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Abstract: Early detection of internal short circuit which is main cause of thermal runaway in a
lithium-ion battery is necessary to ensure battery safety for users. As a promising fault index,
internal short circuit resistance can directly represent degree of the fault because it describes
self-discharge phenomenon caused by the internal short circuit clearly. However, when voltages of
individual cells in a lithium-ion battery pack are not provided, the effect of internal short circuit in
the battery pack is not readily observed in whole terminal voltage of the pack, leading to difficulty
in estimating accurate internal short circuit resistance. In this paper, estimating the resistance
with the whole terminal voltages and the load currents of the pack, a detection method for the
soft internal short circuit in the pack is proposed. Open circuit voltage of a faulted cell in the
pack is extracted to reflect the self-discharge phenomenon obviously; this process yields accurate
estimates of the resistance. The proposed method is verified with various soft short conditions in
both simulations and experiments. The error of estimated resistance does not exceed 31.2% in the
experiment, thereby enabling the battery management system to detect the internal short circuit early.

Keywords: lithium-ion battery pack; soft internal short circuit; model-based fault detection;
battery safety; internal short circuit resistance

1. Introduction

Lithium-ion batteries are widely used as a power source in electric devices and electric vehicles [1,2],
due to their high power density, high energy efficiency and excellent cycle stability [3,4]. The demand for
them is expected to rise continuously in the coming years [5,6]. However, safety concerns related
to the lithium-ion batteries still remain [7–9] because hazardous incidents such as fire accidents in
the Boeing 787-8 aircraft [10] and battery failures in the Samsung Note7 [11] have been frequently
reported by media [12]. The main cause of these two events is internal short circuit (ISCr) in the
lithium-ion batteries. The ISCr can be caused by manufacturing defects [13,14] and various types of
abuse such as overcharge [15,16] and overdischarge [17]. Furthermore, when a magnitude of ISCr
resistance (RISCr) is lower than a particular value [18], a temperature of the battery exceeds a certain
point due to the ISCr [19–21]. Then, the battery may experience thermal runaway with a fire and can
even explode [22–25]. Therefore, the detection of soft ISCr, which has a large magnitude of the RISCr,
is more necessary than the detection of hard ISCr with a small magnitude of the RISCr for user safety
to prevent the lithium-ion battery from causing hazardous events such as the thermal runaway.
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Recently, for these reasons, methods for detecting the ISCr have been suggested [26,27]. When the
ISCr happens in the battery cell, terminal voltage of the cell decreases rapidly and then temperature
of the cell increases drastically; these two characteristics can be used as pre-determined thresholds
for detecting the ISCr [26]. However, to obtain the threshold values, prior ISCr-test with the batteries
were required. Besides the threshold-based method, a detection algorithm based on an equivalent
circuit model of the battery has been introduced [27]. Using variation of estimated parameters in both
the equivalent circuit model and the energy balance equation, the method for detecting the ISCr was
verified with large magnitude of the RISCr, which was larger than 10 Ω [27]; the 10 Ω is considered to
be the minimum value which must be detected early before occurrence of the thermal runaway [23,27].
However, this algorithm was verified with only one type of current profile and the similar parameter
variation may not be obtained depending on various other current profiles due to absence of the RISCr
in the equivalent circuit model.

The RISCr is regarded as a promising fault index for detecting the ISCr because it can describe
self-discharge phenomenon caused by the ISCr in the equivalent circuit model with RISCr [28,29]
and represent heat generated by the ISCr [30]. Therefore, the ISCr detection methods, which directly
use the RISCr as the fault index, have been introduced [29,31–33]. With measurement data of the
self-discharge current and the terminal voltage of the battery with ISCr in the particular experiment
configuration, the RISCr can be calculated correctly [29,31]. However, these experimental methods
cannot be used as on-board ISCr detection when the restricted experiment system is not configured in
actual application environment. Therefore, after analyzing the self-discharge phenomenon caused by
the ISCr, the equation for calculating the RISCr was derived and then the RISCr (1∼20 Ω) was estimated
to detect the ISCr [32]. However, the accuracy of the RISCr estimated from two different load current
profiles was low, because the RISCr in the equivalent circuit model was not used to estimate open
circuit voltage (OCV) of the battery with ISCr. To overcome this error, the previously estimated RISCr
in the model was used to update the model iteratively and to estimate the OCV, and then the next
estimated RISCr (5∼50 Ω) became accurate enough to detect the ISCr [33].

For a large capacity and a high power, a lithium-ion battery pack, where many battery cells
are connected, is used in actual applications such as electric vehicles and energy storage system
for the grid [34,35]. Studies for detecting the ISCr in the battery pack have been suggested [36–38].
The ISCr of the battery pack was detected based on the correlation coefficient of terminal voltages
of individual cells [36], and the deviations of both state of charge (SOC) and heat generation power
were used to detect the ISCr in the pack [37]. However, these two methods were verified with only
the hard ISCr having a magnitude of RISCr (0.36 Ω for [36] and 0.35∼2.4 Ω for [37], respectively),
which is small enough to cause the dangerous incidents such as the thermal runaway in the cell [30].
Especially, temperature data of the individual cells were needed to detect the hard ISCr correctly [37].
Magnitude, differential value and fluctuation of estimated model parameters were acquired to detect
the ISCr with a wide range of RISCr (1 ∼100 Ω) after estimating the parameters in the mean-difference
model of the battery pack [38]. These three detection methods for the battery pack have a common
constraint: all terminal voltages of the individual cells in the battery pack must be provided.

