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A B S T R A C T

Phytoplankton production in coastal waters influences seafood production and human health and can lead to
harmful algal blooms. Water temperature and eutrophication are critical factors affecting phytoplankton pro-
duction, although the combined effects of warming and nutrient changes on phytoplankton production in coastal
waters are not well understood. To address this, phytoplankton production changes in natural waters were
investigated using samples collected over eight months, and under 64 different initial conditions, established by
combining four different water temperatures (i.e., ambient T, +2, +4, and + 6 °C), and two different nutrient
conditions (i.e., non-enriched and enriched). Under the non-enriched conditions, the effect of warming on
phytoplankton production was significantly positive in some months, significantly negative in others, or had no
effect. However, under enriched conditions, warming affected phytoplankton production positively in all months
except one, when the salinity was as low as 6.5. These results suggest that nutrient conditions can alter the
effects of warming on phytoplankton production. Of several parameters, the ratio of initial nitrate concentration
to chlorophyll a concentration [NCCA, μM (μg L−1)−1] was one of the most critical factors determining the
directionality of the warming effects. In laboratory experiments, when NCCA in the ambient or nutrient-enriched
waters was ≥1.2, warming increased or did not change phytoplankton production with one exception; however,
when NCCA was < 1.2, warming did not change or decreased production. In the time series data obtained from
the coastal waters of four target countries, when NCCA was 1.5 or more, warming increased phytoplankton
production, whereas when NCCA was lower than 1.5, warming lowered phytoplankton production, Thus, it is
suggested that NCCA could be used as an index for predicting future phytoplankton production changes in
coastal waters.

1. Introduction

Phytoplankton are an essential component of coastal ecosystems,
and serve as important prey for zooplankton, and diverse commercially
important marine animals (Barton et al., 2013; Franks et al., 2013;
Johnson et al., 2013; Lee et al., 2017). However, they sometimes pro-
liferate into harmful algal blooms, causing heavy losses to the coastal
aquaculture and tourism industries (Anderson, 1995; Harvey and
Menden-Deuer, 2012; Tillmann et al., 2016; Lee et al., 2016; Gobler
et al., 2017). Thus, assessing phytoplankton production – and its change
– in coastal waters, is an important aspect of coastal management.

Coastal waters are important to humans because most seafood
harvesting, aquaculture, water supply activities, and human recreation
occur there (Canuel et al., 2012; Bianchi et al., 2013). In addition,
coastal waters are likely to be affected more than open ocean waters by
changes in air temperature and nutrient input from land, due to their
relatively small size and restricted circulation (Kang et al., 2013). Thus
it might be expected that the effects of water temperature and nutrient
concentration changes on species composition and production of phy-
toplankton in coastal waters would be greater than those in oceanic
waters.

Global warming has increased seawater temperature (e.g., Boyd
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et al., 2015). Furthermore, many models have predicted an increase in
global temperature in a range of 2–6 °C in the next 100 years (IPCC,
2013), with consequent increases in seawater temperatures. Nutrient
conditions in a country’s coastal waters can vary depending on its po-
licies regarding the use of sewage or wastewater treatment technolo-
gies, on fertilizer application, on precipitation patterns, and on fresh-
water discharge (Howarth, 2008). Thus, ecosystems in coastal
environments experience changes in both water temperature and nu-
trient conditions (Scavia et al., 2002; O’Neil et al., 2012; Wells et al.,
2015; Burkholder et al., 2018). Several studies have examined the ef-
fects of warming or nutrient changes on phytoplankton production, but
only a few have focused on their combined effects (Calbet et al., 2014;
Lewandowska et al., 2014). To understand and predict changes in
phytoplankton production and assist the beneficial management of
coastal environments, the combined effects of changes in seawater
temperature and nutrients should be explored.

To address the effects of warming and nutrient conditions on phy-
toplankton production in coastal waters, water samples were collected
from a shallow Korean bay, on eight occasions from March 2011 to
January 2012. These samples were incubated under eight different
conditions, using four different water temperatures (ambient T, T + 2,
T + 4, and T + 6 °C), and two nutrient conditions (non-enriched (NE)
and enriched (ER)). Then the phytoplankton biomass - as chlorophyll a
(Chl a) concentrations - and nutrient concentrations were monitored
daily for 7 days. Furthermore, to test a possibility that these study re-
sults were applicable to other marine environments, time series data on
water temperature, nutrient concentrations, and Chl a concentrations in
waters of the UK, Norway, Estonia, and USA (California) were analyzed,
and their trends were compared with the results presented here.

