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ABSTRACT In this paper, we analyze diffusion strategies in which all nodes attempt to estimate a common
vector parameter for achieving distributed estimation in adaptive networks. Under diffusion strategies, each
node essentially needs to share processed data with predefined neighbors. Although the use of internode
communication has contributed significantly to improving convergence performance based on diffusion,
such communications consume a huge quantity of power in data transmission. In developing low-power
consumption diffusion strategies, it is very important to reduce the communication cost without significant
degradation of convergence performance. For that purpose, we propose a data-reserved periodic diffusion
least-mean-squares (LMS) algorithm in which each node updates and transmits an estimate periodically
while reserving its measurement data even during non-update time. By applying these reserved data in an
adaptation step at update time, the proposed algorithm mitigates the decline in convergence speed incurred
by most conventional periodic schemes. For a period p, the total cost of communication is reduced to a
factor of 1/p relative to the conventional adapt-then-combine (ATC) diffusion LMS algorithm. The loss
of combination steps in this process leads naturally to a slight increase in the steady-state error as the
period p increases, as is theoretically confirmed through mathematical analysis. We also prove an interesting
property of the proposed algorithm, namely, that it suffers less degradation of the steady-state error than
the conventional diffusion in a noisy communication environment. Experimental results show that the pro-
posed algorithm outperforms related conventional algorithms and, in particular, outperforms ATC diffusion
LMS over a network with noisy links.

INDEX TERMS Adaptive networks, distributed estimation, data-reserved periodic diffusion LMS, reduction

of communication, robust to noisy communication.

I. INTRODUCTION

Adaptive networks have been widely studied for
applications in distributed learning contexts in which sets
of nodes cooperatively attempt to achieve a global objec-
tive. In adaptive networks, each node has the ability to
process data and communicate with a subset of its neigh-
bor nodes, making such networks robust to node failure,
scalable, and suitable for implementing decentralized strate-
gies [1]. These inherent advantages have led to a wide range
of applications for adaptive networks, including distributed
estimation [2]-[5], distributed detection [6], [7], distributed
machine learning [8]-[12], beamforming [13], cognitive
radio [14], [15], and self-organized behavior in biological
systems [16]-[18].

In this paper, we consider the distributed estimation prob-
lem in which an entire network collectively estimates a vec-
tor parameter of interest. A number of distributed strategies
have been developed to implement distributed estimation,
including incremental [19]-[25], diffusion [3], [4], [10], [26],
and consensus strategies [2], [27]-[36]. Incremental strate-
gies require a predefined cyclic path in which each node
cooperates only with one adjacent node. However, determi-
nation of this path is not feasible in practice and, furthermore,
any link or node failures will cause the entire network to
lose its processing ability. In diffusion strategies, each node
can communicate with a set of neighbor nodes while updat-
ing its estimate, making diffusion based algorithms insen-
sitive to node and link failure. Diffusion strategies are also
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scalable and capable of real-time learning. Consensus strate-
gies attempt to induce each node in the network to converge
to a common estimate, which requires implementation at two
time-scales: one for measurement updating and another for
sufficient repetition of spatial combinations until agreement
is reached. As such, these strategies are not viable for use
with streaming measurement data, although single time-scale
implementation has been proposed to overcome this weak-
ness [37], [38]. Nevertheless, diffusion algorithms have been
shown to have better convergence performance than single
time-scale consensus algorithms [39].

A diffusion strategy based on the least mean square (LMS)
algorithm (so-called diffusion LMS) and a number of vari-
ants have been proposed [3], [4], [9], [40]-[52]. Diffusion
LMS algorithms operate over two steps: an adaptation step
in which each node updates its estimate using measurement
data, and a combination step in which each node exchanges
its estimate with neighbor nodes and the estimates are aggre-
gated through linear combination with appropriate weights.
In this process, information is refined at each node and
effectively diffused over the network, resulting in a signifi-
cant increase in convergence speed and steady-state accuracy.
Depending on the order in which these two steps are taken,
combine-then-adapt (CTA) and adapt-then-combine (ATC)
diffusion LMS algorithms have been proposed [4]. It has
been shown that the ATC structure always achieves lower
steady-state error than the CTA structure [4], which suggests
that the combination step has a greater impact on steady-
state accuracy than the adaptation step. Unlike stand-alone
(no cooperation) LMS algorithms, diffusion LMS algorithms
require wireless communication between nodes for exchange
of data. In wireless ad hoc networks, each node often has
limited power resources for data processing and commu-
nication, and communication is the most power-consuming
task [53]. Accordingly, there have been many attempts to
reduce internode communications without significant degra-
dation of convergence performance [53]-[71].

This paper proposes an ATC periodic diffusion LMS algo-
rithm in which each node performs both adaptation and com-
bination only at periodic update times to reduce the frequency
of data transmission and, ultimately, the cost of communica-
tion. Such periodic schemes are very simple and have been
widely applied in reducing the computational complexity of
adaptive filters. However, the loss of measurement data at
non-update times generally slows the convergence speed in
direct proportion to the period. To overcome this degradation,
we develop a novel periodic diffusion algorithm that reserves
all measurement data sensed during non-update times and
applies them during the adaptation step at update times.

In the diffusion LMS algorithm, we can easily change
the update scheme: the combination step is performed every
p steps while the adaptation step alone is updated every
iteration. This simple periodic diffusion LMS method can
be interpreted as a decimated diffusion: the combination
step is decimated to one in every p steps. The decimated
diffusion method is simple and intuitive. However, since it
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has been proven that carrying out only the adaptation step
in the steady-state increases the steady-state error relative to
performing both adaptation and combination steps [1]. The
steady-state error of the decimated diffusion thus increases
during adaptation steps and decreases when the combination
step is performed together every p iteration. We need to
develop a heuristic remedy to mitigate the fluctuations of
steady-state errors, but it is generally tough to quantitatively
assess which solution is optimal. Furthermore, the modifica-
tion of the decimated diffusion makes it difficult to analyze
its convergence performance mathematically.