If many battery cells are connected in series in the battery pack, many channels with high
accuracy and high sample rate for measuring all the individual cell voltages increase the cost of
battery management system (BMS). In addition, a data storage unit, needed to save and monitor
the measurement data, can lead to increasing the cost of BMS [39]. Furthermore, depending on the
applications of the battery pack and the BMS with various topologies, the individual cell voltages
may not be provided with high precision and high sample rate and may not be saved due to the
cost of the BMS [40,41]. When the data of individual cell voltages are not provided from the BMS,
the ISCr detection methods for the pack [36–38] have trouble in deriving the properties of the faulted
battery from the battery pack, resulting in problem of detecting the ISCr of the cell in the pack.
Therefore, an algorithm for detecting the soft ISCr with load currents and whole terminal voltages
of the battery pack is necessary definitely. Moreover, considering data computation, using the whole
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terminal voltage for diagnosing the ISCr in the battery pack is more efficient than using all individual
cell voltages.

This paper proposes a method for detecting the soft ISCr in the lithium-ion battery pack, where
normal batteries and a battery with ISCr are connected in series, with the load currents and the whole
terminal voltages of the pack. To reflect the effect of ISCr in the battery pack clearly, the OCV of the
faulted cell is extracted from the pack with ISCr. The proposed algorithm estimates the SOC of the
battery pack with the extended Kalman filter (EKF) to increase accuracy of the pack SOC. Then, the SOC
of the normal cell is obtained with the Coulomb counting method and a stable initial value, which is
determined from the estimated SOC of the pack. Using the SOC estimates of the pack and the normal
cell, the OCV of the battery cell with ISCr in the pack can be obtained; this shows the self-discharge
phenomenon caused by the ISCr obviously. As a result, the RISCr can be estimated accurately, and the
soft ISCr in the battery pack can be detected. To verify the proposed method, various soft ISCr cases
were configured for simulation and experiment, and two load current profiles: dynamic stress test
(DST) and urban dynamometer driving schedules (UDDS) were used.

The remainder of this paper is organized as follows: the proposed algorithm is carried out in
Section 2; the configurations of simulation and experiment are introduced in Section 3; the results of
the proposed algorithm and the discussions are presented in Section 4; the conclusions of this study
and the outline of future work are summarized in Section 5.

2. Method Description

2.1. Overall Scheme for ISCr Detection Algorithm

To detect the soft ISCr in the battery pack, the proposed method estimates the RISCr of the
faulted cell using the whole terminal voltages and the load currents of the pack. As a fault index,
the estimated RISCr can directly inform the user of degree of the ISCr in the pack. If the soft ISCr
having a large magnitude of the RISCr is detected, the BMS can give enough time to cope with the
ISCr fault. The overall scheme of the proposed algorithm is depicted in Figure 1, which comprises of
four estimation steps: estimating pack SOC (SOCp); normal cell SOC (SOCn); faulted cell SOC (SOC f )
and RISCr.

Figure 1. The scheme of the proposed algorithm.

When the ISCr occurs in a single battery cell, abnormal properties such as the decrease in terminal
voltage and the increase in battery temperature are easily observed [42,43]. Hence, measured terminal
voltage, current and temperature of the battery cell can be used to detect the ISCr. However, when an



Energies 2018, 11, 1669 4 of 18

ISCr occurs in the battery pack, which only provides the load currents and the whole terminal voltages
of the battery pack, the decrease in the whole terminal voltage caused by the ISCr in the battery pack
is not obeserved conspicuously. Thus, additional decrease in the OCVf , induced by the self-discharge
current in the faulted cell, should be extracted to ensure the high accuracy of RISCr estimates. First of
all, using the equivalent circuit model of the battery pack with ISCr and the EKF algorithm, the SOCp

is estimated. As a second step, the SOCn can be calculated by the Coulomb counting method with a
initial value of the SOCn which is obtained with the estimated SOCp. Then, using the estimated SOCs
of both the battery pack and the normal cells, the OCV of the faulted cell OCVf and the SOC f are
obtained at the third and fourth estimation steps. Once the difference between the initial and present
SOC f estimates is more than a certain value, which is determined as 0.1 (10% of the total capacity of
the cell) and discussed in Section 4.6, the RISCr of the faulted cell in the battery pack can be estimated
and used to detect the soft ISCr in the pack as the fault index.