The results of the present study provide a basis for understanding
both the independent and combined effects of warming and eu-
trophication on coastal phytoplankton production, and also on the
dynamics of harmful algal blooms.

2. Materials and methods

2.1. Sampling system and establishment of experimental procedure

Surface water samples of 400 L were collected from a sampling site

(SWSNU) in Shiwha Bay, Korea, in March, April, May, July, August,
October, and December 2011, and January 2012 (Table 1 and Fig. 1).
Temperature and salinity of the seawater samples were measured using
YSI 63 instruments (YSI, Yellow Springs, OH, USA) as soon as the
samples were collected. The collected seawater samples were im-
mediately transported to the laboratory, and zooplankton were
screened out with a 200 μm sieve.

The concentrations of ammonia (NH4), nitrite plus nitrate (reported
as nitrate or NO3 in this paper), phosphate (PO4), and silicate (SiO2) in
the seawater samples were measured using a 2-channel, nutrient auto-
analyzer (QuAAtro, SEAL analytical GmbH, Germany). Then, the sea-
water samples were gently mixed and evenly distributed into 24 × 10 L
transparent polycarbonate (PC) bottles (Nalgene, Rochester, New York,
USA), and maintained for approximately 12 h at ambient temperature
inside two different temperature-controlled chambers. Selected samples
were enriched (ER) with the addition of predetermined amounts of
NO3, PO4, and SiO2 to 12 × 10 L PC bottles to reach final / target
concentrations of approximately 200 μM for NO3, 12 μM for PO4 (N :
P = 16 : 1, Redfield, 1958), and 100 μM for SiO2. The NO3 con-
centrations of the samples corresponded with the maximum corre-
sponding concentrations observed in the major rivers of the world
(Turner et al., 2003). Trace metals and vitamins were also added, based
on the f/2 medium (Guillard and Ryther, 1962). The water in the other
12 × 10 L PC bottles remained as NE (i.e., the nutrient concentrations
were the same as those of the ambient water).

Triplicate ER bottles and triplicate NE bottles were placed inside
one of the four different temperature-controlled chambers for the am-
bient water temperature (T) experiment. In the same manner, triplicate
ER and triplicate NE bottles were set up for each temperature elevation
for the experiments at 2 °C (T + 2 °C), 4 °C (T + 4 °C), and 6 °C
(T + 6 °C). All bottles were capped loosely, placed inside one of the four
different temperature-controlled chambers, and then incubated at the
target temperature under an illumination of 50 μE m−2 s-1, provided by
a cool white fluorescent light, in a 14:10 h light–dark cycle.

2.2. Subsampling and component analyses

Daily aliquots of 500 mL were taken from each of the 24 bottles. For
the Chl a analysis, a 100 mL aliquot (50 mL aliquot when a bloom

Table 1
Sampling and initial conditions.

Y/M T S Initial concentrations of nutrients and Chl a under the non-enriched condition
( ± SE)

Initial concentrations of nutrients and Chl a under the enriched condition
( ± SE)