To avoid heuristic approaches, we introduce a global cost
function based on the sum of the mean-square errors with
a periodicity constraint that contains all of the reserved
measurements available at periodic update time. Using this
cost function, we derive the data-reserved periodic diffusion
LMS (DR-PDLMS) algorithm. The cost function can be
twice differentiable for a general framework, and many of
the results in this work can be extended to those of the twice
differentiable cost function as well. Technical differences
arise when using different costs instead of the mean-square
error cost. These differences are beyond the scope of this
paper, they are addressed in [1] and [10], along with other
relevant topics. It is sufficient for our purposes here to convey
the main ideas by limiting the presentation to the mean-square
error cost without much loss in generality.

When the proposed algorithm is implemented with
period p, the total cost of communication is reduced to 1/p.
We also analyze the mean-square performance of the pro-
posed algorithm and mathematically compare the steady-
state errors of DR-PDLMS with different periods. We also
show a noteworthy property of the periodic strategy, namely,
that DR-PDLMS is less sensitive to communication noise
(link noise) that occurs when data are transmitted between
nodes. We mathematically prove that the amount of degrada-
tion in steady-state error as a result of communication noise
decreases when the period increases. When the communica-
tion noise variance is high, DR-PDLMS can outperform the
conventional diffusion LMS algorithm in terms of both con-
vergence performance and cost of communication (Fig. 7).

The main contributions of this work can be summarized
specifically as follows:

e For low communication overhead, we formulate

a periodic global optimization problem and derive
an optimal distributed implementation that is the
DR-PDLMS algorithm.

o We analyze the mean and mean square behavior of the
proposed algorithm to examine how well the proposed
algorithm performs and how close the local estimates
converge to the desired estimate w’; we provide the
stability condition in the mean and mean-square sense,
and derive mathematical expressions of theoretic steady-
state mean-square deviation (MSD) and excess mean-
square error (EMSE).

o We perform a comparative evaluation of the proposed
algorithms with different periods. Although it may
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appear intuitive that the convergence performance of
the proposed algorithm can deteriorate because informa-
tion is less diffused over the network, it is difficult to
prove this proposition. Through mathematical analysis,
we show that degradation of steady-state error always
increases when the period p of the proposed algorithm
is increased regardless of network environments such as
network topology and noise variances.

o Further analysis shows that the proposed algorithm is
less sensitive to communication noise than the con-
ventional diffusion LMS algorithm. By comparing the
steady-state MSDs of the proposed algorithm over range
of periods, we show that the degradation of steady-state
MSD decreases as the period decreases. This result high-
lights the noteworthy fact that the proposed algorithm
can reduce both cost of communication and the steady-
state network MSD relative to the conventional diffusion
LMS algorithm.

In the remainder of this paper, we derive the proposed
algorithm and illustrate its behavior as follows. In Section 1II,
we review previous works. In Section III, we introduce a cost
function containing a periodicity constraint that aggregates all
measurements over p time intervals. In Section IV, we derive
the ATC data-reserved periodic diffusion LMS (DR-PDLMS)
algorithm. In Section V, we discuss the results of mean-square
performance analysis of the algorithm, and in Section VI we
compare the steady-state errors of the proposed algorithm
with different periods. In Section VII, the simulation results
are presented and discussed.

Notation: We use boldface letters, e.g., wi ;, for random
variables and normal letters, e.g., wy ;, for deterministic quan-
tities. We write || - || to refer to the Euclidean norm of a vector
and E[-] to denote expectations. The superscript (-)* repre-
sents Hermitian transposition, the notation col{- - - } denotes
a column vector, and diag {- - - } denotes a diagonal matrix.

Il. RELATED WORK
Probabilistic diffusion LMS algorithms [54], [55] consider a
changing topology in which pairs of nodes are randomly con-
nected with a probability determined in a manner that reduces
the total communication load. In the algorithms developed
in [56]-[58], each node exchanges information regarding its
predefined quality and uses this information to select a subset
of neighbors. The algorithm in [56] applies a scaled product
of the noise variance and the regression variance as a selection
criterion, with each node selecting neighbor nodes with the
minimal value of this criterion. In [57], each node estimates
its current mean-square deviation (MSD) and exchanges it
with its neighbors: the exchanged MSDs are used to compute
the costs of the neighbor nodes and then select the node with
the lowest cost. In [58], each node receives the intermediate
estimates of a subset of its neighbors that is selected arbitrar-
ily with equal probability.

Another class of algorithms is based on the partial-update
process in which a subset of estimates is transmitted [53],
[59]-[62], or is based on the set-membership method which
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transmit the estimates sparsely [62]-[64]. In the algorithms
in [65]-[67], each node reduces the dimension of the estimate
prior to transmission to reduce communication cost. In [68],
each node updates and transmits its estimate only when the
current measurement data contribute to a decrease of the
MSD. A game-theoretic approach was proposed in [69],
in which each node makes its activation decision based on a
utility function that captures the trade-off between the node’s
energy expenditure and contribution.

A kind of block LMS approaches in the field of adap-
tive filtering was applied to diffusion and incremental
LMS algorithms in [70] and [71] (so called block diffusion
LMS (BDLMS)) where the adaptation step uses L mea-
surements to calculate the gradient estimate and updates
the weight every L iterations. BDLMS has a form similar
to that of the proposed DR-PDLMS algorithm, but there
are conspicuous differences between the two, with the most
significant being that the proposed algorithm performs p
adaptations sequentially using p respective measurements
based on the incremental gradient method, while BDLMS
performs one adaptation using the gradient estimate calcu-
lated from all p measurements based on the steepest-descent
method. It is well known from the optimization theory that
the incremental gradient method outperforms the steepest-
descent method [19], [20] (details are given in Appendix A
of [22]); the incremental gradient method is generally used
to enhance the performance of diffusion strategies as, intu-
itively, ¥ ; contains more information than wy ;1 [4]. In fact,
the proposed DR-PDLMS algorithm not only outperforms the
BDLMS algorithm in terms of steady-state error, but also
has a wider stability range, which results in more robust
implementations (Fig. 8).

