (pipeline) [38], capaci-
tor switching (SAR) [39], [40], sampling frequency scaling
(delta-sigma). Therefore, it can be said that the calculated
FoMS and FoMW are not overestimated values and appropri-
ately predict the ADC energy consumption required in this
study.

V. CASE STUDIES
In this section, we present several case studies to show the
impacts of the proposed energy-optimized MIMO detection
scheme. Based on the unified detector architecture, for fair
comparisons, three different detection schemes are applied

to each study; 1) the straightforward MRC-preferred method
(MRC scheme has higher priority when MRC and ZF are
both capable) with the 9b-fixed ADCs, 2) the MRC-preferred
algorithm based on the flexible ADCs, and 3) the pro-
posed energy-optimized scheme that considers the process-
ing energy of the unified detector as well as the conversion
energy from the flexible ADCs. Increasing the flexibility of
ADC resolutions obviously leads to the precise trade-offs
between the energy consumption and the FER performance.
Because of the additional control logics, however, it may
also increase the complexity of each ADC. Based on the
FER simulations according to the different ADC resolutions,
therefore, the flexible ADC in this work is assumed to have
only 3 options for its resolution, i.e., 3-, 5-, and 9-bits, which
is the practical assumption for providing the ADC flexibility
with the acceptable complexity overheads [41]. We assumed
two channels to model the realistic communication environ-
ments in various situations. The first one is the Rayleigh fad-
ing channel, which describes only non-line-of-sight (NLoS)
signals, and the other one is the Rician fading channel, which
includes NLoS signals and line-of-sight (LoS) signals [42].
In the Rayleigh channel, the channel matrix H ∼ CN (0, IN )
is associated with the Rayleigh-distribution random compo-
nents. In the Rician fading channel, on the other hand, H is
modeled as

H = H̄
√

� (�+ IN )−1 +Hω
√
(�+ IN )−1 (16)

whereHω describes NLoS signals and each element ofHω is
a complex normal random variable whose absolute value is
distributed as Rayleigh distribution, and H̄ is describing LoS
signals, which can be expressed as[

H̄
]
mn = exp(−j (m− 1) kdsinθn) (17)

where θn is the angle of arrival (AoA) of the nth
user [42], [43]. Considering the practical cases, we assumed
that cells are sectionalized and users are evenly distributed
in the cell, therefore, AoA is distributed within the interval
−π /3 and π /3. In addition, the Rician K -factor is selected to
10dB [43].

A. CASE STUDIES ON RAYLEIGH FADING CHANNELS
Fig. 7 illustrates the FER performance of different symbol
detection algorithms and ADC resolutions of 256×8 MIMO
processing with 16QAM modulation in the Rayleigh fading
channels. In terms of the ideal FER performance, as we
discussed, the complex ZF algorithm is the better option than
the simple MRC scheme. Note that the usage of 9-bit ADCs
always converges the ideal performance of each detection
algorithm. On the other hands, results using ADCs with
5- and 3-bits gradually degrade the FER performance, but
they still offer the target FER depending on the channel con-
dition. For the different detection scenarios, Fig. 8 shows the
energy consumption per each MIMO processing, i.e., detect-
ing 8 received symbols at a time. With the fixed 9-bit
ADCs, the straightforward algorithm changes the decoding
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FIGURE 7. FER performance of MRC and ZF algorithms for 16QAM,
256 × 8 MIMO processing with different ADC resolutions in Rayleigh
fading channels.