2.2. Equivalent Circuit Model of Battery Pack with ISCr

In Figure 2, the battery pack consists of several normal battery cells and one faulted battery cell,
and the whole terminal voltage Vt,p and the load current IL are described, where m is the number of
cells connected in series in the pack. The normal cell is represented by a simple equivalent circuit
model [29] composed of the OCV (VOC) and an internal resistance R. The sum of VOCs and Rs of
normal cells described in Equations (1) and (2) is used to express the model of normal cells with
discretization step in Equation (3), and the sum of the terminal voltages of the normal cells Vt,n can be
induced by Ohm’s law in Equation (3) [44].

VOC,n(k) =
m−1

∑
j=1

VOC,j(k), (1)

Rn =
m−1

∑
j=1

Rj, (2)

Vt,n(k) = VOC,n(k) + Rn IL(k). (3)

Figure 2. Equivalent circuit model of the lithium-ion battery pack with internal short circuit (ISCr).

The cell with ISCr is represented by the simple model with the RISCr, which is connected with
the model of the normal cell in parallel [29,38]. The subscript f is used particularly in parameters
associated with the faulted cell. The IL is divided into two currents which are the self-discharge current
I1L flowing through the RISCr and residual current I2L (Equation (4)), and Vt, f is the terminal voltage
of the faulted cell. The faulted cell model is described in Equations (5) and (6) [33,38]. To represent the
model of the battery pack with ISCr, the Vt,p is obtained by adding the Vt,n and the Vt, f , as shown in
Equation (7).

IL(k) = I1L(k) + I2L(k), (4)

Vt, f (k) = VOC, f (k) + R f I2L(k), (5)
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Vt, f (k) =
RISCr

R f + RISCr
VOC, f (k) +

RISCrR f

R f + RISCr
IL(k), (6)

Vt,p(k) = VOC,n(k) +
RISCr

R f + RISCr
VOC, f (k) + (Rn +

RISCrR f

R f + RISCr
)IL(k). (7)

2.3. Estimation of Pack SOC Using EKF

The EKF algorithm is a common method to estimate accurate SOC because the estimates are not
affected by measurement noise dominantly due to properties of the battery system reflected in the
state space model [45–47]. In this paper, the EKF algorithm is used to estimate the SOCp correctly.
After assuming that RISCr � R f in the model of battery pack with ISCr (Equation (7)), the simplified
Vt,p can be expressed with battery pack OCV (VOC,p) and whole internal resistance Rp which is the
sum of Rn and R f in Equation (8). The recursive least squares (RLS) algorithm is used to identify the
parameter of the normal battery model [48]. Using the RLS algorithm, the Rp is obtained from the
Vt,p and the IL of the normal battery pack. Then, the estimated Rp is used to configure the state space
model of battery pack with ISCr in the EKF algorithm. When the IL is positive during battery pack
charging and negative during discharging, in recursive discrete-time form, the SOCp is calculated
with the Coulomb counting method [44] in Equation (9), where η is the charging and discharging
efficiency, ∆t is the sample period and Cn is the nominal capacity of the normal battery pack. In this
study, the charging and discharging efficiency is defined as 1.

Vt,p(k) = VOC,p(k) + Rp IL(k), (8)

SOCp(k + 1) = SOCp(k) +
η∆t
Cn

IL(k). (9)

To estimate the SOCp using the EKF algorithm, the corresponding equations are listed in Table 1,
where xk is the SOCp, yk is the Vt,p, uk is the IL, k is the sample index, and wk and vk are the zero mean
Gaussian noise with covariance of Q and T.

Table 1. Essential equations for estimating the SOCp in the extended Kalman filter (EKF) [45–47].

Description Equation Step

State space model xk+1 = f (xk, uk) + wk = xk +
∆t
Cn

uk + wk
yk = g(xk+1, uk) + vk = VOC,p(xk+1) + Rpuk + vk

State transition matrix Ak =
∂ f
∂x

∣∣∣∣
x=xk

= 1

Observation matrix Ck =
∂g
∂x

∣∣∣∣
x=xk

=
dVOC,p
dSOCp

∣∣∣∣
SOCp=ŜOCp k

Initial assumed values
x̂+0 = E[x0] = x0

For k = 0P+
0 = E(x0 − x̂+0 )(x0 − x̂+0 )T = P0

Q = Q0, T = T0

x̂−k = f (x̂+k−1, uk)

For k = 1, 2, 3, · · · , ∞Error covariance matrix P−k = Ak−1P+
k−1 AT

k−1 + Q

Kalman gain Lk = P−k (Ck)
T [CkP−k CT

k + T]−1

x̂+k = x̂−k + Lk[yk − g(x̂−k , uk)]
P+

k = (I − LkCk)P−k

2.4. Estimation of Normal Cell SOC

After starting to estimate the SOCp, the imprecise SOCp can be obtained for several seconds
because of the incorrectly assumed initial value of the SOCp. Thus, the estimated SOCp obtained
from the stable point pst, where Pk is lower than a certain small value, is used to estimate the SOCn,
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and the pst is the sample index. By assuming that the SOCp(pst) equals to the SOCn(pst) at the stable
point, the next SOCn can be calculated with the IL and the Coulomb counting method described in
Equation (9).