lll. PROBLEM FORMULATION

Consider N spatially-distributed nodes. The set of nodes
connected to node k (including k itself) is called the neighbor-
hood of node k, and is denoted by . Each node k is assumed
to receive scalar measurement d () and the 1 x M regression
vector uy; at each time instant i. To estimate an unknown
M x 1 parameter vector w’ in a distributed and adaptive
manner, each node k shares information only within Nj.
We assume that the desired response d (i) is related linearly
to the regression vector uy ; as follows:

di (i) = ug iw’ + i (D), (1)

where v (i) corresponds to a zero-mean measurement noise
with variance av% 0 which is assumed to be white over time
and independent over space. uy ; and v;(j) are assumed to be
independent of each other for all k, /, i, j. Here, we consider
all data to be complex values. With respect to uy ;, we assume
that the autocorrelation functions can vary with time, then the
covariance matrix and cross-correlation vector at time i can
be defined as

N N .
Ryri= Eu,”;)iukyi and rgy ki = Edk(l)uz’l-. 2)
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A. COST FUNCTION

The common objective of each node in the network is to
estimate the parameter vector w® using not only its own
sensed data {uy ;, dx(i)} but also information shared with
its neighbor nodes. In this context, the global cost function
can be expressed in various forms according to objectives,
with the most general global cost function being the sum
of the mean-square errors of all nodes [4]. However, use of
the global cost function at each time instant requires a high
communication burden; to reduce the communication cost,
we propose a constraint in which each node is constrained
to use the global cost function periodically with period p
(i.e., only at time i satisfying {i mod p = 0}). However,
if the measurements {uy ;, dy (i)} sensed at time i satisfying
{i mod p # 0} are not used as a result of this periodicity
constraint, information will be lost. Therefore, we propose
instead a new global cost function corresponding to time i that
contains all measurements from the previous p time instants
(i.e., from i — p + 1 to i) as follows:

lob e
Jperiod(w) A Jlfg ° (W) if i modp =0 (3)
l 0 otherwise,
where
p—1 N ,
lob o
JEPWEY Y Bl i @)
j=0 I=1

B. LOCAL OPTIMIZATION
At the update time i that satisfies {i mod p = 0}, each
node attempts to minimize the global cost function (4); how-
ever, this task is collectively impossible because it requires
that each node has access to the second-order moments
{Ru.k.i» Yau.k,i} from across the entire network. Instead, to esti-
mate w’ the nodes must rely solely on data that are available
to them locally. We now explain, following [4], how (4) can
be transformed into an alternative cost function that allows a
fully distributed solution.

We introduce the following individual cost function at
node k that uses only measurements from node k:

p—1
. . 2
Teiw) &> Eldi(i — j) — ugijwl|” . )
Jj=0

The optimal estimate for w’ at node k that follows from
minimizing (5) is then denoted as

wi i =T Ak (6)

where
p—1 p—1
Cri = ZRu,k,i—j and Ay ; = Z Tdu,k,i—j- @)
Jj=0 J=0

Using a completion-of-squares-argument, (5) can be rewrit-
ten in terms of wy ; as

Jeit) = Jw=wg I+ Jkimin, ®)
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where
p—1
Jeimin 2 Y EldiGi = )I* — A T Acis ©)
J=0

and the notation ||x||%: denotes that the squared weighted
quantity x*Xx. Jx i min is independent of w, allowing us to
conclude that minimization of (4) is equivalent to the mini-
mization of the following alternative cost function:
) N
FE ) =dm + Y [w=wiilr o a0
I#k

IV. DATA-RESERVED PERIODIC DIFFUSION LMS

To minimize the proposed cost function (10), each node k
still requires the global information I'; ; and wy ; to calculate
the second term of (10). Therefore, to enable each node to
perform fully distributed processing, (10) should be modified
to require only data from the neighborhood of node k. This
requirement can be achieved using the approximations used
in [4], [10], and [26], in which T';; is replaced with a non-
negative scaled multiple of the identity matrix for distributed
implementation as follows:

Ly~ bply. (11

and the range of the summation on the right-hand side of
(10) is approximated to the neighborhood of node k. Using
these two approximations, the global cost function (10) can
be modified to the following form that includes only the data
that node k can utilize:

i 2
TS ) = T+ Y b fw—wii|*. (12)
IeN;\{k}
The gradient of (12) with respect to w is given by
. * p—l
[ijlgf?t(w)] = Z (RuimjW — Tauk,i~))
j=0
+ > b (w—wp). (13
IeN;\{k}

The gradient vector in (13) comprises two terms: a term using
p-temporal measurement information, and a term using local
information from the neighbor nodes. Applying all terms in
order, each node k can update its estimate wy ;—1 to wi ; over
the following p + 1 steps at time i:

(D
Vi = Wki-1 + ik (Fduk.i-p+1 — Ruki—p+1Wk.i-1)

—1
W;Ep,) = ,E{ji )bk (Fduk,i — Ruk,iwk,i=1)

wei =l e Y b (W —wiict). (14)
leNi\{k)

Because wf ; is unknown for node k, we replace it with the
most improved estimates that are already available at the
nodes:

Wi — wi’?. (15)
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Based on incremental-type arguments [19]-[22], we also
replace, with the exception of the first equation, wy ;— in (14)
with ), forj = 1, -+, p. Then, (14) is modified as

(D
Vii = Wh,i-1 + Hk (Fauk.imp+1 — Ruk.impr1Wk.i-1)

—1 —1
W;Ep,) = /37,- " (rdu,k,i —Ru,k,ilﬁg,- ))

wei= v e Y b (v —w). a6
IeN\ (k)

By following the derivation of [4], the last equation
in (16) becomes the combination step of the diffusion
LMS algorithm. We now apply the instantaneous approxima-
tions Ry ,i—j ~ ult,i—juksi—j and rgy k,i—j ~ di(i _j)uz,i—j
using the observed realizations {d (i—J), ux,i—;}. By consider-
ing the periodicity in (3), we have the following data-reserved
periodic diffusion LMS (DR-PDLMS) algorithm as seen
in (17), as shown at the top of the next page, which is sum-
marized in Table 1. In the proposed algorithm, the estimates
are updated periodically. Specifically, when time instant i
satisfies {i mod p ## 0}, each node stops its update,
i.e., Wi = Wg,i—1, and reserves its measurements. At the
periodic time instant i that satisfies {i mod p = 0}, each node
performs p adaptations using the reserved measurements and
then combines these with the intermediate estimates I/fz,(l?
from the neighbor nodes. This structure enables the proposed
algorithm to forgo the estimate update that cause the local
estimate deterioration in the transient state without increasing
time required to reach steady-state, as all measurements at all
time instants are used for the adaptations (as will be shown
in the simulation results, Fig. 3). When p = 1, the pro-
posed algorithm reduces to the conventional ATC diffusion
LMS algorithm.