NO3 NH4 PO4 SiO2 Chl a NO3 NH4 PO4 SiO2 Chl a

2011 03 4.3 26.1 26.7 (0.9) 24.3 (0.3) 0.03 (0.01) 4.7 (0.1) 6.9 (0.3) 235.9 (10.2) 14.4 (1.2) 15.7 (0.5) 84.4 (4.2) 7.4 (0.3)
2011 04 10.5 28.8 16.8 (0.2) 7.1 (0.3) 0.01 (0.01) 1.1 (0.2) 5.7 (0.5) 193.7 (0.3) 5.9 (0.1) 12.3 (0.0) 86.8 (0.7) 3.5 (0.3)
2011 05 19.0 24.2 16.6 (0.1) 6.6 (0.2) 0.00 (0.00) 3.3 (0.1) 10.3 (0.6) 175.0 (0.9) 7.1 (0.4) 10.8 (0.1) 110.0 (1.8) 9.3 (0.6)
2011 07 26.8 6.5 106.7 (0.4) 11.5 (0.7) 0.00 (0.00) 76.5 (0.6) 61.8 (1.4) 202.8 (0.4) 7.6 (0.3) 8.2 (0.2) 99.7 (0.5) 65.7 (0.8)
2011 08 27.0 15.0 48.7 (0.8) 11.9 (0.3) 0.10 (0.02) 63.7 (0.1) 12.9 (0.5) 197.5 (4.3) 11.1 (0.7) 14.5 (0.1) 97.7 (0.7) 13.5 (0.4)
2011 10 15.3 22.8 25.4 (0.2) 38.4 (0.6) 0.47 (0.02) 11.1 (0.1) 21.5 (0.5) 174.3 (2.5) 38.1 (1.0) 12.6 (0.1) 91.3 (0.5) 22.6 (0.4)
2011 12 7.0 28.0 13.1 (0.1) 0.6 (0.0) 0.06 (0.01) 1.1 (0.0) 25.4 (0.2) 211.6 (0.7) 0.6 (0.0) 12.9 (0.1) 95.3 (0.9) 23.3 (0.5)
2012 01 0.2 31.1 0.04 (0.04) 0.7 (0.0) 0.03 (0.01) 0.0 (0.0) 103.3 (0.5) 168.0 (2.2) 0.7 (0.0) 12.6 (0.2) 103.4 (1.1) 96.8 (1.7)

Sampling and initial conditions. Sampling year and month (Y / M), water temperature (T, oC) and salinity (S) in the collected waters; initial nutrients (NO3, NH4, PO4,
SiO2, μM), and Chlorophyll a (Chl a, μg L−1), at the beginning of the incubation experiments.
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occurred) from each bottle was gently filtered through a GF/F filter,
and the filter paper was placed in a 15 mL Falcon tube. A 10 mL volume
of 90% acetone was added to the tube, which was then sonicated for
10 min, before being placed in a dark chamber at 4 °C for one night. The
samples were then centrifuged and the supernatant was carefully taken
for Chl a measurement, using a 10-AU Turner fluorometer (Turner
Designs, Sunnyvale, CA, USA). For nutrient analysis, 20 mL aliquots
from each bottle were placed in a high-density polyethylene container,
after filtering through GF/F. The concentrations of NO3 and PO4 were
determined daily, using a 2-channel, nutrient auto-analyzer (QuAAtro,
SEAL analytical GmbH, Germany).

For the determination of plankton abundance, a 20 mL aliquot was
taken daily from each bottle and fixed with Lugol’s acid solution.
Phytoplankton at the beginning of the experiment were enumerated in
a Sedgwick–Rafter chamber by counting > 200 cells or all for each
species in ×50–200 using light microscopy (BX51, Olympus, Japan).

2.3. Data analysis

The Chl a concentration in each bottle was measured daily. To
compare the chl a concentrations among the treatments, integrated Chl
a concentrations [ChlInt(t=0-7d) and ChlInt(t=1-7d) (μg/L)] were calcu-
lated:

==
=

Chl ChlInt(t 0 7d)
t 0

7

(t)
(1)

==
=

=Chl Chl ChlInt(t 1 7d)
t 0

7

(t) (t 0d)
(2)

In Eqs. (1) and (2), Chl(t) is the Chl a concentration for the elapsed day,
and t the number of elapsed days (0–7 d).

Using P for phytoplankton (in nitrogen units), and μ for the phy-
toplankton intrinsic growth rate, the change in the phytoplankton
concentration over time (t) can be modeled using the logistic equation:

=dP
dt

µP P
N

1
0

where it is assumed that the carrying capacity N0 is given by the initial
nutrient concentration. The solution to this is

=
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where P0 is the initial phytoplankton concentration. The ratio of the
final phytoplankton concentration to the initial phytoplankton con-
centration is
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When μt is large (i.e., after several cell divisions), this reduces to

=P t
P
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P
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0