2.5. Estimation of OCV and SOC for Faulted Cell

The relationship between OCV and SOC of the normal battery pack (Figure 3) obtained from the
prior test [49] is essential for conducting the proposed algorithm. The fully charged battery pack is
rested for 3600 s to obtain the OCV, which is equal to the terminal voltage, at 100% SOC. Then the
battery pack is discharged with 0.5C (1 A) for 720 s to set 90% SOC, where the C (C-rate) is defined
as the charge and discharge current of the battery, and then rested for 3600 s to get the OCV at
90% SOC. By repeating the process, the relationship between OCV and SOC can be obtaind. Using the
relationship, the OCVp and the OCVn can be acquired and are expressed in Equations (10) and (11),
where h is the function representing the relationship. By subtracting OCVns from the OCVp, the OCVf
is calculated. In sequence, the SOC f is obtained from the inverse function h−1 of h (Equation (12)).

V̂OC,p = h(ŜOCp), (10)

V̂OC,n = h(ŜOCn), (11)

ŜOC f = h−1(V̂OC, f ). (12)

Figure 3. Relationship between open circuit voltage (OCV) and state of charge (SOC) of the normal
battery pack.

In the process of using the h−1 to obtain the SOC f , the accuracy of SOC f is dependent on the
slope from the relationship between OCV and SOC; i.e., in the range from 100% SOC to 50% SOC with
the steep slope from the relationship a small SOC f error is caused by error of the VOC, f , while a large
SOC f error can be induced by the same error of the VOC, f in the range from 50% SOC to 10% SOC with
the gradual slope. To avoid this problem, the data of Vt,p and IL were used to conduct the proposed
algorithm until the estimated SOC f ≤ 0.55.

2.6. Calculation of RISCr

Using the self-discharge phenomenon [32,33], the RISCr can be estimated with the estimated SOC f .
To formulate Equation (16) for calculating the RISCr, the Coulomb counting method is used with respect
to the SOC f . IL − I1L is used in Equation (13), because the faulted cell is discharged from the I2L
instead of the IL.

SOC f (k) = SOC f (0) +
∆t
Cn

k

∑
n=1

[IL(n)− I1L(n)] (13)
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To delete the unknown terms, SOC f (0) and I1L, the k− 1th equation in Equation (13) is subtracted

from the kth equation in Equation (13), and then the I1L is replaced with
Vt, f

RISCr
. In Equation (14), Vt,p

m
is used instead of the Vt, f because the Vt, f is not provided measurement data from the battery pack
with ISCr.

SOC f (k)− SOC f (k− 1) =
∆t
Cn

IL(k)−
∆t
Cn

Vt,p(k)/m
RISCr

(14)

The estimated RISCr from Equation (14) using a short interval between k and k− 1 is vulnerable
to errors of the estimated SOC f because the slight variation of the estimated SOC f in a short interval
cannot reflect dominant self-discharge phenomenon from the ISCr. Therefore, the interval must be
extended by adding the k− 1, k− 2, k− 3, · · · , pst + 1th equations in Equation (14) to the kth equations
in Equation (14) (pst + 1 < k); i.e., the RISCr is estimated once the difference between the initial
estimated SOC (SOC f (pst)) and present estimated SOC (SOC f (k)) is more than 0.1, which is 10% of
the total capacity of the cell.

SOC f (k)− SOC f (pst) =
∆t
Cn

k

∑
n=pst+1

IL(n)−
∆t
Cn

1
mRISCr

k

∑
n=pst+1

Vt,p(n) (15)

The self-discharge phenomenon from the ISCr can be explained with the last term of Equation (15).
For the normal battery cell with RISCr ∼= ∞, the last term can be approximated to zero. However, when
the ISCr occurs in the cell, the non-zero last term represents an additional decline in the SOC of the
faulted cell due to the self-discharge current. Consequently, the estimated RISCr (R̂ISCr) can be obtained
with Equation (16) after Equation (15) is rearranged.

R̂ISCr =
∆t
Cn

1
m ∑k

n=pst+1 Vt,p(n)

[ŜOC f (pst)− ŜOC f (k)] + ∆t
Cn

∑k
n=pst+1 IL(n)

(16)

2.7. Parallel Processing of Proposed Algorithm

Once the SOC f (pst) is obtained, the SOC f (pst) is used in Equation (16) to calculate the RISCr
continuously. If error exists in the SOC f (pst), the error can affect the accuracy of RISCr. Therefore, it is
necessary to estimate RISCrs from the various pst positions and apply these estimated RISCrs to the ISCr
fault index. Based on the estimates of SOC f (pst), if the difference between SOC f (pst) and SOC f (k)
is more than or equal to 0.01, 0.02, 0.03, · · · , the proposed methods are carried out sequentially and
implemented in parallel with previously executed method to diversify the stable point of estimated
SOC of the faulted cell. In this paper, four proposed methods were executed additionally in parallel.