The proposed algorithm reduces the total cost of commu-
nication to a factor of 1/p of that required by the conven-
tional ATC diffusion LMS. Although the steady-state error
increases as a result of reduced diffusion of information over
the network, the proposed algorithm maintains convergence
speed by utilizing all reserved measurements (Section VI).
In the next section, we will discuss the mean-square perfor-
mance and stability of the proposed algorithm and then, in the
following Section V we will compare the steady-state errors
of the proposed algorithm with different periods and discuss
its robustness to noisy links by analyzing the deterioration of
steady-state error in an environment contaminated by com-
munication noise.

V. MEAN-SQUARE PERFORMANCE ANALYSIS

A. ASSUMPTIONS AND MATRICES

In this section, we examine how well the proposed algorithm
performs and how closely the local estimates wy ; converge
to the desired estimate w?. Although this can be achieved
by analyzing the mean-square performance of the algorithm,
ascertaining mathematically the mean-square convergence
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TABLE 1. Data-Reserved periodic diffusion LMS.

For every node k = 1,..., N, set wy, _1 = 0 and for every time
instant ¢ > 0, repeat:
m =14 mod p
IF{m = 0}
Adaptation Step
,ill) = wpi—1 + ety (dk(l) - ﬁk,1wk,i—1)

%(fi_l) = wp,i—1 + PRy, (dk (p—1)— &k,p—1¢;(fv;_2))
%Sf? = w,ﬁf’[” + PR (dk(’i) - uk,ﬂ/);(fi_n)

Combination Step

P
Wei =D 1en, ahkwl(,i)

ELSE
Measurement Store
Wk, = Wk,i—1
Uk om = Uk,;
dy,(m) = dy, (i)
END

of even a single adaptive filter is known to be challeng-
ing because adaptive filters are non-linear, time-variant, and
stochastic systems [75]. In an adaptive network, multiple
nodes are strongly interconnected as they mutually influ-
ence each other. To address this difficulty, we apply the
energy conservation approach to the context of adaptive net-
works [4], [26], which allows us to study the flow of error
variances throughout the network. To proceed with this anal-
ysis, we assume that the measurements {uy ;, dx (i)} satisfy
the linear relation (1) and the following assumptions:

Assumption 1: Regression vectors uy ; are spatially inde-
pendent and temporally white.

Assumption 2: Noise vi(i) is a spatially independent
and temporally white zero-mean random process with
variance avz’ «» and is independent of u; ; for all / and j.

We then define the weight error vectors at node k as

- = (1) /
Wi =W —wii, Yy S — 'ﬁ;(c), (18)

for ] = 1,...,p. We also define the global weight error
vectors containing all weight error vectors over the entire
network as

= (D)

Wi z Vi
- . ~(I) .
wi=| |, ¥ = (19)
for ] = 1,...,p. For future use, we define the following
matrices:
M = diag {pily, -, unlu} (20)
D; = diag {u’f,iuly,-, . ,u,”i,’iu;v,i} (21
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If {imod p = 0}

1 .
IP;E,) = Wk,i—1 + HkUg i py1 (dei —p+ 1) — ug i—pr1Wi,i=1)

—1 . —1
W =0+ (e — w0

Wi,i = Z az,klﬂl(ﬁ)
leN)
Else

Wk,i = Wk, i—1-

a7

g = col {uT’iVl(i)’ Tt ”/f/,iVN(i)} (22)
D = E{D;} (23)
G =E{gg) @4

where ® denotes the Kronecker product operation. We also
define the transition matrix

&G, i—1)=1—- MD;, (26)
whose transition is defined as
@i, i)E1, @G, j)= @3 k)PK,)) 27

fori > k > j > 0. Based on (17), the recursion of the global
weight error vector at update time instant 7 is expressed as

= (1) ~
Vi =U—MDipr1)Wk i1 — Mg,

7 (2) ~ (1)
Vii=U—-MDip)¥;— Mgi_,,+2

() - (p—1)
¥ =t — MDY — Mg,

= AT (28)

Using transition matrix (26), we can then derive the update
equation between the two time instants i — p and i at which
the periodic updates are performed:

p—1
wi= AT @G i—pWip— Y AT @G i—m)Mg,_,. (29)

m=0

B. WEIGHTED VARIANCE RELATION

To analyze the mean-square behavior of the proposed algo-
rithm, we use the energy conservation approach of [4]. First,
we let ¥ be an M x M Hermitian positive semi-definite
matrix that can be defined as desired; the choice of this matrix
will provide us with different quantities, such as the mean-
square deviation (MSD) or excess mean-square error (EMSE)
further along in the process. At time i, the MSD and EMSE

of node k are defined as:
2 ~ 2
MSDy,; £ E |wi,i —w’|”, EMSEx; = E |ug, iw,i—1]” -

(30)
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Taking a weighted norm with the Hermitian matrix X in (29)
yields the following weighted variance relation:

E Wi”zz =E ||ﬁ’ifp| i*(i,i—p)AEA“b(i,i—p)
p—1 *
+E[ Y AT, i — mMg,_,
m=0
p—1
<z [ > AT i—mMg,_, ] 31)
m=0

From assumptions 1 and 2, the regression uy ;—, is indepen-
dentof w;_p, form =0, --- , p — 1, allowing the first term in
the right side of (31) to be rewritten as