0

0

Thus the ratio of the initial concentrations of nutrient and phyto-
plankton (right hand side of the preceding equation) gives the ratio of
the final and initial phytoplankton concentrations – that is, the relative
magnitude of a phytoplankton bloom. This result can be related to the
field and laboratory measurements by using the initial measured con-
centration of NO3 divided by the initial measured concentration of Chl
a. This ratio is defined as the NCCA (nitrate concentration to chlor-
ophyll a). This ratio should correspond to the ratio of the magnitude of
the potential phytoplankton bloom to the initial phytoplankton con-
centration, as shown by the analyses above. A PCCA can be similarly

Fig. 1. Physical and chemical properties and Chl a concentrations in the sam-
pled waters. Temporal variations in temperature (T), salinity (S), and con-
centrations of nitrate (NO3), phosphate (PO4), silicate (SiO2), and Chl a in
surface water samples from Shiwha Bay, Korea, over March 2011–January
2012. Symbols represent treatment means ± 1 SE.
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defined as the ratio of the concentrations of PO4 relative to that of Chl
a. The NCCA and PCCA can be thus used as indicators of the potential
for phytoplankton blooms.

2.4. Statistical analysis

The t-test (Zar, 1999) was used to test whether the ChlInt(t=1-7d) of
one treatment was higher or lower than that of the control (i.e., T under
NE condition) for each month. In addition, linear regression ANOVA
analyses were performed (using IBM SPSS Statistics 23 (IBM Corp., New
York, USA)) to test whether ChlInt(t=1-7d) was affected by the degree of
water temperature increase.

2.5. Environmental data analysis

To apply our study results and predict trends, data on water tem-
perature, NO3 concentrations, and Chl a concentrations in the waters of
the UK (in 2000–2012), Norway (2000–2012), Estonia (2000–2012),
and the USA (California) (2005–2012) were analyzed. To discern a

trend in Californian waters, downcast CTD data were obtained from the
California Cooperative Oceanic Fisheries Investigations (CalCOFI)
website (http://calcofi.org/) for 2005–2012 (excluding 2008). Data
from 0 to 3 m depth were used in this analysis.

For identifying trends in the waters of the UK, Norway, and Estonia,
data provided by the European Environmental Agency from 2000 to
2012, were obtained from its website (https://www.eea.europa.eu/).
Data from 0 to 20 m depth for the UK and Estonian waters were used in
this analysis, and the corresponding depth for Norwegian waters was
0–5 m. Linear regression ANOVA analyses were performed as described
above.

3. Results

3.1. Physical, chemical, and biological properties of the ambient and
experimental waters

During the study period, the major environmental parameters -
water temperature, salinity, nutrient concentration, and Chl a

Fig. 2. Ratio of the abundances of the initial dominant phytoplankton groups in the sampled waters. Ratio (%) of the abundances of the five most dominant
phytoplankton groups in the water samples collected from Shiwha Bay from March 2011–January 2012. T = initial water temperature (oC); PTD = phototrophic
dinoflagellates; DIA = diatoms; CRY = cryptophytes; CHL = chlorophytes; EUG = euglenophytes.
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concentration - showed wide ranges (Table 1 and Fig. 1). The ambient
water temperature ranged from 0.2 to 27 °C, while salinity ranged be-
tween 6.5–31.1 (Table 1 and Fig. 1). Furthermore, the nutrient con-
centrations of the sampled waters ranged from 0.04 to 106.7 μM for
NO3, 0.6–38.4 μM for NH4, 0–0.5 μM for PO4, and 0.02–76.5 μM for
SiO2 (Table 1 and Fig. 1). The Chl a concentrations ranged between
3.5–103.3 μg L−1 (Table 1 and Fig. 1).

The three most dominant phytoplankton groups at the beginning of
the experiments were diatoms, phototrophic dinoflagellates, and cryp-
tophytes (Fig. 2). The dominant phototrophic dinoflagellates were
Heterocapsa rotundata, Heterocapsa steinii (H. triquetra), Prorocentrum
cordatum (P. minimum), and Prorocentrum micans, while the dominant
diatoms were Chaetoceros spp., Nitzschia spp., Stephanodiscus hantzschii,
Thalassiosira spp., and unidentified diatoms. However, the dominant
cryptophytes, chlorophytes, and euglenophytes could not be identified
to species level using the available microscopy, because of their small

sizes and similar morphological characteristics.