3. Simulation and Experiment

3.1. Simulation Configuration

The simulation model of the battery pack with ISCr was configured with MATLAB/Simulink
(MATLAB R2017b, MathWorks, Natick, MA, USA) [50]. In both simulation and experiment
configuration, the battery pack was composed of four normal battery cells and a faulted battery
cell with ISCr. A first-order RC model [51], where the RC represents a parallel resistor-capacitor
sub-circuit, was utilized to describe the normal cell in the battery pack. The parameters for the
first-order RC model were estimated with the RLS algorithm [48] and the experimental data of terminal
voltage and load current, measured when the normal cell was discharged by load current profiles.
The normal cell is same with the cell in the battery pack of the experimental environment. In this study,
two load current profiles such as the DST and the UDDS were used to verify the proposed method in
simulation and experiment. Prior characteristic tests for obtaining the capacity and the relationship
between OCV and SOC of the normal cell were conducted, and these two data were also used for the
simulation configuration. The simulation model of the ISCr-faulted cell was represented by connecting
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the RISCr with the normal model in parallel. In this study, various resistance values such as 50 Ω, 30 Ω,
20 Ω, 10 Ω and 5 Ω were used to represent diverse ISCr fault conditions.

3.2. Experimental Configuration

Figure 4 shows the experimental set-up for the ISCr tests with the battery packs. Two identical
battery packs, A and B, were used to acquire the experimental data. The battery packs were tested
in a thermal chamber, and the ambient temperature was maintained at 25 ± 1 ◦C. The important
specifications of the cell are shown in Table 2. The prior tests for battery packs were conducted to obtain
the capacities and the relationship between OCV and SOC. Based on the nominal capacity in Table 2,
for capacity test, the packs were charged with the constant-current constant-voltage (CC-CV) protocol.
For all experiments including the prior tests and the ISCr fault tests, when the batteries were charged,
the CC-CV protocol was used. Charge-current was 0.5C (1 A) with upper cutoff-voltage 4.2 V in the
CC mode, and cutoff-current was 0.05C (0.1 A) in the CV mode. Then, the packs were discharged with
0.5C as CC discharging [52]. The discharged capacities were regarded as true capacities. The measured
true capacities of the battery packs, 2.1974 Ah and 2.1949 Ah for pack A and B, respectively, were used
for acquiring the correct relationship between OCV and SOC. To check the distribution of capacities
of cells in the pack, the capacity test was conducted for individual cells. As a result, the mean and
standard deviation are 2.1944 Ah and 0.0062, respectively, for pack A; and 2.1959 Ah and 0.0071,
respectively, for pack B.

Figure 4. Experimental configuration for ISCr tests.

The experiments of the battery packs were conducted using a battery test device (Regenerative
Battery Pack Test System 17020, Chroma, Taoyuan, Taiwan) with the sample period of 0.1 s. The five
10 Ω resistances, which have ±5% tolerance, were used to make various true RISCrs. Their measured
true values were 49.91 Ω, 29.98 Ω, 20.00 Ω, 10.02 Ω and 5.00 Ω, and were used to calculate relative
errors of the fault index. These resistances were connected with one of the cells in the pack in parallel
to represent the ISCr, and a switch was used to initiate the ISCr faults in the packs when the load
current profiles were applied to the packs. For the ISCr experiments, the initial SOC of the pack was
set to 90% after the pack was charged and rested for 3600 s. Subsequently, the DST current profile was
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used to discharge the pack A until its SOC reaches 10% of its total capacity to prevent the pack from
being over-discharged, while the UDDS current profile was used for the pack B.

Table 2. Tested battery.

Specification Parameters Values

Model INR 18650-20R
Type LiNiCoMnO2

Dimension ∅18.33 × 64.85 mm
Mass 45.0 g

Operating temperature −20∼+75 ◦C
Nominal voltage 3.6 V

Charge cut-off voltage 4.2 V
Discharge cut-off voltage 2.5 V

Nominal capacity 2.0 Ah

4. Results and Discussions

4.1. Terminal Voltages of Pack

Figure 5 depicts the terminal voltages of battery pack A and B in the experiments depending
on the magnitudes of RISCr. The terminal voltages of the packs were measured until the pack SOC
reached 10%. As the magnitude of RISCr is small, the terminal voltages decreased rapidly compared
with the voltages of the normal battery pack, leading to rapid termination of experiments for the
battery packs with ISCr. The additional decline in terminal voltages caused by the self-discharge
phenomenon of the ISCr was not observed clearly. In addition, because the terminal voltages of
the packs were affected by waveforms of load current profiles in common, the terminal voltages
fluctuated and the slight difference of voltages between the normal pack and the pack with ISCr
was not monitored readily. Therefore, it was difficult to detect the soft ISCr directly with only the
measurment data of terminal voltages of the packs.

(a) (b)

Figure 5. Terminal voltages of battery packs with different RISCrs in experiment with (a) dynamic
stress test (DST) current profile, and (b) urban dynamometer driving schedules (UDDS) current profile.