2
®*(i,i—p) AS AT ®(i,i—p)

2

E[Wip| v

=E|wi| (32)

where
> = E{(®*(i,i — p)AS AT ®(i, i — p)}. (33)

We define the vectorization operation vec(-) to replace an
M x M diagonal matrix by an M2 x 1 column vector by
stacking the columns of the matrix on top of each other,
with the vectorization versions of ¥’ and ¥ denoted as o’
and o, respectively. Then, using the property vec(UXV) =
(VT @ U)vec(T),

o' = Fo (34)
where
F=E[o7Gi-pAe e i-paA
—E {cpT(i,i—p)® <I>*(i,i—p)] (A® A)
= {1 = pu @ DM) - pD" M 1)+ OMP)}
x (A® A), (35)

where O(M?) includes terms of the order M? and higher
orders. Here, we introduce the small step-size assumption [4],
[10] to render the term O(M?) negligible.

Assumption 3: The step sizes are sufficiently small,
ie., ux < 1, to allow the terms related to the higher-order
powers of the step-sizes to be ignored.
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Using assumption 3, F can be approximated as
Fl1-pu @ DM)—p(D" M D} (Ao A). (6)

Next, using the property Tr(2X) = vec(XT)? o, the second
term in the right side of (31) can be rearranged as

p—1 *
E[ Y AT, i — mMg,_,

m=0

p—1
<z | Y AT®G. i - mMg,_, }

m=0

p—1

ZTr[E{ZAT ®(i, i—m)MGM*(i, i—m)A}]

m=0

p—1 T
= Z[vec(E{ATd)*T(i, i—mMGT M@ (i, i—m)A})] o

m=0

(37

Using the small-step size assumption, we can rearrange the
vectorization term in (37) as

vec(E{AT ®*T (i, i — m)MGT M®T (i, i — m)A})
- (AT®AT)E{<I>(i, i—my@®*T (i, i—m)}vec(MgTM)

m—1
~ (AT ®AT)(I —E {ZMDih @1}

h=0

m—1
—E {Z I® M’Dir_h} )vec(MgTM)

h=0
— AT @ AT) (1 — (MDD ®I) — (1 ® mMDT))
xvec(MGT M). (38)

Substituting (32), (37), and (38) into (31), we reach the
following weighted variance recursion:

E [Iwill;
p—1
= E Wiy, + > [(AT @ A7) (1 = (mMmD 21
m=0
T T T
~ (1@ mmDT) ) vee (MG" M) ] 0. (39)
C. STEADY-STATE BEHAVIOR
When the step-size is sufficiently small to make the matrix F

stable, we obtain the following equation from (39) at steady
state (i — 00):

Tim B 141155,
= ,,2_1: [(AT ®AT) (1 — (mMD®1)
m=0

- (1 ® mMDT> )Vec (MQTM) ]Ta. (40)
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We then introduce the following two matrices for X to calcu-
late the MSD and the EMSE at each node k:

m £ diag{ex} ® I, 1 = diaglex} @ Rux  (41)

where e; denotes a N x 1 column vector with a unit entry at
the position of k and zeroes elsewhere. The steady-state MSD
and EMSE at each node k are then defined as

. 2 . -
MSD; £ limE |wi; —w’|"= limE ”winsec{mk} (42)
11— 00 11— 00
. ~ 2 . ~
EMSE; 2 1im E |ug iy io1|” = im E [Will3oep,) - (43)
11— 00 11— 00

We can obtain the steady-state MSD and EMSE by select-
ing o that satisfies Fo = vec{my} and Fo = vec{ry} as
shown in (44) and (45), as shown at the top of the next page,
respectively. We define the average MSD and EMSE over the
entire network as the network MSD and EMSE as follows:

N
1 1
k . ~ 112
MSDnetwor = ]v ’;MSD]{ = NIEI&E ||wi||vec{ﬁ1}
(46)
1 & 1
k : ~ 2
EMSE™ ™ = ,;EMSEk = 7 Jim E 91y
(47)
where
N N
mEY "m, FEY n. (48)
k=1 k=1

D. TRANSIENT BEHAVIOR
Let b(m) 2 (AT @ ATYI — (mMD Q1 — (I ® MDT))
vec(MGT M). We can rewrite the weighted recursion (39) as

p—1
E Wil = E|Wisp| 5, + D b o
m=0
5 Li/p] (p—1
= E|W|Fup, + D | D bm Flo
n=0 \m=0
- 2 2
= E|Wi—p Ha —E[w? “]:U/l’J(lf]-')o
p—1
+ Y bm)" FlilPlg, (49)
m=0
where W° = 1y ® w°. For simplicity, we assume that

wk,—1 = 0 for all k. By applying 0 = m/N oro = r/N,
the equation (49) expresses the transient behavior of the
network MSD and EMSE, respectively.

E. STABILITY
1) MEAN STABILITY
Taking the expectation of (29),
Ew; = ATE{®(i, i — p)}EW;_,
= AT(I — MDYEWw;_,, (50)
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p—1

MSD; = ) [(AT ® AT (1 — (MMD®I) — (1 ® mMDT)) vec(Mng]T (I = F)~'vec{my} (44)

m=0
p—1

EMSE; = 3 [(AT ® A7) (1 — MDD ®I) — (1 ® mMDT)) vec(/\/lgTM)]T (I — F)y~'veclr). (45)

m=0

where assumptions 1 and 2 are used to divide the expec-
tations. Recursion (50) is stable in the mean sense if
0 (AT(I - MD)P) < 1 where p(-) denotes the spectral
radius of its argument. Because A7 is a right-stochastic
matrix, o (.AT(I - MD)P) < lonlyif p(l — MD) < 1
[26]. Therefore, the proposed algorithm is stable in the mean
sense when the step sizes {1y} satisfy

0<pur < fork=1,--- N, (G20

)\max(Ru,k)

where Amax (X) is the maximum eigenvalue of the Hermitian
matrix X.