3.2. Nutrient concentration changes during incubation

Under the NE conditions, compared to Day 0, the concentrations of
NO3 at Day 7 decreased in some months, and did not significantly
change in other months, whereas under ER conditions, those at Day 7
decreased in most months (Fig. S1). The final concentrations of NO3 at
Day 7 were > 10 μM for all months, except for December 2011 and
January 2012 under the NE conditions (Fig. S1). Furthermore, under
the NE conditions, the concentrations of PO4 at Day 0 were as low
as < 0.6 μM, but increased to 1.7 μM at the end of the experiment (Fig.
S2). However, under the ER conditions, the concentrations of PO4 be-
tween Day 0 and Day 7 decreased in all months, except for July 2011
(Fig. S2). The final concentrations of PO4 at Day 7 were > 2 μM in all
months under the ER conditions (Fig. S2).

Fig. 3. Daily variations in the Chl a concentrations (μg L−1) in each month. Non-enriched conditions (A); Enriched conditions (B). Symbols represent treatment
means ± 1 SE.
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3.3. Chlorophyll a concentration changes during incubation

Under NE conditions, compared to Day 0, the Chl a concentration at
Day 7 increased, decreased, or did not significantly change, whereas
under ER conditions, those at Day 7 increased in all months except for
July 2011 (Fig. 3).

Under the NE conditions, at Day 7, compared to the ChlInt(t=1-7d)

concentrations at T °C, those at T + 2 °C, T + 4 °C, and T + 6 °C were
higher, lower, or similar, whereas under ER conditions, those at T + 2
°C, T + 4 °C, and T + 6 °C were almost always higher (Fig. 4).

3.4. Effects of elevated temperature

Under the NE condition, the ChlInt(t=1-7d) concentrations at T + 2
°C, T + 4 °C, or T + 6 °C were significantly higher than those at T °C
from March to October 2011, except for July, but significantly lower
July 2011 and January 2012 (p < 0.05, t-test; Fig. 5).

Under the NE condition, with increasingly elevated T, the difference
between ChlInt(t=1-7d) at T °C and at the elevated T (T + 2 °C, T + 4 °C,
or T + 6 °C) significantly increased in March, April, May, and August
2011 (p < 0.01, ANOVA; Fig. 5), but significantly decreased in July
and December 2011 and January 2012 (p < 0.05, ANOVA; Fig. 5).

In these experiments, the initial concentrations of NO3 were gen-
erally > 13 μM, except in January 2012 (0.04 μM), but initial con-
centrations of PO4 were generally ≤ 0.1 μM, except in October 2011
(0.47 μM) (Fig. 5).

3.5. Effects of nutrient enrichment

The ChlInt(t=1-7d) concentration at T oC under the ER condition was
significantly higher than at T oC under the NE condition, in all months,
except for July 2011 (p < 0.05, t-test; Fig. 6).

In these experiments, the initial concentrations of NO3 and PO4

ranged from 168.0 to 235.9 μM and from 8.2 to 15.7 μM, respectively

Fig. 4. Daily variations in the integrated Chl a concentrations [ChlInt(t=0-7d), (μg L−1)] in each month. Non-enriched conditions (A); Enriched conditions (B). Symbols
represent treatment means ± 1 SE.
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(Fig. 6).

3.6. Combined effects of warming and nutrient enrichment

The ChlInt(t=1-7d) concentrations at T + 2 °C, T + 4 °C, and T + 6 °C,
under the ER condition, were significantly higher than those at T °C
under the NE condition in all sampling months except July 2011
(p < 0.05, t-test; Fig. 7).

Under the ER condition, with increasing elevated T, differences of
ChlInt(t=1-7d) at T + α °C (T + 2 °C, T + 4 °C, or T + 6 °C) relative to T
°C significantly increased in all months, except for July 2011
(p < 0.05, ANOVA; Fig. 7).

In these experiments, the initial concentrations of NO3 and PO4

were the same as those for experiments described in section 3.5 (Fig. 7).