4.2. Estimation Results of SOCs for Pack and Faulted Cell

As illustrated in Figure 6a, the initial values of SOCp estimates were 0.5 due to the initially
assumed value of the x0, and the estimated SOCps of the battery pack with ISCr decreased faster
than that of the normal battery pack. However, the difference between the normal SOCp and others
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with various ISCr fault cases did not reflect significantly the effect of self-discharge from the ISCr
in the battery pack, consequently leading to inaccurate estimates of the RISCr. Thus, deriving the
properties of the faulted cell from the pack with ISCr was necessary to observe the effect of ISCr clearly.
The estimated SOC f is described in Figure 6b with the specific SOC f range from 90% SOC to 55% SOC.
There were no estimated values of SOC f before the pst was reached, because the SOCn was calculated
after the pst was reached. Please note that by extracting the VOC, f with these VOC,n and VOC,p from the
pack with ISCr, the effect of the self-discharge phenomenon, which is not dominantly observed in the
SOCp (Figure 6a), becomes enlarged noticeably in the SOC f (Figure 6b).

(a) (b)

Figure 6. Estimated SOCs with different RISCrs in experiment with DST current profile: (a) battery
pack and (b) faulted battery cell.

4.3. Estimated RISCrs from Parallel Processing

When the battery pack A was connected with true RISCr (49.91 Ω) and discharged with the DST
current profile, the RISCrs were estimated from different four stable points of estimated SOC of the
faulted cell (SOC f (pst)) using the parallel processing (Figure 7). Although the four proposed methods
were executed additionally in parallel with the firstly implemented method to diversify the SOC f (pst)s,
the number of SOC f (pst)s can be different in accordance with the ISCr fault conditions in the pack;
i.e., even though the four proposed algorithms are added sequentially in all ISCr fault cases, new
SOC f (pst)s may not be extracted because of the condition, where the SOC f (pst) was obtained if the
Pk was lower than the certain small value (1.4× 10−6) in Section 2.4. In the case of the experiment
with the true RISCr (49.91 Ω), the 1st stable point were obtained from the firstly executed method,
while the three stable points were extracted from the the four added algorithms. Figure 7 shows the
slightly different R̂ISCrs for the true RISCr (49.91 Ω). Although the R̂ISCr,4 obtained from the 4th stable
point was most accurate among them in this case, the order of accuracy of R̂ISCrs from the diverse
stable points was changed depending on various ISCr fault cases. Therefore, to reflect all R̂ISCrs in
an ISCr fault condition, mean value (RISCr) of them was used as the fault index in simulation and
experiment results.
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Figure 7. Estimated RISCrs from different stable points in experiment with true RISCr 49.91 Ω and DST
current profile.

4.4. Estimation Results of RISCr in Simulation

Figure 8a shows the RISCrs with different ISCr fault conditions when the DST current profile was
applied to the pack with ISCr, and Figure 8b depicts the RISCrs obtained from the UDDS current profile.
The RISCrs in the specific SOC f range from 90% SOC to 55% SOC are described in Figure 8. Depending
on the various ISCr fault cases, the SOC f (pst) and the 1st stable point, where the R̂ISCr,1 starts to be
obtained, were different. Thus, the different start points for estimating the RISCrs are aligned to zero
in Figure 8, and the time of x-axis represents the total time used to obtain the RISCr with the R̂ISCrs.
Estimation results from two different current profiles were similar, and the values of RISCr slightly
fluctuated because they were affected by waveforms of the current profiles.

The RISCr in Equation (16) is estimated with difference between the SOC f (pst) and the SOC f (k),
which reflects the self-discharge phenomenon caused by the ISCr. At the same time, to discharge
the pack, the difference between the SOC f (pst) and the SOC f (k) becomes large as the magnitude of
RISCr is small (Figure 6b). In addition, the large difference can be obtained from long discharge time.
The large difference between the SOC f (pst) and the SOC f (k) is insensitive to errors of estimated SOC f ,
leading to accurate estimates of the RISCr. In cases of ISCr 50 Ω, 30 Ω and 20 Ω, compared to cases of
ISCr 10 Ω and 5 Ω, large errors of the RISCr, caused by errors of estimated SOC f , occur in the early
stage for estimating the RISCr because of subtle difference between the SOC f (pst) and the SOC f (k) in
short discharge time. However, the RISCrs in cases of ISCr 50 Ω, 30 Ω and 20 Ω gradually approach
true RISCrs because the difference between the SOC f (pst) and the SOC f (k) becomes large gradually
as the pack is discharged, resulting in the dominant effect of the self-discharge phenomenon compared
with that of the estimation errors of SOC f . It is also the reason that the RISCr is used as the fault
index, which was calculated with the R̂ISCrs for the different stable points in the parallel processing
considering errors caused by the position of SOC f (pst). Although the large difference was obtained

for each cases ISCr 10 Ω and 5 Ω, the RISCr still had errors, because using the Vt,p
m instead of the Vt, f in

Equation (16) greatly affected the RISCr estimates compared to the cases of ISCr 50 Ω, 30 Ω and 20 Ω;
i.e., while the Vt,p

m was similar with the Vt, f for ISCr 50 Ω, 30 Ω and 20 Ω, the difference between the
Vt,p
m and the Vt, f became large in cases of ISCr 10 Ω and 5 Ω, leading to large errors of the RISCr.