2) MEAN-SQUARE STABILITY

Under assumption 3, the mean-square stability of the pro-
posed algorithm is guaranteed when the following approxi-
mate version of F in (35) is stable [4], [26], i.e., p(F) < 1:

Fx {E<1>T(i, i—p) @E®*G, i —p)} (A® A)
={u-D" My eu-DMY| AN
=U-DIMPARU—-DMYA. (52)

When the eigenvalues of the N x N matrix A and the
M x M matrix B are A1, ---, Ay and k1, - -+ , ky, T€SpEC-
tively, the eigenvalues of A® B are A;kjfori =1,--- , N and
j=1,---, M. Therefore, we can conclude that the matrix F
is stable if and only if p(/ — DT M) < 1 [4], [26], which is
the same condition for mean-stability given by (51). Thus,
by using a sufficiently small step-size, the stability of the
proposed algorithm is ensured in both the mean and mean-
square senses.

Vi. PERFORMANCE COMPARISON
Under assumption 3 (small step size), the equation (31) can
be approximated as

E [IWill%
~ 2
= E[Wisp|y_prtpasara_moy

p—1
+ 3" Tr [B(SAT( — MDY MGMU — DM A}

m=0
(53)
Then, the steady-state MSD is written as
1, 1 ! ,
ol =NZ; Tr | B) Z)ym Bilt., (54
j= m=
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where
B, = AT(I — MDY,
I = ATUI — MDY" MGM(I — DMY"A.  (55)

To simplify the analysis, we use the following uniform data
profile environment [26]:

Rux =Ry, pr=pn forallk. (56)

Because the noise variances {o,} vary for all nodes,
the signal-to-noise ratios (SNRs) differ among the nodes.
We also assume that the combination matrix A is doubly
stochastic and satisfies

Al=1 17a=1". (57)

Then, by using the property (X; ® Y1)(X> ® 2) = X1 X2 ®
Y1Y,, we can rewrite B, and ), in (55) as
B, = (AT @ y)lIn ® (I — uR.Y')

= A" ® (Iy — uR,Y (58)
Y = w* AT @ In) {Iv ® (I — 1R}
(Ry @ Ry) {IN ® (Im — l/LRu)m} A®1Im)

= w2 [ATRA® (U — iR Rully = iR)" ). (59)
Using (58) and (59), (54) is expressed as:

2 oo p-l
[l (+DT p 4i+1 _ (p+m)
N ;Z()Tr[A RAT ® (I — 1Ry
J=0 m=

X

X Ry(Iy — uR)PT™]. (60)

If we use the subscript substitution n = jp 4+ m, j can be
expressed by the floor function for a given n, i.e.,j = |n/p],
because 0 < m < p. Then, (60) can be rewritten using the
subscript n as

2 o0
Lol S THACPHOTR AP @ (I — uR,)"
N
n=0
X Ry(Iy — /’LRu)n]~ (61)

A. EFFECT OF PERIOD P ON STEADY-STATE

NETWORK MSD

We now compare the performance of the data-reserved peri-
odic diffusion LMS algorithms with different periods. Using
the property Tr[X ® Y] = Tr[X]Tt[Y], the difference
between the network MSDs with different periods p; and p;
(p1 > p2 = 1) is given by (62), as shown at the top of the
next page.
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2 o0
MSD®! — MSD??) = % > T [(A(L”/l"H”TRVA Ln/prl+t Aﬂ"/f’ﬂ“)TRvAL"/"ﬂ“) ® (Im — R Rulyr — pRy)™ ]
n=0
2 o0
— % ST [A(Ln/leH)TRVALn/mHl _A(Ln/sz+1)TRVALn/sz+1] Tr [(IM — UR) Ry — /LRM)”H].
n=0
(62)
The first trace value of (62) is arranged as R(Vl//”)( = aév I . The aggregated noise in node k and its

Tr[ALn/plm (1 _ Aln/p2l=1n/p1] A(Ln/pzjftn/mJ)T)
XA(L"/p1J+1)TRV]. (63)

We further assume that the matrix AU/P21=1/P1] i a dou-
bly stochastic matrix. Using the assumption, the following
inequality is satisfied (property (e) of [26, Lemma C.3.]):

I — Al/pal=1n/p1l A(Ln/p2]=1n/p1 DT > 0. (64)

Lemma 1: Let P and X be arbitrary M x M matrices, where
X is real symmetric. Then the matrix ¥ = PXPT always
satisfies ¥ > 0O for any choice of P, if X > 0.
Proof: See Appendix A.
By Lemma 1, we find that

Aln/pil+1 (, _ Aln/p2)=ln/p1] A(Ln/sz—Ln/le)T>
< Aln/prl+DT >0. (65)

Assuming R, is Hermitian and positive semidefinite, the fol-
lowing inequality is always satisfied for all n:

Tr[ALn/mHl (, _ Aln/p2l=1n/p1] A(Ln/sz—Ln/mDT)

XA(Ln/p|J+1)TRV] >0. (66)

By lemma 1, the second trace value of (62) is positive
semidefinite. Therefore, we can conclude that

MSD®") > MSD®?  forp; > ps > 0. (67)

This means that the steady-state MSD increases as
p increases. This theoretical result is well matched to the
practical result of the proposed algorithm (Fig. 2).