3.7. Proposal of a new index for predicting phytoplankton production

Under NE conditions, the NCCA in the water samples in each month
ranged from 0.0 to 5.1 (Fig. 8A). In addition, when nutrients were

added (i.e., under the ER conditions), the NCCA in each month in-
creased to range between 1.7–80.5 (Fig. 8B, 8C). Under NE conditions,
with one exception (July 2011), ChlInt(t=1-7d) concentrations at T + α
°C were significantly higher than those at T °C or not significantly dif-
ferent, at NCCA ≥ 1.2, but significantly lower or not significantly dif-
ferent, at NCCA < 1.2 (Fig. 8A, 8D). In July 2011, ChlInt(t=1-7d) at
T + 6 °C, was significantly lower than that at T °C (p < 0.05, t-test;
Fig. 8A), although NCCA was ≥ 1.2. Furthermore, with one exception
(July 2011), when NCCA ≥ 1.7, ChlInt(t=1-7d) at T °C under the ER
conditions were significantly higher than those at T °C under the NE
conditions (p < 0.05, t-test; Fig. 8B, 8D). Moreover, under the ER
condition, with three exceptions (all T + α °C in July and T + 4 °C in
August and October 2011), when NCCA values were ≥ 1.7, ChlInt(t=1-

7d) at T + α °C were significantly higher than those at T °C (p < 0.05, t-
test; Fig. 8C, 8D).

Under NE conditions, the PCCA in the water samples in each month
ranged from 0.00 to 0.02 (Fig. S3A). In addition, under the ER condi-
tions, the PCCA in each month increased to range between 0.1–5.1 (Fig.
S3B, S3C). Under the NE conditions, ChlInt(t=1-7d) concentrations at

Fig. 5. Warming effects. Comparison of ChlInt(t=1-7d) under the control (T °C), and experimental (T + 2, T + 4, and T + 6 °C) conditions, and significance of the
differences. T = sample water temperature for each sampling month; N / P (μM) = initial concentrations of NO3 and PO4 under NE conditions; red stars indicate an
increase, and blue stars indicate a decrease compared to the control (unaltered) conditions (t-test). *, p < 0.05; **, p < 0.01; ***, p < 0.001. The red and blue p-
values indicate increase and decrease linear regression results (ANOVA). Symbols represent treatment means ± 1 SE.
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T + α °C were significantly higher than those at T °C or not significantly
different at PCCA ≥ ca. 0.005, but significantly higher, lower, or not
significantly different, at PCCA < ca. 0.005 (Fig. S3A, S3D).
Furthermore, with one exception (July 2011), when PCCA values were
≥ 0.12, ChlInt(t=1-7d) at T °C under the ER conditions were significantly
higher than those at T °C under the NE conditions (p < 0.05, t-test; Fig.
S3B, S3D). Under the ER condition, with three exceptions (all T + α °C
in July and T + 4 °C in August and October 2011), when PCCA ≥ 0.11,
ChlInt(t=1-7d) at T + α °C were significantly higher than those at T °C
(p < 0.05, t-test; Fig. S3C, S3D).

3.8. Applying NCCA critical value to world environments

To test whether the critical value NCCA ∼1.5 (average of 1.2 and
1.7 = 1.45 = ∼1.5, as mentioned above) was applicable to other
coastal and marine waters, temporal variations in water temperature,
NCCA, and Chl a concentration in the waters of the UK (in 2000–2012),
Norway (2000–2012), Estonia (2000–2012), and USA (California)
(2005–2012) were analyzed. The water temperatures for the UK,
Norway, and Estonia significantly increased (Fig. 9 A–C), whereas those
for California did not change significantly (Fig. 9D). However, the Chl a

concentrations in the UK significantly increased (Fig. 9A), but those in
Norway, Estonia, and California significantly decreased (Fig. 9B–D).
NCCA values typically exceeded 1.5 in the UK, but were less than 1.5 in
Norway, Estonia, and California.