To evaluate the accuracy of the RISCr, relative errors of the estimates were calculated with
Equation (17). The relative errors of the final values in RISCrs (final relative error) with the various
ISCr fault conditions are shown in Table 3. It should be noted that the final relative errors are less than
or equal to 10% except for the ISCr 5 Ω case. Even though the final relative errors of ISCr 5 Ω in the
DST and the UDDS were about 26%, the ISCr fault (5 Ω) can be detected with the RISCr. In addition,
although the magnitude of RISCr (10 Ω) is regarded as the minimum value which must be detected
early [23,27], the RISCr (5 Ω) in the cell cannot sufficiently increase the temperature of the battery
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which is too low to cause the thermal runaway [30,37]. The reason that the magnitude of the RISCr is
5 Ω and more for verification is to show that the proposed algorithm can be applied to detection of
the soft ISCr. If the proposed method detects various soft ISCr faults, we can conclude that there is
sufficient time to provide against the thermal runaway in the battery pack.

Relative error =
| RISCr − RISCr |

RISCr
× 100% (17)

(a) (b)

(c) (d)

Figure 8. Estimated RISCrs from the various ISCr fault cases in simulations: (a) DST current profile and
(b) UDDS current profile and in experiments: (c) DST current profile and (d) UDDS current profile.

Table 3. Final relative errors (%) of RISCr in simulation depending on the ISCr faults.

Discharge Condition
True ISCr Resistance

5 Ω 10 Ω 20 Ω 30 Ω 50 Ω

DST 26.2 9.9 7.9 4.1 2.1
UDDS 25.4 9.0 4.4 2.9 1.7

4.5. Estimation Results of RISCr in Experiment

Figure 8c,d show the estimation results of the RISCr in the experiment with the DST and the UDDS
current profiles. The tendency of the obtained RISCr in experimental results was similar to that of the
simulation due to the reasons explained in Section 4.4. In addition, the simplified model of the battery
pack with ISCr, which was induced by assuming RISCr � R f (Equation (8)), was validated, because
all estimated RISCrs were indeed much greater than the R f in both simulation and experiment.
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In particular, the main difference between simulation results and experimental results was that
the relative errors in the experiment increased (Table 4) because in all ISCr faults cases, the RISCrs
in the experiment were generally under-estimated compared to those of the simulation. Contrary to
the configuration of the simulation, the characteristics of individual cells in the experiment, such as
capacity, internal resistance, and relationship between OCV and SOC, were not identical. Due to both
the model difference and measurement noise, the errors of SOCp estimates of the experiment increased
compared to that of the simulation, leading to large errors of the estimated SOC f in the experiment.
This large errors of SOC f estimates increased the values of the denominator in Equation (16); this was
main cause to incur the under-estimation of RISCr in the experiment. Meanwhile, in case of ISCr 5 Ω,
the final relative errors in the experiments decreased compared to the results of simulation, because the
RISCrs for ISCr 5 Ω with large relative errors in the simulation became close to the true value of RISCr
by the under-estimation in the experiment. Although the relative errors of the experiment increased
compared to those of the simulation, the obtained RISCr was accurate enough to be used as the fault
index to detect the soft ISCr before the thermal runaway occurs in the battery pack, and to classify the
various ISCr fault conditions.

Table 4. Final relative errors (%) of RISCr in experiment depending on the ISCr faults.

Discharge Condition
True ISCr Resistance

5.0 Ω 10.02 Ω 20.0 Ω 29.98 Ω 49.91 Ω

DST 3.3 11.8 15.1 15.8 20.7
UDDS 2.2 15.4 20.1 20.7 31.2

4.6. Other Discussions

For the normal battery pack, the self-discharge current I1L cannot flow through RISCr and the
faulted cell is discharged by the load current IL. Therefore, the SOC f is represented as Equation (18)
with the IL, and the equation for obtaining the R̂ISCr for the normal battery pack (R̂ISCr,n) can simply be
expressed with both the measured Vt,p and the ε (Equation (19)) which is the difference value between
the estimated SOC f and the true SOC f .