FIGURE 8. Energy consumption of various selection schemes for
256 × 8 MIMO processing with 16QAM modulation in Rayleigh
fading channels.

method from ZF to MRC when SNR > −11.92dB. By uti-
lizing the flexible ADCs, as shown in the figure, the simple
MRC- preferred method changes resolution of ADCs and
reduces energy consumption in each SNR regions. However,
when SNR is in the region of−11.92dB< SNR<−10.41dB,
the MRC-preferred scheme with flexible ADCs, depicted by
triangle symbols in Fig. 8, selects theMRC scheme with 9-bit
ADCs, consuming 97.33nJ per each detection. For the same
condition, on the other hand, note that the proposed scheme,
depicted by cross symbols, uses only 45.03nJ and 41.12nJ
by utilizing the ZF algorithm with 5-bit ADCs and 3-bit
ADCs, which selects more energy-efficient processing mode.
By checking the required energy in detail, as a result, our
proposed energy-optimized detection method always adopts
the energy-efficient scenario, saving the detection energy by

FIGURE 9. FER performance of MRC and ZF algorithms for 64QAM,
512 × 8 MIMO processing with different ADC resolutions in Rayleigh
fading channels.

FIGURE 10. Energy consumption of various selection schemes for
512 × 8 MIMO processing with 64QAM modulation in Rayleigh fading
channels.

up to 92.30% and 57.75% compared to the MRC-preferred
scheme with fixed and flexible ADCs, respectively.

Fig. 9 shows the second case study based on the
512×8 MIMO processing with the 64QAM modulation.
Similar to the previous study, lowering ADC resolutions
sacrifices the FER performance accordingly. Compared to
the previous works, as depicted in Fig. 10, the proposed
method reduces the detection energy successfully. Under
the Rayleigh fading channel conditions, as a result, our
energy-optimized scheme effectively minimizes the required
symbol detection energy.

B. CASE STUDIES ON RICIAN FADING CHANNELS
In this case study, FER performances of the Rician channels
are slightly different from those of the Rayleigh channel due
to the strong LoS signals [44]. More precisely, each linear
detector can achieve target FER by employing fewer antennas
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FIGURE 11. FER performance of MRC and ZF algorithms for 64QAM,
128 × 8 MIMO processing with different ADC resolutions in Rician
fading channels.

FIGURE 12. Energy consumption of various selection schemes for
128 × 8 MIMO processing with 64QAM modulation in Rician
fading channels.

for our working scenarios. In addition, the performance gap
between the MRC detection and the ZF detection becomes
negligible as the number of antennas is increased. To take into
account of the realistic scenarios, therefore, in this case study,
we use 128 antennas for the cases of Rician channel, which
is smaller than the case studies of Rayleigh fading channel.

Fig. 11 shows the FER performance of different symbol
detection algorithms and ADC resolutions of 128×8 MIMO
processing with the 64QAM modulation. Similar to the
studies on Rayleigh fading channels, applying 9-bit ADCs
achieves the ideal performances while 3- and 5-bit ADCs
gradually degrades performances. As shown in Fig. 12, it can
be seen again that the previous MRC-preferred scheme is
inefficient in a certain region of SNR. More precisely, the
proposed energy-optimized scheme consumes only 21.92nJ

if the SNR is given in the range of −3.79dB < SNR <

−3.11dB, while conventional scheme consumes 48.23nJ.
As a result, the proposed work saves symbol detection energy
by up to 93.12% and 54.55% compared to theMRC-preferred
scheme having the fixed and flexible ADCs, respectively.

Regardless of channel types and conditions, the proposed
work always provides the best processing mode to minimize
the symbol detection energy, leading to the cost-effective
massive MIMO processing for the next-generation wireless
systems.

VI. CONCLUSION
In this paper, we have proposed a new energy-optimized
multi-mode symbol detection architecture. In the proposed
scheme, we adopt flexible ADCs to find the optimal ADC
resolution that can minimize the symbol detection energy
while satisfying the target FER. For the precise estimation on
the required energy, moreover, the unified symbol detector is
implemented and optimized to support different major linear
detection algorithms in practical applications. To verify the
proposed concept, we performed a number of case studies by
changing the resolution of ADCs, the number of antennas,
the modulation schemes, and even the channel modeling.
As a result, the proposed energy-optimized detecting scheme
was shown to always minimize the required detection energy
by considering both the flexible ADCs and the baseband
processing at the same time, which provides more accurate
trade-offs between the energy consumption and the FER
performance.
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