4. Discussion

Although many models have been used to predict the effects of
global warming or nutrient enrichment on phytoplankton production
(Bopp et al., 2001; Sarmiento et al., 2004; Gregg et al., 2005; Marinov
et al., 2010; Steinacher et al., 2010), measured values of critical para-
meters for the models are lacking. This is because there have been few
enclosure studies that acquired values and trends for the parameters
deemed important here (Sommer and Lengfellner, 2008; Lassen et al.,
2010; Sommer and Lewandowska, 2011; Calbet et al., 2014;
Lewandowska et al., 2014). Furthermore, only two studies have ex-
amined the combined effects of global warming and nutrient enrich-
ment on phytoplankton production using enclosures (Calbet et al.,
2014; Lewandowska et al., 2014). However, these studies explored the
combined effects under single initial temperatures; the initial and
changed temperatures were 11 °C and –3 and +3 °C, or 12.3 °C

Fig. 6. Nutrient enrichment effects. Comparison of ChlInt(t=1-7d) under the control (NE) and experimental (ER) conditions, and significance of the differences.
T = sample water temperature for each sampling month; N / P (μM) = initial concentrations of NO3 and PO4 under ER conditions; red stars indicate an increase
compared to the control (unaltered) conditions (t-test). *, p < 0.05; **, p < 0.01; ***, p < 0.001. Symbols represent treatment means ± 1 SE.
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and +3 °C, respectively. Furthermore, NO3 concentrations of the am-
bient waters under NE and ER conditions were 0.11 and 0.12–0.14 μM,
and ∼0.9 and ∼11–14 μM, respectively. However, the range of water
temperatures in global coastal waters is – 8 to 35 °C (Alaska and Pacific
coastal), and that of NO3 is 0–200 μM (NOAA, 2018; Cloern, 2001; Zhou
et al., 2008; Hayn et al., 2014). In this study, the initial temperatures
and NO3 concentrations in the ambient seawaters were 0.2–27 °C and
0–107 μM, respectively, and elevated water temperature and enriched
NO3 concentrations tested were 2.2–33 °C and 168–236 μM, respec-
tively. Thus, the ranges of 0.2–33 °C and 0–236 μM (NO3) in this study
cover those in most coastal environments at present, and also cover the
likely changes forecast for the future. Therefore, to better understand
the combined effects of warmer temperatures and eutrophication on
phytoplankton production, experiments using phytoplankton popula-
tions collected from natural environments, in a wider range of water
temperatures and nutrient concentrations, should be conducted.

4.1. Effect of elevated temperature and nutrient enrichment on
phytoplankton production

In March, April, May, August, October, and December 2011,
ChlInt(t=1-7d), under the NE conditions, was not affected by elevated
water temperature at two or three T + α oC, but became positively
affected by elevation of water temperature under ER conditions.
Furthermore, in January 2012, ChlInt(t=1-7d), under the NE conditions,
was negatively affected by elevation of water temperature, but became
positively affected by elevation of water temperature under ER condi-
tions. These results indicated that the effect of elevated water tem-
perature on phytoplankton production was influenced by nutrient le-
vels – and this is believed to be the first study showing that nutrients
influence the effect warming has on phytoplankton production.
Moreover, ChlInt(t=1-7d) under both NE and ER conditions were affected
by the degree of water temperature elevation in seven out of eight
months. Therefore, ChlInt(t=1-7d) is generally affected by the degree of
elevation of water temperature.

Fig. 7. Combined effects. Comparison of ChlInt(t=1-7d) under the control (T °C under NE condition) and experimental (T + 2, T + 4, and T + 6 °C under ER con-
ditions) conditions, and significance of the differences. T = the temperature in the waters collected in each month; N / P (μM) = initial concentrations of NO3 and
PO4 under the enriched conditions; red stars indicate an increase compared to the control (unaltered) conditions (t-test). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
The red and blue p-values indicate increase and decrease linear regression results (ANOVA). Symbols represent treatment means ± 1 SE.
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In the effects of nutrient enrichment on the ChlInt(t=1-7d) con-
centration, the results in July 2011 were exceptional. The salinity in the
waters collected in this month was as low as 6.5. This salinity is lower
than the salinity limits for a positive growth of many marine phyto-
plankton species (Brand, 1984; Jeong et al., 2018). Therefore, low
salinity in July 2011 may explain why these data are outliers.