SOC f (k) = SOC f (pst) +
∆t
Cn

k

∑
n=pst+1

IL(n) (18)

R̂ISCr,n =
∆t
Cn

1
m ∑k

n=pst+1 Vt,p(n)

ε
(19)

When the SOC f is estimated with the DST load currents and the whole terminal voltages of
the normal battery pack in the specific region, the maximum value and relative error of the ε were
0.0197 and 3.6%, respectively, for the simulation; and were 0.0502 and 8.4%, respectively, for the
experiment. Actually, in Section 4.5 as the reason for the under-estimation of RISCr in the experiment,
it was checked that the error of estimated SOC f for the experiment was larger than it for the simulation.
These two maximum errors were used to calculate the R̂ISCr,n for the normal cases in both simulation
and experiment. Due to the non-zero value of ε, the obtained R̂ISCr,n monotonically increased.
In Figure 9, the dotted lines show R̂ISCr,ns of the normal battery pack in the specific region and
represent reliable maximum values of RISCrs for all ISCr fault cases. If the obtained RISCr exists in
the region above the dotted line, the RISCr are determined as unreliable estimation values, while the
region under the dotted line is defined as the reliable estimation region of the RISCr.
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(a) (b)

Figure 9. Reliable maximum R̂ISCr,n in simulation and experiment with normal battery pack and DST
current profile: (a) simulation and (b) experiment.

From the stable point pst, sufficient time to obtain reliable R̂ISCr is necessary. If the R̂ISCr is
obtained when the k is very close to the pst in Equation (16), the R̂ISCr can be located in the region
above the dotted line, because the values of the dotted line are small in the early stage shown in
Figure 9 and the obtained R̂ISCr for ISCr fault cases can be affected by both the estimation errors of
SOC f and measurement noise in the Vt,p and the IL. Thus, in the proposed method, the RISCr was
estimated once the difference between the SOC f (pst) and the SOC f (k) was more than or equal to 0.1;
this condition guaranteed that the R̂ISCrs in various ISCr faults of simulation and experiment exist in
the reliable estimation region.

When a battery pack is manufactured with used lithium-ion cells, a variation in the characteristics
of individual cells in the pack becomes large [41], resulting in large error of RISCr estimates.
However, the battery pack made with used cells can be operated with balanced voltage and SOC due
to the proper screening process in configuring the battery pack [53]. Therefore, the proposed method
can be applied in both fresh and reused battery pack.

If an ambient temperature in operation environment of the battery varies and the battery model
which does not reflect thermal properties of the battery is used to estimate the SOC, errors of estimated
SOC become large [54–57], leading to large error of RISCr estimates. Although in this study the
proposed method focused on detecting the soft ISCr at constant temperature, depending on real
applications the ambient temperature can be changed [58]. Therefore, detection of ISCr in the battery
under varing ambient temperature is a maningful and interesting subject of reaserch as a future work.

5. Conclusions

In this paper, a method for detecting the ISCr early in the lithium-ion battery pack was introduced.
The battery pack with ISCr was represented with the equivalent circuit model with the RISCr and
the EKF algorithm was used to estimate SOCp accurately. The OCV of the faulted cell was derived
from the battery pack with ISCr to reflect the self-discharge phenomenon caused by the ISCr in the
battery pack clearly, because the effect of ISCr in the battery pack was not observed in both the Vt,p

and the SOCp obviously. Using the Coulomb counting method and the stable initial value of the SOCn,
obtained from the estimated SOCp, the SOCn was calculated. The OCVp and the OCVn were acquired
from the relationship between OCV and SOC of the normal battery pack, and then the OCVf was
calculated with these two OCV values. Subsequently, the RISCr (5∼50 Ω) of the battery pack with ISCr
was estimated accurately using the self-discharge phenomenon in the SOC f . The proposed algorithm
was verified for various soft ISCr fault conditions such as diverse magnitudes of true RISCr and two
load current profiles in both the simulation and the experiment. In addition, through estimating the
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RISCr from the normal battery pack and analyzing it, it was checked that estimated RISCrs in the
various fault cases were reliable. Using the proposed algorithm, the RISCr was estimated with high
accuracy, and the soft ISCr in the battery pack can be detected using the RISCr as the fault index.
Our future research will focus on increasing the accuracy of the RISCr estimates and extending the
availability of our proposed algorithm to both the aged battery pack and the battery under varing
ambient temperature.
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Nomenclature

Symbols

RISCr ISCr resistance, Ω
Vt Terminal voltage, V
IL Load current, A
VOC OCV, V
R Internal resistance, Ω

Symbols

I1L Self-discharge current, A
I2L Residual current, A
η Charging and discharging efficiency
∆t Sample period
Cn Nominal capacity
h Function of relation between OCV ans SOC
h−1 Inverse function of h
ε Difference error
x EKF state variable
y EKF output variable
u EKF input variable
w, v EKF process/measurement errors
Q, T EKF covariances of Gaussian noise
A EKF state transition matrix
C EKF observation matrix
P EKF error covariance matrix
L EKF Kalman gain
f EKF state update function
g EKF output update function
pst Stable point, sample index
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Subscripts

p battery pack
f faulted cell
n normal cell
k iterration index
j cell index
m number of cells in the pack
1, 2, 3, 4 1st, 2nd, 3rd, 4th stable points

Abbreviations

ISCr Internal short circuit
OCV Open circuit voltage
SOC State of charge
BMS Battery management system
EKF Extended Kalman filter
DST Dynamic stress test
UDDS Urban dynamometer driving schedule
CC-CV Constant-current constant-voltage
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