B. NOISY COMMUNICATION CONDITION

In this subsection, we consider the noise that is presented
in the communication links between two nodes. In several
previous papers [76]-[80], the effects of communication
noise were thoroughly explored mathematically. Because the
proposed algorithm does not exchange the measurements
{uy,; and d (i)}, the communication noise is added only at the
exchange of v ; during the combination step. Following the
notation in [80], we denote the communication noise added
when node / transmits its intermediate estimate v, ; to node k

as v},‘ff , and its covariance matrix as R%){ We assume that

the communication noise vg;f f is white Gaussian such that
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variance are then expressed as

W) W) 2 2 2
vk,i - Z al’kvlk’i, Ulp',k = Z al’kaw’lk, (68)
1eNi\{k) leNi\{k})

and we define

RY) = diag{oy .0 5.+, 0] v} (69)

We also introduce the block vector and its covariance matrix
as

vy 2 col {vﬁ‘@ o v;‘,”f} . RV =RV @I, (70)

The network steady-state MSD over noisy communication
condition can then be expressed as [80]

o]

| U |
FEIPeol® = =3

p—1
(5 (0] 5
j=0 m=0

oo
+ le 2(; e [gRYBI]|. 1)
p=

The first term is the same as that in (54), which is independent
of the communication noise; this means that only the second
term is related to the noise. We next analyze the effect of the
period p over noisy communication by comparing the values
of the second term at period values p; > p> > 1. We define
the second term of (71) with period p as

oo
SP — le ST [B;;Rf,‘”)B;j]. (72)
=0

Then, applying (58) yields
S(pl) _ 8(1?2)
1 & ) . .
== Tr[AfTR(V‘”)AJ ® {(Uy — nR)P"
j=0
—(m — I‘LRLI)ijz }]
1 & ) . .
= < D Te[ATRY A Te (s — uR )P
j=0
— Uy = uR”]. (73)
Because Ry/) is positive semidefinite, the first trace value

of (73) is positive from Lemma 1. If we denote the eigen-
values of (Iy; — /LR,,)2 by A, forn=1,...,M,then A, > 0
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FIGURE 1. Network topology (top), noise variance 03 k (left, bottom) and
trace of regressor covariance Tr(R, ) (right, bottom) for N = 30 nodes.

for all n because the matrix is positive semidefinite. Under
the stability condition (51), we conclude that 0 < X, < 1 for
all n. Then the eigenvalues of (Iyy — LR,)?Pt — (Ipg — j1R,) %P2
are —1 < APV — P2 < ( for all n, because XF' < A/P? . Thus,
the second trace value of (73) is non-positive and we conclude
that

S < SWw2) (74)

In (67), we proved that the proposed algorithm has a higher
steady-state network MSD level than the conventional dif-
fusion LMS in ideal channel environments; however, in the
presence of communication noise the second term in (71),
which is related to the communication noise, decreases when
the period p increases, indicating that the proposed algorithm
is less degraded than the diffusion LMS over the commu-
nication noise. Because the proposed algorithm exchanges
the estimates more sparsely, the communication noise is
less contaminated on average. Furthermore, even though the
proposed algorithm has a higher steady-state network MSD
than the conventional diffusion LMS under ideal channel
condition, the gap between the two decreases in a noisy
communication environment, and the proposed algorithm can
have a lower steady-state network MSD than the diffusion
LMS, even in environments in which communication noise
variance is very high (Fig. 7).

VII. SIMULATION RESULTS

In our simulations, we assumed a channel identification sce-
nario involving a finite impulse response (FIR) model with
a channel length of M = 8. We used a network topology
with N = 30 nodes with different regression and noise
variances (Fig. 1). The regressions were zero-mean Gaussian,
and independent over space. All simulations were obtained by
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FIGURE 2. Transient network MSD curves for the conventional ATC
diffusion LMS and the proposed algorithms with three different
periods p =2, 5, 10.

—— (a) ATC diffusion LMS (p=1, u=0.05)
—— (b) Proposed (p=4, n=0.05)

— (c) Proposed without reserving measurements (p=4, u=0.05)
—(d) Proposed without reserving measurements (p=4, u=0.07)

_20— 4
_25— 4
30 —— Doongiamt p—
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Number of iteration

FIGURE 3. Transient network MSD curves for the proposed algorithm and
the simple periodic diffusion scheme without measurement reserving.

taking the ensemble average of the network MSD:
1 >
Network -
MSDMOR(D) = /;—1 E [w —wi (75)

over 200 trials. The step-size u; was set to 0.05 and the
metropolis rule [29] was used to obtain the combination
weight ay .

From the results, we obtained network MSD curves (Fig. 2)
for the conventional diffusion LMS and the proposed
algorithms with different periods p = 2,5, 10. The pro-
posed DR-PDLMS algorithm has a trade-off between steady-
state error and the communication cost that changes with the
period p. As p increases, the frequency of data transmission
decreases, resulting in a scaling-down of the total cost of
communication to 1/p, but an increased network MSD. For
example, when p = 5, the required cost of communication
reduces to only 20% of the full diffusion LMS; at the same
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FIGURE 4. Theoretical and experimental steady-state network MSDs
plotted against period p for different step-sizes in the proposed
DR-PDLMS algorithm.

time, the reduction of diffusion of the information over the
network increases the steady-state network MSD.

We then compared the proposed algorithm with a simple
scheme that only performs the adaptation and combination
steps periodically without reserving measurements (Fig. 3),
i.e., it performs the adaptation step with measurements only
at a periodic time instant. In the simulation, p = 4 was used
for all algorithms. It has been seen from Fig. 3(c) that the
simplified algorithm has a steady-state network MSD that did
not increase and a convergence speed that was much slower
than that of the ATC diffusion LMS (p=1). When the step-
size was adjusted to & = 0.07 to match the steady-state
network MSD with that of the proposed algorithm (Fig. 3 (b)),
the convergence speed was still slower. These results con-
firm the superior convergence performance of the proposed
algorithm resulting from its utilization of more information
from the measurements than the simple periodic algorithm.
The results can be elaborated by the effects of adaptation
and combination steps on performance. The adaptation step
increases the convergence speed in the transient stage, but
in steady-state, the adaptation step makes noise while the
combination step removes it, and they reach an equilibrium.
Our proposed algorithm maintains all the adaptation steps and
converges at the same speed as the conventional ATC LMS
algorithm in the transient stage, but p-1 combination steps are
skipped so that the steady-state network MSD is higher than
the conventional algorithm. Fig. 3(c) can be interpreted as a
lower version of the conventional algorithm.

The steady-state network MSD was obtained as a function
of p for different values of node-consistent step-sizes (Fig. 4).
The simulated steady-state values were obtained by averaging
over 300 samples in the steady state, while the theoretical
values were calculated using (44) and (46). A comparison of
the results indicates that the simulated and theoretical values
coincide closely over the ranges of step sizes and periods.