4.2. Nutrient concentration effects

The dynamics of the major nutrients N, P, and Si, in coastal waters,

are known to be affected by freshwater input, seasonal dynamics, and
regional characteristics (Trommer et al., 2013; Maavara et al., 2015;
Jeong et al., 2017). Eutrophic waters are usually favorable for algal
blooms (Glibert et al., 2005a, 2005b). In general, marine environments
are considered to be N-limited for phytoplankton growth, whereas lakes
are P-limited (Rabalais et al., 2002; Howarth and Marino, 2006).
However, in some coastal regions, seasonally, P is a limiting nutrient
(Fisher et al., 1992; Rabalais et al., 2002; Trommer et al., 2013). Fur-
thermore, P as well as N are also known to affect dynamics of algal
blooms in many waters, thus, ideas for controlling N and / or P to
prevent algal blooms have been suggested (Ryther and Dunstan, 1971;
Smith, 2006; Elser et al., 2007; Paerl et al., 2016; Jeong et al., 2017).

In this study period, the PO4 concentrations in the waters collected
for eight months were as low as 0.00–0.47 μM, however, Chl a in-
creased in some months at T or T + α °C. Though it did not appear to
explain the trends in our data, PO4 or PCCA may affect changes in Chl a
in other regions, and it is therefore worthwhile exploring this re-
lationship in other regions.

4.3. Applying an NCCA critical value to world environments

A criterion for the conditions under which nutrient enrichment al-
ters the results of rising water temperature on phytoplankton is needed.
In this study, NCCA – the ratio of nitrate concentration to chlorophyll a
– was chosen as a potential criterion. When combining the data ob-
tained under NE and ER conditions, NCCA values of 1.2–1.7 were found
to be critical values for predicting the combined influence of nutrients
and rising temperatures had on phytoplankton production.

When trends in Chl a concentration in the waters of the UK,
Norway, Estonia (Baltic), and USA (California) were analyzed, increases
in Chl a concentrations were largely explained by whether NCCA ex-
ceeded 1.5 or not – evidence that supports the adoption of NCCA as a
criterion. Furthermore, if the UK, Norway, Estonia, and USA were to
maintain their respective NCCA trends for the values recorded for 2000
or 2005–2012, phytoplankton production in UK waters would increase,
while that in Norway, Estonia, and California (USA) would decrease.
Our prediction method should be applicable to other regions.

Many studies have predicted that rising water temperatures will
lower phytoplankton biomass in the future, because stronger thermo-
clines would limit mixing between oligotrophic surface waters and
eutrophic deep waters, consequently lowering the nutrient flux in sur-
face waters (Behrenfeld et al., 2006, 2015; Doney, 2006; Boyce et al.,
2010). This prediction does not however consider changes in nutrient
concentrations in coastal environments and, according to the results of
a recent study analyzing 50 years of data, increased phytoplankton
production caused by rising seawater temperature in the North Atlantic
subpolar region, due to increased nutrient concentrations from a dee-
pened thermocline depth, was suggested (Martinez et al., 2016).

The results of this study suggest that nutrient conditions - NCCA
rather than absolute concentration - influence the effects of warming on
phytoplankton. It is therefore suggested that the effects of NCCA should
be considered when running prediction models for phytoplankton dy-
namics in warmer and / or eutrophic seawater conditions.

Fig. 8. Significance of the differences (i.e., effects; 1-α) in ChlInt(t=1-7d) between
the control (T and NE) and experimental conditions (combination of T + 2,
T + 4, or T + 6 °C and / or ER) as a function of the initial ratios of NO3 con-
centration to Chl a concentration (NCCA). α: Significance level. The blue circles
indicate negative effects; the black circles indicate no effects; red circles in-
dicate positive effects; (A) Warming effects only; (B) Nutrient enrichment ef-
fects only; (C) Combined effects of warming and nutrient enrichment; (D) All.
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Fig. 9. Trends in water temperature (T), NCCA, ratio of NCCA ≥ 1.5 relative to < 1.5, and Chl a concentration in the waters of 4 target countries where algal blooms
occur; NCCA indicates ratios of NO3 concentration to Chl a concentration; blue bars indicate NCCA < 1.5, while the orange bars denote NCCA ≥ 1.5; sampling
periods for the UK (A), Norway (B), and Estonia (C) ranged from 2000 to 2012, while that for USA (California) was from 2005 to 2012 (D); n indicates the number of
samples analyzed; p-values from the ANOVA linear regression test indicate a significant increase (red color) or decrease (blue color); the red line indicates
NCCA = 1.5.
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