We then compared the proposed algorithm to probabilistic
diffusion LMS [54], single-link diffusion LMS [57], and
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FIGURE 5. Transient network MSD curves for the proposed algorithms
with p = 2, 3, 4 in an environment in which the unknown parameter w°
is abruptly changed.
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FIGURE 6. Transient network MSD curves for the conventional diffusion
LMS and the proposed algorithm with p = 4 in noisy communication
environments with three variance levels az =0, 0.0003, 0.0009.

partial diffusion LMS algorithms [53] (Fig. 5) by setting
all the parameters of the respective algorithms to equalize
the communication costs. This was done by setting the link
probability in [54] to 0.25 and the forgetting factor « in [57]
to 0.95. For the single-link algorithm [57], single-node selec-
tion and true noise variance values were applied. For the
partial diffusion LMS [53], a stochastic scheme was used
to select the two coefficients to be communicated at each
iteration. To enable fair comparison, we used p = 4 in the
proposed algorithm to match the total cost of communication
in the other algorithms. The proposed algorithm was found
to outperform the other algorithms, as it had a faster conver-
gence speed and a lower steady-state error.

We then simulated the convergence behavior of the pro-
posed algorithm when the unknown parameter w’ was
abruptly changed in the middle of the maximum number
of iterations (Fig. 6). It was shown that the proposed algo-
rithm skillfully tracked the sudden weight changes without
experiencing degradation either the convergence speed or
steady-state error.
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FIGURE 7. Transient network MSD curves for the conventional diffusion
LMS algorithm and the proposed algorithm with p = 4 in the noisy
communication environments at three noise variance levels

a; =0, 0.0003, 0.0009.

We next simulated the convergence behavior of the pro-
posed, no cooperation, and ATC diffusion LMS algorithms in
a noisy communication environment (Fig. 7) in which white
Gaussian communication noise RS//”)( = Ulf,’ Im was applied.
We assumed a simple case in which the communication noise
variances were the same in all links, i.e., 0112/’ K = ai and
considered three variance values oi = 0, 0.0003, 0.0009.
The period of the proposed algorithm was set to 4. In the
case of oé = 0, the proposed algorithm had higher steady-
state error than the ATC diffusion LMS. However, for avzj =
0.0003, the algorithms had the same steady-state errors, and
the proposed algorithm had lower steady-state error than the
ATC diffusion LMS for cri = 0.0009. These results indicate
that, as the period p increases, the results obtained using
the proposed algorithm are less degraded by communication
noise. Although the periodic method slightly degrade the
convergence performance of ATC diffusion LMS over the
perfect network, the proposed algorithm is remarkably less
sensitive to communication noise (Section V-B, (74)).

Finally, we conducted a performance comparison between
the proposed algorithm and the block diffusion LMS
(BDLMS) algorithm in [70] and [71] (Fig. 8). The two algo-
rithms have the same combination step, but the adaptation
steps are remarkably different; the adaptation steps of the
proposed algorithm are presented in (17), while those of the
BDLMS algorithm are given as follows:

p—1
n .
Yk,i = Wk,i—1 + — Z u i—m(di (i —m) — i j—mWi,i—1)-

m=0

(76)
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FIGURE 8. Transient network MSD curves for the proposed and the block
diffusion LMS (BDLMS) algorithms at p = 5, 15, 25.

In the BDLMS, the step-size parameter u is divided by the
period p to average gradient value. For a fair comparison,
we set i = p - Upr-PDLMS to give both algorithms the same
step-size value for the adaptation step. We note that, here,
“iteration” is defined as the measurement sensing time (not
the updating time after taking p measurements as in [70]).
The simulation was performed for three values of period
p = 5,15,25. In all cases, the proposed algorithm had a
lower steady-state MSD than the BDLMS algorithm while
the convergence speeds of the two algorithms are almost
the same. Furthermore, at comparably large p (p = 25),
the BDLMS algorithm unexpectedly failed to converge, while
the proposed algorithm converged well.

VIIl. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a data-reserved periodic diffu-
sion LMS (DR-PDLMS) algorithm in which estimates are
periodically exchanged among neighbor nodes. By reserving
all measurements sensed during non-update times and then
utilizing them at update times, the proposed algorithm can
reduce the communication cost effectively without significant
degradation in either the convergence rate or steady-state
error. Through intensive mathematical analysis, we analyzed
the stability and mean-square behavior of the proposed algo-
rithm, and showed theoretically that the DR-PDLMS with a
larger period have a larger steady-state MSD. Our simulated
results were in close agreement with these theoretical results.
We proved that the proposed algorithm is less sensitive to
communication noise and outperforms the original diffusion
LMS algorithms in highly noisy communication environ-
ments, and also demonstrated the superiority of DR-PDLMS
to related algorithms in a channel identification scenario.

In most real applications, the target parameters drifts over
time, and tracking ability is very important. The internal
latency caused by no-processing forces the proposed algo-
rithm to slowly respond to the change of objective and the
reaction can be maximally delayed for p iterations. We have
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shown that the proposed algorithm can track a sudden change
of the target parameters (Fig. 6), but if the target system is
constantly changing more rapidly than the period p, the pro-
posed estimate may inaccurate. In this respect, the decimated
diffusion would work better in the transient phase, but it also
has fluctuations in the steady-state phase. As an alternative,
unifying the proposed method with the decimated diffusion
would be optimal for both transient and steady-state phases.
This extension will be the topic of a future investigation.

APPENDIX

PROOF OF LEMMA 1

Assume that X is a M x M real symmetric semi-positive
definite matrix. Using eigenvalue decomposition, X can be
decomposed as

X =0AQ" (77)
where A = diag{Ay, A2, ---, Ay} contains the eigenvalues
Mi > 0. Then we have

Y = PXPT = POAQT PT = RART (78)
where R £ PQ. For an arbitrary M x 1 vector a,
a'Ya = a" RAR a. (79)
If we define b = R” a,
M
a"RAR"a=b"Ab= " nb* >0 (80)

k=1
where the last inequality is valid because Ay > O for all k.
Therefore, Y is also non-negative.
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